16th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction
`
Menu
#
GR code
GR name
Domains Count
SUM Zscore (>-2.0)
Rank SUM Zscore (>-2.0)
AVG Zscore (>-2.0)
Rank AVG Zscore (>-2.0)
SUM Zscore (>0.0)
Rank SUM Zscore (>0.0)
AVG Zscore (>0.0)
Rank AVG Zscore (>0.0)
1
052
Yang-Server
74
28.3378
1
0.3829
5
37.5502
1
0.5074
4
2
022
Yang
74
27.1508
2
0.3669
6
36.1864
2
0.4890
8
3
051
MULTICOM
74
22.1636
8
0.2995
17
35.6897
3
0.4823
9
4
208
falcon2
73
23.9507
5
0.3555
8
34.8799
4
0.4778
10
5
456
Yang-Multimer
74
22.9414
7
0.3100
15
34.2037
5
0.4622
12
6
304
AF3-server
73
24.1926
4
0.3588
7
34.0091
6
0.4659
11
7
319
MULTICOM_LLM
74
18.8219
12
0.2543
28
32.7903
7
0.4431
14
8
241
elofsson
74
25.0292
3
0.3382
11
32.6127
8
0.4407
16
9
110
MIEnsembles-Server
74
23.2528
6
0.3142
14
32.4228
9
0.4381
17
10
294
KiharaLab
74
9.6124
24
0.1299
45
31.9147
10
0.4313
20
11
287
plmfold
74
20.8965
9
0.2824
20
31.7789
11
0.4294
21
12
331
MULTICOM_AI
74
16.6108
18
0.2245
35
31.5161
12
0.4259
22
13
301
GHZ-MAN
73
18.2264
15
0.2771
22
30.9174
13
0.4235
23
14
075
GHZ-ISM
70
12.6929
22
0.2956
18
30.9089
14
0.4416
15
15
284
Unicorn
70
13.4034
21
0.3058
16
30.5502
15
0.4364
19
16
019
Zheng-Server
74
20.1157
10
0.2718
24
30.5254
16
0.4125
29
17
028
NKRNA-s
60
-3.5975
36
0.4067
4
30.3035
17
0.5051
6
18
425
MULTICOM_GATE
74
16.3561
19
0.2210
36
30.2614
18
0.4089
30
19
345
MULTICOM_human
74
14.0665
20
0.1901
40
30.1441
19
0.4074
32
20
465
Wallner
74
2.8191
31
0.0381
56
29.7265
20
0.4017
34
21
264
GuijunLab-Human
73
19.1357
11
0.2895
19
29.4886
21
0.4040
33
22
147
Zheng-Multimer
74
18.3589
13
0.2481
30
29.2369
22
0.3951
37
23
462
Zheng
74
17.7111
16
0.2393
33
29.2175
23
0.3948
38
24
312
GuijunLab-Assembly
73
16.8527
17
0.2583
26
28.2435
24
0.3869
39
25
148
Guijunlab-Complex
74
18.2706
14
0.2469
31
28.2076
25
0.3812
41
26
475
ptq
67
3.2432
30
0.2574
27
27.9487
26
0.4171
27
27
015
PEZYFoldings
74
-1.9203
33
-0.0260
64
27.0090
27
0.3650
46
28
122
MQA_server
64
-4.6316
37
0.2401
32
26.8910
28
0.4202
26
29
164
McGuffin
74
10.7396
23
0.1451
43
26.6399
29
0.3600
47
30
267
kiharalab_server
74
7.1639
26
0.0968
48
25.8207
30
0.3489
51
31
314
GuijunLab-PAthreader
71
4.6225
28
0.1496
41
25.3507
31
0.3571
48
32
163
MultiFOLD2
74
5.3639
27
0.0725
50
24.8883
32
0.3363
57
33
293
MRAH
74
8.5560
25
0.1156
46
24.7723
33
0.3348
58
34
369
Bhattacharya
66
-6.3451
39
0.1463
42
24.6630
34
0.3737
44
35
272
GromihaLab
70
-24.1768
46
-0.2311
79
23.9483
35
0.3421
55
36
419
CSSB-Human
74
4.0761
29
0.0551
52
23.8270
36
0.3220
63
37
079
MRAFold
74
2.5160
32
0.0340
57
23.7574
37
0.3210
66
38
375
milliseconds
60
-11.7731
41
0.2704
25
22.9258
38
0.3821
40
39
031
MassiveFold
66
-14.3317
42
0.0253
58
22.8313
39
0.3459
53
40
196
HYU_MLLAB
74
-2.7314
34
-0.0369
65
21.6879
40
0.2931
71
41
298
ShanghaiTech-human
62
-21.5557
44
0.0394
55
21.6252
41
0.3488
52
42
269
CSSB_server
60
-24.6393
47
0.0560
51
21.1504
42
0.3525
50
43
145
colabfold_baseline
59
-27.6680
48
0.0395
54
21.0367
43
0.3566
49
44
235
isyslab-hust
72
-4.7785
38
-0.0108
62
20.7775
44
0.2886
72
45
221
CSSB_FAKER
74
-3.1546
35
-0.0426
66
20.7742
45
0.2807
77
46
286
CSSB_experimental
72
-7.1792
40
-0.0442
67
20.6118
46
0.2863
74
47
262
CoDock
57
-38.9471
53
-0.0868
74
18.8361
47
0.3305
60
48
388
DeepFold-server
74
-22.7653
45
-0.3076
82
18.2605
48
0.2468
85
49
198
colabfold
59
-33.7540
50
-0.0636
70
17.8325
49
0.3022
69
50
059
DeepFold
74
-28.5099
49
-0.3853
86
16.2620
50
0.2198
87
51
091
Huang-HUST
56
-48.3435
54
-0.2204
78
15.8594
51
0.2832
76
52
014
Cool-PSP
74
-19.5948
43
-0.2648
80
15.1089
52
0.2042
88
53
311
RAGfold_Prot1
57
-35.3606
51
-0.0239
63
15.0853
53
0.2647
80
54
112
Seder2024easy
57
-54.9630
55
-0.3678
85
15.0821
54
0.2646
81
55
423
ShanghaiTech-server
59
-35.8289
52
-0.0988
75
14.8453
55
0.2516
84
56
322
XGroup
37
-68.8989
57
0.1379
44
13.5336
56
0.3658
45
57
323
Yan
31
-77.3999
62
0.2774
21
13.1001
57
0.4226
24
58
023
FTBiot0119
39
-72.2390
59
-0.0574
68
12.9354
58
0.3317
59
59
017
Seder2024hard
56
-59.8363
56
-0.4256
88
12.4411
59
0.2222
86
60
489
Fernandez-Recio
36
-74.1127
60
0.0524
53
11.8591
60
0.3294
61
61
204
Zou
36
-81.4161
65
-0.1504
76
11.4782
61
0.3188
67
62
171
ChaePred
23
-94.1100
74
0.3430
9
11.2618
62
0.4896
7
63
290
Pierce
27
-87.1699
71
0.2530
29
11.2359
63
0.4161
28
64
393
GuijunLab-QA
32
-77.3324
61
0.2084
38
10.8040
64
0.3376
56
65
450
OpenComplex_Server
73
-82.5872
67
-1.1039
99
10.3363
65
0.1416
93
66
219
XGroup-server
31
-83.6648
68
0.0753
49
10.2051
66
0.3292
62
67
139
DeepFold-refine
74
-69.7802
58
-0.9430
95
10.1718
67
0.1375
94
68
274
kozakovvajda
36
-78.5430
63
-0.0706
71
9.8207
68
0.2728
79
69
494
ClusPro
36
-78.9562
64
-0.0821
73
9.4358
69
0.2621
83
70
167
OpenComplex
74
-86.1897
70
-1.1647
101
9.3861
70
0.1268
95
71
358
PerezLab_Gators
34
-86.1895
69
-0.1820
77
9.3628
71
0.2754
78
72
218
HIT-LinYang
21
-101.0492
77
0.2358
34
8.8291
72
0.4204
25
73
397
smg_ulaval
15
-110.6301
79
0.4913
2
8.1220
73
0.5415
2
74
191
Schneidman
24
-97.6101
75
0.0996
47
7.7117
74
0.3213
65
75
481
Vfold
20
-107.5672
78
0.0216
59
7.6218
75
0.3811
42
76
085
Bates
25
-98.0834
76
-0.0033
61
7.4571
76
0.2983
70
77
261
UNRES
53
-90.7900
72
-0.9206
94
5.2776
77
0.0996
97
78
040
DELCLAB
67
-92.5985
73
-1.1731
102
4.8277
78
0.0721
102
79
212
PIEFold_human
74
-82.1307
66
-1.1099
100
4.5216
79
0.0611
103
80
033
Diff
10
-131.3576
89
-0.3358
84
4.3700
80
0.4370
18
81
380
mialab_prediction
15
-118.9058
80
-0.0604
69
3.9616
81
0.2641
82
82
325
405
9
-128.1125
83
0.2097
37
3.6779
82
0.4087
31
83
159
406
9
-128.2675
84
0.1925
39
3.5974
83
0.3997
36
84
189
LCBio
11
-130.5387
87
-0.4126
87
3.5400
84
0.3218
64
85
187
Ayush
24
-119.5786
81
-0.8158
92
3.4773
85
0.1449
92
86
338
GeneSilico
12
-124.8768
82
-0.0731
72
3.4470
86
0.2873
73
87
376
OFsingleseq
11
-133.6544
93
-0.6959
91
3.1449
87
0.2859
75
88
231
B-LAB
10
-132.3617
90
-0.4362
89
3.1438
88
0.3144
68
89
117
Vakser
25
-134.0005
94
-1.4400
105
1.8145
89
0.0726
101
90
337
APOLLO
15
-132.5610
91
-0.9707
96
1.7168
90
0.1145
96
91
276
FrederickFolding
3
-141.1825
97
0.2725
23
1.6728
91
0.5576
1
92
361
Cerebra_server
71
-129.6595
86
-1.7417
108
1.6169
92
0.0228
105
93
468
MIALAB_gong
10
-130.9361
88
-0.2936
81
1.5200
93
0.1520
91
94
120
Cerebra
67
-129.2185
85
-1.7197
107
1.4647
94
0.0219
106
95
008
HADDOCK
9
-132.9743
92
-0.3305
83
1.4117
95
0.1569
90
96
114
COAST
15
-134.5021
96
-1.1001
98
1.1938
96
0.0796
99
97
300
ARC
15
-134.0676
95
-1.0712
97
1.1763
97
0.0784
100
98
400
OmniFold
2
-143.3696
98
0.3152
13
1.0244
98
0.5122
3
99
174
colabfold_foldseek
1
-145.4930
101
0.5070
1
0.5070
99
0.5070
5
100
049
UTMB
1
-145.5598
102
0.4402
3
0.4566
100
0.4566
13
101
197
D3D
1
-145.9805
105
0.0195
60
0.4004
101
0.4004
35
102
355
CMOD
1
-145.6727
104
0.3273
12
0.3781
102
0.3781
43
103
271
mialab_prediction2
1
-145.6586
103
0.3414
10
0.3449
103
0.3449
54
104
143
dMNAfold
1
-146.4818
107
-0.4818
90
0.1987
104
0.1987
89
105
357
UTAustin
2
-146.7055
108
-1.3527
104
0.1713
105
0.0856
98
106
132
profold2
6
-145.1441
100
-1.5240
106
0.1278
106
0.0213
107
107
351
digiwiser-ensemble
4
-145.1230
99
-1.2808
103
0.0728
107
0.0182
108
108
281
T2DUCC
1
-146.8308
109
-0.8308
93
0.0339
108
0.0339
104
109
138
Shengyi
2
-147.7383
110
-1.8692
109
0.0000
109
0.0000
109
110
105
PFSC-PFVM
41
-146.1917
106
-1.9559
110
0.0000
109
0.0000
109
The cummulative z-scores in this table are calculated according to the following procedure (example for the "first" models):
1. Calculate z-scores from the raw scores for all "first" models (corresponding values from the main result table);
2. Remove outliers - models with zscores below the tolerance threshold (set to -2.0);
3. Recalculate z-scores on the reduced dataset;
4. Assign z-scores below the penalty threshold (either -2.0 or 0.0) to the value of this threshold.