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3Dpr 0 - 500 models for 100 3D targets
FOL Dpr 0 - 600 models for 100 3D/100 DP targets
ABIlpro (server, 3D) - 495 models for 99 3D targets

3D Structure Prediction Using FOLDpro, 3Dpro, and ABlpro

Jianlin Cheng, Arlo Randall, Mike Sweredoski and Pierre Baldi
Institute for Genomics and Bioinformatics, School of Information and
Computer Science
University of California Irvine, CA 92697

Three servers (FOLDpro, 3Dpro, and ABIpro) from our group participated in
3D structure prediction in CASP7. FOLDpro is a template-based method using
a machine learning approach to rank templates [2]. ABlpro is anabinitio
method. 3Dpro is a combination of the template-based method and the ab initio
method. Here we briefly describe the protocol of each server.

FOLDpro

FOLDpromakes prediction in four steps. First, it extracts pairwise similarity
features for a query and all templates in the library using alignment tools and
structural feature predictors. It also uses PSI-BLAST [1] to search the query
against the template database.

Second, a support vector machine (SVM) integrates pairwise features to
evaluate the structural relevance of the query and the templates (in the same
fold or not). It uses relevance scores to rank the templates. SVM ranking may
not always put the best templates on the top of the positive template list. For
instance a template in the same fold as the query may be ranked before a
template in the same family. So the positive templates are reranked by the e-
values of PSI-BLAST search if available.

Third, FOLDpro generates an alignment between the query and each of the top
5 templates respectively. For templates that can be found by PSI-BLAST, PSI -
BLAST alignments are used. For harder templates, FOLDpro uses a global
profile-profile alignment method COACH [3] to generate the aignments
between the query and the templates.

Fourth, FOLDpro uses Modeller [4] to build 3D structure for the query, based
on its aignments with the templates. Multiple significant templates are
combined to generate structures.

ABlpro

ABlpro is anabinitio tertiary structure predictor. The energy function is
composed of terms from predicted structural features, physical forces, and

statistical analysis of PDB proteins. The conformational search is performed
using simulated annealing and a segment library.

Thesearch energy includes terms for the following predicted structura
features. secondary structure (SSpro), relative solvent accessibility (ACCpro),
and residue level contacts (CMAPpro)[5]. The physical terms include
hydrogenbonding, van der Waals interactions, electrostatics, and solvation
effects. The potential aso includes statistical terms for residue solvent
environment, local structure independent residue pairing [6], and local structure
dependent residue pairing [7].

Thesearch is performed in two phases of simulated annealing. Both phases use
alinear cooling schedule and use the same temperature settings. The first phase
uses a zero weight for atomic repulsion. The second phase includes the
repulsive terms and scales up the weights for other terms to decrease the move
acceptance rate. The main move type is fragment replacement with fragment
lengths from three to nine residues [8]. Many models are generated using
random seeds and those with the lowest energy are selected.

3Dpro

3Dpro is a combination of template-based method and ab initio method. It first
usestemplate-based method (the same as FOLDpro, but run independently on
dightly different database) to identify templates. If positive templates (SVM
score > 0) are found, it uses the same protocol of FOLDpro to make predictions
and ab initio method is not used. If no positive templates are found, ab initio
method (the same as ABIpro) is invoked to generate two ab initio models. In
this situation, three (or four) template-based models and two (or one) ab initio
models were submitted to CASP7.
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AMBER/PB - 96 modelsfor 1 3D/ 91QA targets

Quality Assessments of Server Results with AMBER/PBSA

M.J. Hsieh, E. Chanco and R. Luo
University of California Irvine
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We have constructed a model scoring scheme given either alignments or
tertiary structures for CASP7. The inputs for our scoring scheme are the
predicted protein structures from individual servers. These predictions (tertiary
structures, main-chain structures, or alignments only) are used to build all-atom
models by MODELLER.! The all-atom models are then energy-minimizedwith
SANDER in the AMBER suite? before scoring. The AMBER/PBSA scoring
function, based on a revised ff99 all-atom AMBER force field* and the PBSA
solvation model® is used to evaluate free energies of minimized structures with
PBSA in the AMBER suite.

The resolution of the scoring scheme is found to be about 0.05 GDT value due
to the all-atom reconstruction procedure used. The prediction accuracy of
AMBER/PBSA is about 70%, based on tests with continuous targets that are
not in the new fold category in both CASP5 and CASP6. This is higher than
individual servers (56.4% in CASP5, 45.5% in CASP6). AMBER/PBSA aso
performs much better than two widely used scoring functions DFIRE and
ROSETTA tested under the same condition.

In the QA category of CASP7, only the first two predictions per server are
evaluated due to the computational cost of the scoring scheme. All free energies
are then translated into P-values based on the extreme value distribution.
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According to the activity of world-wide structural genomics, a huge number of
protein structures have been determined and deposited in the Protein Data Bank
(PDB). Consequently, the fold recognition approach is becoming more
effective. In this method, the template structure for the query is selected from
the PDB, the 3D model is built based on their alignment and the model is
evaluated.

We prepared the following three steps, as in previous CASPs, to identify proper
template(s) and to producetarget-template alignment(s). To complete these
three processes (semi)automatically, we constructed a prediction pipeline,
FORTE-SUITE. First, four FORTE series™, which are systems of profile
profile alignment for protein fold recognition, are performed for each target
sequence. We used FORTEL, FORTE2, FORTELT, and FORTE-H for this
purpose. FORTEL and FORTEZ2 provided target-template alignments that are
publicly available in the server category of CASP7. In addition to those
alignments, we sampled more alignments using a newly developed substitution
matrix (see below). Then, based on those alignments, we constructed and
exhaustively evaluated 3D models with MODELLER®. According to the Z-
scores calculated using the FORTE series, we separately treated easy and hard



targets. For easy targets (generally Z>=8), 10 models were built for each
alignment of top 100 proteins in the FORTE library. The 10 models for each
alignment of top 500 proteins were constructed for hard targets. Finaly,
submission candidates among those models were selected using CQS calculated
by Verify3D* and Prosa2003° programs and the new evaluation function,
LIBRA_rotamer®, which we describe below.

We developed our models in terms of the structural quality scores by sampling
morealignments after identification of the proper templates. Sampling more
alignments was done using the profiles derived from amino acid sequences with
various diversity for both targets and templates proteins, or through human
intervention in some cases.

We have improved our methodology, especially for the followingfour
directions.

First, to produce a target-template alignment, we also used a substitution matrix
that was specially designed for aligning a pair of distantly related protein
sequences. This matrix is useful for improving the alignment accuracy when we
align two distantly related proteins (unpublished data). In some targets, the
matrix yielded alignments, based on which we can obtain the models with
highest scores.

To enhance our exhaustive modeling approach, we constructed a high-
throughput method of FORTE-SUITE. We were able to build 10 models
automatically for the top 500 (or more) alignments obtained by FORTE series.
For building asprecise 3D-models as possible, we used multiple templates
when we were able to use structural information of the same family or a
superfamily in PDB.

We introduced a new evaluation function, LIBRA_rotamer, to improve the
process of model selection; LIBRA_rotamer checks sidechain interactions,
hydration, local propensities, and repulsions of 3D-models based on the 56
rotamers. More details are described in our abstract of the category for quality
assessment of models (team name: largo).

In addition to using this new scoring function, we calculated scores, which were
averaged over (usually 10) models based on an alignment, to evaluate 3D-
models more precisely. As a guidance of model selection, we used the averaged
scores instead of a score for each model, which is effective to enhance
prediction accuracy, especialy for easy targets, according to our results. Using
this new protocol when we tested the effectiveness of our new protocol of
model selection with CASP6 targets as a benchmark, we attained 4% better
results than when using the previous protocol.
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Combination of template-based and template-free modeling

J. Czwojdrak, U. Baraniak, K. Kaminska, J.M. Bujnicki and
A.M. Czerwoniec
Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology,
Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
anna.czerwoniec@amu.edu.pl

In the seventh Critical Assessment of techniques for protein Structure
Prediction (CASP7), the AMU-Biology group used the combination of the
‘FRankenstein’s Monster’ approach for template-based modeling (Kosinski,
2003) with the ROSETTA method for denovo modeling (Simons, 1997) to
predict the tertiary structure of full-length targets of al categories.

The first step was to recognize structural homologs and generate target-
template alignments using a number of fold-recognition methods via the
GenesSilico MetaServer (Kurowski and Bujnicki, 2003;
http://www.genesilico.pl/meta/). The target alignments were converted into
preliminary models using MODELLER (Fiser and Sali, 2003). The preliminary
models were evaluated according to knowledge-based potentials implemented
in the COLORADO3D server (Sasin and Bujnicki, 2004) to enable
discrimination of fragments that are likely to be erroneous. After superimposing
the best models, hybrid models were constructed and used to guide
modifications of the origina target-template alignments. The refinement of
models involved iterative model building, evaluation, and realignment. At this
step we also used externa information: secondary structure predictions,
conservation of fragments and putative catalytic residues, and constraints on the



placement of insertion and deletions in the loop regions. For regions (or entire
proteins) with no corresponding structure among the templates identified by
fold-recognition, we attempted de novo modeling using the ROSETTA
algorithm. Typically, hundreds to thousands of decoys were generated and
clustered to identify the most representative low-energy conformations. Models
were selected according to the average energy of clusters, size, density and
visual evauation of the full-atom structures. The final hybrid models were
‘refined’ by running MODELLER to optimize the bond lengths and angles.
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Predictions of three-dimensional structures of proteins using
Monte Carlo simulations and electrostatic screening model
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Three-dimensional structures of proteins are predicted abinitio using torsion
space Monte Carlo simulations. The method is based on the electrostatic

screening model of backbone conformational preferences (ESM)1-6. The
energy function in the Monte Carlo procedure contains. mainchain
electrostatic interactions, electrostatic solvation free energies of mainchain
atoms, and hydrophobic interactions. The electrostatic interactiors are
calculated using Coulomb's law with a dielectric constant of 1. The electrostatic

solvation free energies (ESF) are calculated using the finite difference Poisson-
Boltzmann model (DelPhi) with PARSE parameter set’.

Torsion space Monte Carlo simulations of small proteins are performed using
hierarchic condensation. In the first phase of simulation only the local
electrostatic energies and backbone solvation free energies of residues are
activated. In this phase the B-strands are formed. In the second phase of
simulation the main-chain hydrogen bonds are included in the energy function.
In this phase o-helices and hairpins are formed. In the third phase of simulation
the hydrophobic interactions are included in the energy function. In this phase
a-helices and B-strands gradually condense into compact structures.

A number of independent Monte Carlo simulations (~10000) are performed. All
heavy atoms and polar hydrogen’s are included in the simulations. Only torsion
angles are allowed to vary during simulations. Hard sphere repulsion is
enforced by discarding conformations with steric clashes. Pairs of atoms related
by torsion angles are not checked for steric clashes. Conformational space is
sampled by varying torsion angles of proteins using different types of moves.
The Metropoalis criterion is used to decide whether to accept or reject the move.
Temperature was 300 K.
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BAKER - 533 modelsfor 99 3D/8 TR targets

Template-based Structure Prediction in CASP7 by Rosetta and
Rosetta@home

B. Qian, V. Sraman, S. Khare, R. Das, W. Sheffler, D. Chivian,

D. Kim, L. Mamstrom, A. Wollacott, D. Baker*
University of Washington
dabaker @u.washington.edu

CASP7 presented us with dozens of targets to test the Rosetta high resolution
refinement based comparative modeling protocol we have been developing
over the past couple of years. This protocol involves remodeling parts of the
structures using Rosetta fragment insertion protocol, followed by Monte-Carlo
minimization of the fullatom energy of the models. Our goal was to accurately
model the structurally variable regions of the comparative models and to
improve the structural cores over the templates. Following the steps sketched
below, we improved the quality of models over the templates for many targets,
but there is still considerable room for improvements.

Template selection and Alignment Ensemble: The initial set of templates and
target-template alignments are obtained from the 3D Jury server® and subjected
to fullatom refinement using Rosetta fullatom energy function (see below). The
templates from which the very lowest energy models were derived from are
used as the candidate templates. Alignment ensemble between the candidate
templates and the target sequence are parametrically generated using the
K*Sync alignment method?. The alignment ensemble is turned into a decoy
ensemble by placing the sequence of the query onto the backbone of the parent
based on the alignment. Each model is then subjected to loop relax followed by
fullatom refinement (see below), constrained by a set of CA-CA distance
congtraints generated from the decoy ensemble.

Loop Relax: To explore the conformation space around the starting
comparative models, we select parts of the model that are variable from its
clustered neighbors and remodeling these parts in the context of their
surroundings in the starting model. The remodeling process is performed using
a new loop modeling protocol, which grows loops from both ends of a loop
using Rosetta fragment insertion protocol, and closes in the middle of the loops
using the analytic Cyclic Coordinate Decent method®. Each of the structural
mutants is then subjected to a number of fullatom refinements.

Fullatom Refinement: Models are refined using the Monte-Carlominimization
plus sidechain remodeling protocol described previously*. In each step of this
protocol, a random perturbation to the protein backbone torsion angles is
followed by optimization of sidechain rotamer conformations and the torsion
angles flanking the site(s) of the original perturbation using the Davidon

Fletcher-Powell (DFP) algorithm. Acceptance or rejection of the new
conformation is based on the Rosetta fullatom energy difference between the
final minimized conformation and the initial conformation prior to the random
perturbation using the Metropolis criterion. Hundreds of the above steps are
preformed to obtain alow energy conformation.

Evolutionary Algorithm: Starting with full-chain structural models, we
introducestructural mutations into the models using the loop relax protocol,
followed by multiple instances of fullatom refinement of each mutant, and
select from the population based on the Rosetta fullatom energy of each
individual structure. 10 iterations are performed and the very lowest energy
models are selected as submissions.

Results: In many cases we improved the quality of the starting templates with
the loop relax plus fullatom refinement protocol described above. Figure 1
shows the model quality versus template quality with Maxsub 2.0A threshold
for CASP7 targets in the PSI-blast and homologous fold-recognitionregimes.
For the best of our five submitted models, there are a large number of cases
where we have successfully improved the models over templates, withtwo
examples illustrated in Figure 2. Falures to improve over templates are due to
overly aggressive refinement, multimerization and crystal contacts in the native
structures, and incorrect remodeling of the terminal segments. Possible
improvements of our protocol from the insights gained during CASP7 are being
pursued, with emphasis on using information from sets of homologous
structures.
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Figure 1. Quality (fraction of aligned residues) of the best models versus that of
the corresponding templates with Maxsub 2.0A threshold indicates
improvement of many models over templates. The comparison is based on
native structure regions that are present in the templates.

Blue: native Blue: native

Green: model Green: model

Red: template Red: template

Figure 2. Superposition of the native structure( blue ), the best template (red),
and our best submitted model(green) for CASP7 target TO330 domain 2(left)
and T0327(right).
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Protein structure prediction by free modeling and
Rosetta@home in CASP7
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L. Mamstrom, and D. Baker
University of Washington
dabaker @u.washington.edu

With over two dozen new fold targets from structural genomics initiatives,
CASP7 provided an unprecedented test of the Rosettadenovo structure
prediction method. As in previous CASP experiments, we generated a large

pool of 109-106 decoys by Rosetta fragment assemblyl with a low-resolution
energy function. We again attempted to ensure diversity in this decoy set by
folding multiple homologs for each sequence, by forcing the exploration of
different secondary structures through manually imposed torsional “bar-codes’,
and by seeding simulations with long-range beta sheet pairings.2

Compared to CASP6, we were able to increase the computational power
invested in each target sequence from 102 to 104 computer days using the
distributed computing network Rosetta@home.3 In additon to permitting an
increased number of fragment insertions, the computational power was invested
in the high resolution refinement of each decoy with a full-atomenergy

function.# Submitted predictions were drawn from clusters of the lowest energy
decoys.



Predictions from the Rosetta full-atom ab initio
method overlaid with crystal structures.

We report high resolution predictions for multiple targets, including al-alpha
proteins (T283; 1.4 A over 90 residues), al-beta proteins (domain 3 of T316;
2.8 A over 71 residues), and aphalbeta proteins (T354; 1.8 A over 77
residues). These successes were balanced by severa cases where the Rosetta
methodology did not converge well, even for small target sequences with
lengths less than 100 residues. Post-mortem analysis points to numerous factors
that complicated ab initio prediction of structura genomics targets:
oligomerization of the proteins, highly uncertain secondary structure
predictions, disordered regions, and a scarcity of sequence homologs. Solutions
to these issues are being actively pursued, with strategies directly inspired by
our experiencein CASP7.
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Hybrid domain parsing with Ginzu and RosettaDOM

D. Chivian®, D. E. Kim? and D. Baker?
1 _ Lawrence Berkeley National Laboratory, Berkeley, CA
2_ University of Washington, Seattle, WA
DCChivian@lbl.gov

Protein chains often contain more than one domain. In order to predict the
domain organization of a protein, we have combined the Ginzu*?and

RosettaDOM? domain parsing methods into a hybrid predictor (see
accompanying abstracts for Ginzu and RosettaDOM in this volume).

Ginzu attempts to determine the locations of putative domains in the query
sequence and theidentification of any likely homologs with experimentally
characterized structures with PSI-BLAST?® and 3D-Jury-A1*. This search for
homologous structures is followed by parsing any remaining regions by
screening Pfam®, and then by application of a boundary preference function.
The boundary preference function is derived from a PSI-BLAST® MSA (from
the "nr" sequence database) via a heuristic that considers clusters of sequences
in the PSI-BLAST MSA, the least occupied positions in the MSA, strongly
predicted loop regions by PSIPRED®, and distance from the nearest region of
increased domain confidence. A fourth term boosts the likelihood of a domain
boundary in regions of the MSA where the sequences frequently begin or end.
Regions with structural homologs are further parsed using a consensus variant
of Taylor's structure-based domain parsing method’.

RosettaDOM generates 400 decoys structures with Rosetta's de novo fragment-
assembly approach for the full length of the target and structurally parses each
of those decoys using Taylor's structure-based domain parsing method’.
Increased frequency of boundaries within a sliding window (smoothed in the
same fashion as SnapDRAGON®) is used to assign domain boundaries (over a
Z-score of 2.5). Although Rosetta is unlikely to produce accurate atomic-
resolution models, it may accurately produce course structural features such as
domains.

Both Ginzu and RosettaDOM often do not arrive at a strongly predicted
boundary separately, but instead may suggest several candidate boundarieswith
a confidence below the threshold of each method. In such circumstances,
agreement between the two methods increases the confidence of a boundary
within that window. The BAKER-DP_HYBRID method takes advantage of
the agreement between the sequence-based and structure based domain
prediction methods by combining the boundary confidence functions from the
two methods (only in regions without a strongly detected PDB homolog by
Ginzu). It reports boundaries only when the combined function is above the



threshold, which may be achieved with a strong prediction by either method or
when weaker predictions by each method are in agreement. Regions with PDB
homologs found by Ginzu are structurally parsed with Taylor's method’ (based
on the model) in the same fashion as Ginzu.
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BAKER-ROSETTADOM - 99 modelsfor 99 DP targets

The RosettaDOM Domain Parsing Protocol

D. E. Kim', D. Chivian®, L. Malmstrém® and D. Baker*
1 _ University of Washington, Seattle, WA 2— Lawrence Berkeley National
Laboratory, Berkeley, CA
dekim@u.washington.edu

Here, we describe a protocol to identify protein domain boundaries using a
sequence homology based procedure called Ginzu®?, and a de novo method that
uses the Rosetta®> structure prediction software suite for proteins lacking
significant homology to experimentally determined structures.

RosettaDOM first uses Ginzu to identify domains that are homologous to
known structures in the PDB. See accompanying Ginzu abstract for details. If
Ginzu assigns a domain based on homology to a known structure in the PDB
using either BLAST® or PSI-BLAST®, RosettaDOM simply returns the domain
boundary predictions provided by Ginzu. For query sequences lacking such
homology, a de novo domain prediction method similar to SnapDRAGON’ is
used. The de novo method consists of generating 400 threedimensional
models using Rosetta, and then selecting 200 models based on score and
whether they pass filters that eliminate structures with too many local contacts
or unlikely strand topologies. Domain boundaries are then assigned for each of
the 200 models using a structure based domain identification algorithm®. Final
domain boundary predictions are made based on consistencies found in the
domain assignments of these models. Domain boundaries are chosen under the
assumption that although Rosetta is unlikely to produce accurate atomic
resolution models, it may accurately produce coarse structural features such as
domains.
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BATES - 536 modelsfor 100 3D/ 9TR targets
3D-JIGSAW - 536 modelsfor 100 3D/ 9TR targets
3D-JIGSAW-RECOMB - 462 models for 100 3D targets
3D-JIGSAW-POPULUS - 500 modelsfor 100 3D targets

Using genetic algorithms to recombine and refine protein
models

M.N. Offman, R.A.G. Chaleil, P.W. Fitzjohn

and P.A. Bates
Cancer Research UK London Research Institute
Paul .bates@cancer.org.uk

For the 7" round of CASP we used three different servers and one manual
modelling procedure. Apart from our baseline protocol, 3D-JIGSAW?, all other
methods used a genetic algorithm (GA). Our overall strategy is to enhance
protein modelling by considering ensembles of initial models generated from a
number of different templates, alignments, scoring functions and algorithms.
Since CASP6 we have developed a new GA software package called
POPULUS?. This software adjusts protein models in internal coordinate space
and is used in one of the automatic servers, for manual submissions and
refinement. The GA software ‘In Silico Protein Recombination’® is used for the
third server and applies movements in Cartesian space.

Most methods for our baseline server, 3D-JIGSAW-server, have been described
previously. However, for this round of CASP, five ranked models, rather than a
single model, are returned where possible. The other two servers, 3D-J GSAW-
POPULUS and 3D-JIGSAW-RECOMB, base their submissions on up to 10
models created with 3D-JGSAW and are applied five times in paralel. The
final five models are ranked according to energy.

For our manua submission models, we applied an automatic pipeline using
POPULUS, which has been previously evaluated for an input of approximately
200 CAFASP4 models per target®. For each CASP7 target, all server models
were downloaded from the prediction center webpage and used as the input
population. Two major changes were made to POPULUS midway through the
CASP7 experiment:

First, after initialisation, for each of the models four different distance
histograms are calculated®. These histograms represent the distances between
C-alpha atoms for a sliding window of 8, 15, 22 and 29 residues. The average
and standard deviation is calculated in each position. A different standard
deviation cutoff has been assigned using the CASP6 submissions and the
simplex optimisation algorithm for each of the four dliding windows. If
sufficient “stable” distances are assigned, these averages are used as distance
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constraints. Comparing the four histograms of a model to the average values a
penalty score can be calculated, which is used in our overall energy-scoring
scheme. If there is an insufficient amount of constraints assigned the target is
considered to be of the category FR/A or NF. In the latter case input models are
clustered using the nearest neighbour method and only the largest two clusters
are used for further progression.

Second, the movement range for mutations has been changed, to allow finer
movementsand to not restrict the search to the middle-points of 30*30° ®©/¥
bins in the Ramachandran plot. Since random points within the appropriate bins
are now allowed, every possible conformation within the more populated areas
of the Ramachandran Plot can now be sampled.

The old and the new POPULUS protocols are each applied five times in
parallel, running for at least 10 and for a maximum of 20 rounds, creating 500
models each round with a survivor rate of 10%. All ten top models are
clustered. Finally a combination of energy scores, size of cluster and protein
health such as buried hydrophobics, Ramanchandran Plot agreement, holes in
the protein structures and g-factors are used to rank the first four models for
eachsubmission — for the protein health checks the programs QUANTA® and
PROCHECK® were used. Our fifth model was submitted using only the raw
energy score from the program POPULUS— with no intervention other than
downloading the initial models.
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4. Carugo O. & Pongor S.(2002) Protein fold similarity estimated by a
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PROCHECK: a program to check the stereochemical quality of protein
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BayesHH - 100 modelsfor 100 3D targets

Homology-based structure prediction by HMM-HMM
comparison and stochastic alignment sampling

Michael Lupas', Johannes Soding®
1_Max-Planck-Institute for Developmental Biology
michael .habeck@tuebingen.mpg.de

BayesHH is one of four related servers participating in CASP7 (HHpred1 to 3,
BayesHH). We originally intended to implement a fully Bayesian homology
modelling step. For lack of time, we tested our alignment sampling method
using MODELLER as homology modeling engine. BayesHH uses HMM-
HMM comparison with integrated secondary structure comparison, correlation
scoring, a novel local HMM-HMM maximum a-posteriori probability (MAP)
alignment scheme, multiple template selection, intermediate profile searching,
and stochastic sampling of the target-template alignment.

The tertiary structure prediction proceeds in five steps (al but step 5 are the
same for HHpred3):

1. Build a multiple alignment from the target sequence with PSI-BLAST (1)
(up to 8 rounds with E-valuethreshold 1E-3). PSIPRED (2) is used for
secondary structure prediction.

2. The alignment is converted to an HMM and compared with a database of
HMM s derived from representative sequences in the PDB, using the HHsearch
software (3) in local Viterbi alignment mode.

3. If the top hit has a probability of less than 90% to be homologous, our
intermediate profile search method HHsenser (4) is used to augment the initial
target alignment.

4. The top 20 matches are clustered by UPGMA into aforest of separate trees,
based on the structure comparison scores of TM-align (Zhang & Skolnick). The
clustering stops when the highest average pairwise TM-score drops below 0.7.
For each tree, a multiple structural alignment is calculated with MUSTANG
(AS. Konagurthu et al.). The corresponding PSI-BLAST alignments are merged
into a super-alignment in a master-slave fashion and an HMM is generated. The
target HMM is compared with these HMM s and the best match defines a set of
templates.

5. The top-scoring alignment with these templates is stochastically sampled up
to 15 times. The resulting multliple sequence alignments are merged into a
single target-template aligment, containing multiple instances of each template.

6. MODELLER (A. Sali et ad.) is used to generate a homology model from this
meta-alignment.
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BETApro - 100 modelsfor 100 RR targets
SVMcon - 100 modelsfor 100 RR targets
(server, contact)

Contact Map Prediction Using BETApro and SVMcon
Jianlin Cheng and Pierre Baldi

Institute for Genomics and Bioinformatics, School of Information and

Computer Science
University of California Irvine, CA 92697

In CASP7, two servers from our group BETApro [1] and SVMcon participated
in contact map prediction. BETApro combines regular residue-residue contacts
[2,3] with specific betarresidue contacts [1]. It improves contact map prediction
for proteins containing beta-sheets. SYMcon predicts contacts (sequence
separations 6) using support vector machines, integrating profiles, secondary
structure, solvent accessibility, and the useful features described in [4].
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Bilab - 619 models for 100 3D/100 QA/ 8 TR targets
Bilab-ENABLE - 434 modelsfor 99 3D targets

Automated tertiary structure prediction of proteins using fold
recognition, model quality assessment, and fragment assembly

S. Nakamurat, M. Kakuta', M. Morita', K. Sumikoshi*
and K. Shimizu*

1. Department of Biotechnology, The University of Tokyo
shugo@hi.a.u-tokyo.ac.jp

We developed an automated protein structure prediction server named
“ENABLE" and have participated in tertiary structure prediction and model
quality assessment categories in CASP7. The server is based on the
combination of fold recognition tools and fragment assembly method. The
following is the overview of the prediction procedure of our server. 1) Search
templates for the target sequence using PDB-BLAST and FUGUE. 2) Execute
secondary structure prediction using PSIPRED?, disorder prediction using
“disABLE”, and search fragments as candidate sub-structures for each position
of the target. 3) If one or more templates are found in step 1, build tertiary
structure  models according to the templates and aignments using
MODELLER® and SCWRL*. 4) Assess qualities of generated models in step 3
using Verify3D®>® and determine where to improve and whether de novo
prediction (start from the extended structure) is needed for the target or not. 5)
Generate models from extended structure if needed (de novo prediction) or
improve parts of model structures generated in step 3. 6) Pick up five models as
prediction results using clustering and assessment of qualities of the models.

For predictions of disordered regions in step 2, we used disorder prediction tool
named “disABLE" developed in our laboratory. This tool is based on Support
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Vector Machine (SVM) with position specific score matrices (PSSM) generated
by PSI-BLAST’ as input. Predictions were performed with each three different
window sizes (9, 15, and 33). The weighted average of the decision values of
these predictions was calculated, and disordered regions and their reiabilities
were determined by these values.

For candidate fragments preparation in step 2, the length of the fragments was
three to eleven, and picked up from data set generated using PISCES server &,
whose resolution cutoff was 2.5 angstrom and percentage identity cutoff was
90%, according to the similarity score including sequence identity and
matching of the secondary structures. The number of candidate fragments for a
target position was determined by predicted secondary structures and predicted
order/disorder states. up to twenty fragments with three amino acids for
disordered regions, up to twenty fragments with five amino acids for loop
regions, up to twenty fragments with seven amino acids for extended regions,
and twenty fragments with nine amino acids and five fragments with eleven
amino acids for all regions. Redundancy of the fragments at each position was
reduced according to the sequence similarity between fragments.

For model generation in step 5 we used IDDD/ABLE system based on
fragment assembly method developed in our laboratory®. Target function
including the deg}ree of hydrophobicity of each amino acid based on predicted
contact numbers™®, contacts between residues based on PSSM, average distance
between hydrophobic residues, hydrogen bonds between mainchains, packing
of strands, and exclusive volume to avoid overlap of residues were minimized
by simulated annealing with 40000 steps.

For model quality assessment in step 6, we developed a model quality predictor
based on support vector regression (SVR). Scores for a number of tools
including Verify3D, ProSa'!, ProQ'?, and ABLE potential were used as inputs
for SVR. Five cluster centers were picked up and submitted according to
quality assessment scores.

In the case of human prediction (Bilab), initiadl model selection and
determination of regions to be modeled in step 5 were checked and corrected by
human predictor and additional models (up to 20000 structures per target) were
generated in step 5 if needed.
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BIME@NTU - 196 modelsfor 98 DR/ 98 RR targets

DisorderPSC: Protein Disorder Prediction by Condensed PSSM,
Secondary Structure, and Conservation Information

C.T.Su' and C.Y. Chen?

1. Department of Computer Science and Information Engineering, National
Taiwan University, Taipei, 106, Taiwan, R.O.C, ?- Department of Bio-
industrial Mechatronics Engineering, National Taiwan University, Taipei, 106,
Taiwan, R.O.C
sbb@mars.csie.ntu.edu.tw; cychen@mars.csie.ntu.edu.tw

Many studies have demonstrated that the disordered regions can be detected by
examining the amino acid sequences. Disordered regions are distinguished from
ordered regions by its low sequence complexity, amino acid compositional bias,
high evolutionary tendencies, or high flexibility. In this study, acondensed
position specific scoring matrix (PSSM) with respect to physicochemical
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properties, secondary structure, and conservation information are considered for
protein disorder prediction.

In our recent work DisPSSMP', we investigated the predicting power of a
condensed position specific scoring matrix with respect to physicochemical
properties (PSSMP) on the prediction accuracy, where the PSSMP is derived by
merging several amino acid columns of a PSSM belonging to a certain property
into a single column. Additionally, DisPSSMP decomposes each conventional
physicochemical property of amino acids into two disjoint groups which have a
propensity for order and disorder respectively.

In this work, we employ a new representation for the refined SSE information
and integrate it with the PSSMP features. The new representation transforms
the predicted SSE information into a distance-based feature. We employ Jnet as
the secondary structure predictor, which is a neural network secondary structure
predictor based on multiple sequence alignment profiles®. Before extracting the
features from the results of Jnet, a predicted SSE with less than five successive
secondary structure residues are removed. We expect the remaining secondary
structure segments to provide more reliable information than the original
predictions. T he proposed representation SSE-DIS takes the distance of a
residue to its nearest secondary structure element. This feature aims to
emphasize the locations which are far from the regions consisted of regular
secondary structures. With the merged features of PSSMP and SSE-DIS, we
invoke the QuickRBF packagetoconstruct Radial Basis Function Networks
(RBFN) for classification®. In addition, we in particular tackle the problem of
handling skewed datasets, which stands for the problems with unbalanced
numbers of positive (disorder) and negative (order) samples. In order to not
over-predictresidues as ordered, we adopt an alternative function in
determining the outputs based on the function values generated by the RBF
network.

Since our training data contains more than 60% of disordered residues in
terminal regions of the proteins, which causes the window-based classifiers to
over-predict the terminal residues as disorder, the conservation information is
considered to reduce false positives in the terminal regions. The proposed idea
is based on the observation that a pair of residues are usually clustered in space
and are expected to be ordered if they are simultaneously conserved. MAGIIC-
PRO is an efficient pattern mining package for extracting the simultaneously
conserved residues in a protein®. It considers large irregular gaps when growing
patterns, in order to find the important residues that are simultaneously
conserved but are largely apart on the sequences. In addition, MAGIIC-PRO
restricts the intra-block gaps to fixed lengths, because it has been observed in
previous studies that insertions and deletions are seldom present within highly
conserved regions. The conservation information derived by MAGIIC-PROI s
more precise than that generated by multiple sequence alignment followed by
constructing the evolutionary tree.
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The new predictor DisorderPSC is expected to outperform DisPSSMP after
incorporating the refined information of predicted secondary structure and the
concurrent conservation information with the original PSSMP features.

1. SuC.T.,Chen CY. & Ou Y.Y. (2006) Protein disorder prediction by
condensed PSSM considering propensity for order or disorder. BMC
Bioinformatics 7:319.

2. Cuff JA. & Baton G.J. (2000) Application of enhanced multiple
sequence alignment profiles to improve protein secondary structure
prediction. Proteins 40: 502-511.

3. QuickRBF http://muse.csie.ntu.edu.tw/~yien/quickrbf/index.php

4. Hsu C.M.,Chen CY. & Liu B.J (2006) MAGIIC-PRO: Detecting
functional signatures by efficient discovery of long péterns in protein
sequences. Nucleic Acids Res., 34, W356-W361.
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Prediction of Remote Residue Contacts by Concurrent
Sequence Conservation

C.Y. Chen', C.T. Su® and C.M. Hsu®
1. Department of Bio-industrial Mechatronics Engineering, National Taiwan
University, Taipei, 106, Taiwan, RO.C, 2- Department of Computer Science
and Information Engineering, National Taiwan University, Taipei, 106,
Taiwan, RO.C, 3- Department of Computer Science Engineering, Yuan Ze
University, Chung-Li, 320, Taiwan, R.O.C.
cychen@mars.csie.ntu.edu.tw

In contact map prediction, it is considerably hard to predict remote residue
contacts. While previous studies have shown that some protein residue contacts
can be discovered by the occurrences of correlated mutations', thiswork
expects to detect remote residue contacts by concurrent sequence conservation.

The proposed methodology is based on the secondary structure information and
concurrent sequence conservation derived from sequential pattern mining. The
secondary structure segments are predicted by Jnet’, and the concurrent
sequenceconservation is detected by MAGIIC-PRO*. We cal a pattern
generated by MAGIIC-PRO a cluster-like pattern. The residues inside a pattern
are adways clustered as several sequential blocks. In between the blocks are
large irregular gaps. Here comes an example: “1-x-H-N-x(52,68)-E-x(2)-L-x-K -
L". In this notation, a conserved residue is recorded by its amino acid symbol,
‘X’ denotes an arbitrary amino acid, x(i) stands for a gap of i arbitrary residues,
and x(i, j), i <j, represents a wildcard region of at leasti and at most j arbitrary
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residues. This pattern contains two conserved blocks “1-x-H-N" and “E-x(2)-L-
x-K”. The gaps within the blocks are caled intrablock gaps, and the gaps in
between two sequential blocks are calledinter-block gaps. Concerning the
efficiency of mining process, MAGIIC-PRO specifies several constraints for
these pattern components:

The maximum length of an intra-block gap: the length of intra-gap is rigid and
cannot exceed the specified value.

The minimum number of residues in a block: a sequential block must contain at
least a certain number of residues to eliminate noises.

The flexibility of an inter-block gap: a sequence can match a pattern as long as
theinter-block gap does not violate the flexibility with respect to the query
protein.

The minimum number of blocks in a pattern: a binding site is usually consisted
of more than one sequential block. This constraint is set as 2 by defaullt.

The minimum support of a pattern: the minimum percentage of sequences in
the training data that match the derived pattern.

The complete proceduresfor discovering concurrent sequence conservation for
aquery protein are as follows:

Obtaining homologues of a query protein: This is achieved by running PSI-
BLAST* against Swiss-Prot database with the BLOSUM62 substitution matrix.

InvokingMAGIIC-PRO for pattern mining: The minimumsupport settingis
initially set as 100% and decreased repeatedly until at least onepattern with
two blocks is discovered. A sequentid block must contain as least three
conserved residues, and the maximum length of an intrablock gap is set as 3.
The flexibility of an inter-block gap is set as default.

Emerging information from different patterns. The derived patterns with
exactly twoblocks are collected together to calculate the conservation level of
each residue. The conservation score R(x) is defined by the following equation:

conservation level of x

R(x) =
9 maximum conservation level among all the residues

where the conservation level of each residue is determined by the percentage of
total number of supporting proteins merged from different patterns.

After the mining process completes, the contact propensity for a pair of
residuesi and j is defined by:

RR(, j) = > R()xR(j)

ieP,jeP


http://muse.csie.ntu.edu.tw/~yien/quickrbf/index.php

, Where P is a pattern with exactly two blocks and ‘ieP’ means that residuei is
falling in the region of one block of P. This information is then used to predict

remote residue contacts and to differentiate paired and non-paired -strands.
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sequences. Nucleic Acids Res., 34, W356-W361.
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BioDec - 66 modelsfor 65 3D targets

All-atom Models Starting from Entropy-filtered Alignments

A. Zauli?, |. Rossit
1- BioDec srl, Bologna, Italy
ivan@biodec.com

Here at CASP7 we blind-test the performance of a simple protocol to build al-
atom models starting from for the Entropy-filtered Profile-Profilealignments
[1]. This abstract summarizes the protocol used to generate the submissions
for the CASP7 experiment. The following procedure is almost completely
automated.

Assuming that A and B are two strings of symbols, Py and Pg are the

rectangular matrices representing the position-specific frequency of the
aphabet symbols composing the strings (superscript T indicates a matrix
transpose operation), S is a (symmetric) substitution matrix, it can be derived
that the matrix D, defined as:

D= PToSPg

represents the “dot” matrix for the profile comparison of the two strings. This
can be efficiently computed by means of standard linear algebra routines.
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For each target/template comparison, we compute the dot matrix D using the
composition profiles generated by multiple alignment of the sequences reported
from a five-iteration PSI-BLAST [2] search on the Uniref90 database, using an

inclusion threshold of E=10 3. The scoring matrix S used Sis the BLOSUMG62
[3] substitution matrix. Our template set comprises the structures included in
the Astral SCOP [4] database, release 1.69, whose sequence homology is less
than 95%. The dot matrix D is then searched for the top scoring alignment
using the global aignment with no end-gap penalties algorithm . Next, the
alignments generated are subject to Shannon-entropy filtering, as described in
ref. [1], using a Shannon entropy threshold of 0.5, and the remaining ones are
ranked according to their Z-score. An alignment is taken into account only
when its Z-score is larger than 6.

A simple cut-and-paste model is generated from the selected alignment. Side
chains, non-conserved prolines and missing protein segments are then
reconstructed using tools from Ram Samudraas RAMP package (version
0.61beta) such asscgen_mutate, mcgen_exaustive_loop, and
mcgen_semfold loop together with the RAPDF [6] scoring function.
Hydrogens are then added to the resulting model, which is then subject to
energy minimization using the local BFGS algorithm as implemented in the
TINKER [7] package, using the OPLS/AA [8] force field together with the
GB/SA [9] implicit solvation model. The final structure is what we call the
“Stage |” model.

Side-chain orientation on the “Stage 1” model is then reoptimized using
scgen_double [10] and the structure is subject to another minimization run
using the same procedure described above, resulting in the “Stage [1” model.
The best energy-scoring structure between the “stage |” and “stage I1” model is
then submitted to CASP.

1. Capriotti E., Fariselli P.,Rossi |., Casadio R. (2004) A Shannon
Entropy-based filter detects high-quality profile-profile alignments in
searches for remote homologues. Proteins 54, 351-360.

2. Altschul SF. et a. (1997) Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res. 25
(17), 3389-3402

3. Henikoff S. et a. (1998) Superior performance in protein homology
detection with the BLOCKS database server. Nucleic Acids Res. 26, 309-
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Res. 32, D189-D192
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8. Jorgensen W.L., Maxwell D.S,, and Tirado-Rives J. (1996) Development
and Testing of the OPLS All-Atom Force Field on Conformational
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11225-11236
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Brooks_caspr - 108 modelsfor 23 3D/ 7 TR targets

High-Resolution Structure Refinement Using Implicit Solvent
and Replica Exchange

Jianhan Chen and Charles L. Brooks 11
Department of Molecular Biology, The Scripps Research Institute
10550 North Torrey Pines Road, La Jolla, CA 92037
jianhanc@scripps.edu, brooks@scripps.edu

We have primarily focused on high-resolution refinement of server predictions
in CASP7. Asablind test, it was not obvious which specific server model was
the most appropriate (e.g., most native-like) for refinement. For this, we used
the average potential energy during short restrained MD simulations (up to 10
ps) in a GBSW implicit solvent to roughly rank all server models for small to
medium sized targets. The top 12 models with the lowest energies were
compared by computing mutual CA RMSD and GDT_TS scores. The
diversity, measured by average RMSD or GDT_TS values, was used as an
indicator on how native-like these top models were. [If the top models were
believed to be sufficiently native-like (such as when average mutual RMSD is
less than 3-4 A or average mutual GDT_TS score is greater than 60-70), the
model with the lowest average energy was refined using a REX/GB™ protocol,
described briefly below. The same protocol was also applied to refine the
official CASP7 refinement targets. For many targets, the lowest energy models
fromshort MD simulations were very diverse and no model could be reliably
identified as being most native-like. We chose to carry out unrestrained REX-
MD using al the top 12 models simultaneously for a few targets (using a
smaller temperature range of 270-400K). Such refinement is expected to be
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less effective and relies ailmost solely on the force field to refold/refine the
initial models.

The REX/GB protocol is based on all-atom replica exchange MD (REX-MD)
in a generalized Born (GB) implicit solvent in CHARMM. The GB implicit
solvent provides an efficient and realistic description of solvation and the REX
sampling is necessary for sampling the rugged energy landscape. Furthermore,
for efficacy, the sampling is focused in the vicinity of the initial models by
imposing structural restraints. Without intimate knowledge of the reliable
structural features, it is assumed that the initial models as selected are already
native-like, such that the long secondary structure elements and the tertiary fold
are largely correct. Secondary structures are enforced by dihedral restraints and
the tertiary fold by residue contact derived distance restraints. All restraints are
weakly imposed restraint potentials to alow a balance between stability and
flexibility. We used 20 temperature replicas spanning 270-550K and the total
simulation length ranged from 2.5ns to 4ns. The last 500 structures sampled at
the lowest temperature (270K) during the REX simulations were clustered and
the centroids were submitted as the refined models. The rank of the refined
models was solely determined by the size of corresponding clusters.

It is recognized that limitations remain in the implicit solvent force field,
particularly in the treatment of nonpolar solvation, which are often manifested
as difficulty in modeling loosely packed structures. Additional limitation occurs
in sampling capability. REX sampling improves substantially compared to
simulated annealing or constant temperature simulations. Nonetheless, it is
difficult to sample substantial conformation changes, which are required in
some cases. Further practical complications come from oligomerization,
cofactor binding and crystal packing. Such factors often have substantial
impacts on the structures and lack of such knowledge can significantly hinder
one's ahility to refine the structures using all-atom physics-based force fields.

1. Chen J.,,ImW. and BrooksC.L., Ill. (2004) Refinement of NMR
structures using implicit solvent and advanced sampling techniques. J.
Am. Chem. Soc. 126, 16038-16047.

2. Chen J. and Brooks C.L. Il (2006) Can molecular dynamics simulations
provide high-resolution refinement of protein structure? Proteins
(submitted).

3. Chen J.,,ImW. and BrooksC.L., Ill (2006) Balancing solvation and
intramolecular interactions: Toward a consistent generalized Born force
field. J. Am. Chem. Soc. 128, 3728-36.
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CADCMLAB - 476 modelsfor 96 3D targets

Combining Spectral Based Sequence Comparison Methods with
Orthodox Sequence Alignment Techniques for Protein Fold
Recognition and 3-D Structure Prediction

CarlosA. Del Carpio®, Ismael Mohamed1 Eiichiro Ichiishi?,
Hldeyukl Tsuboi?,
MichihisaKoyama', Akira Endou?, leomitsu Takaba',
Momoji Kubo?, Akira Miyamoto*

Graduate School of Eng. Dept. of Applied Chemistry. Tohoku University.
6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579. JAPAN

We introduce a combined methodology for protein folding pattern recognition.
It consists in applying a methodology for distant relative search based on our
original spectral analysis methodology combined with more orthodox sequence
alignments techniques. The concept behind the spectral analysis method is a
periodicity analysis of the physicochemical properties of the residues
constituting proteins primary structures. The analysis is performed using a
front-end processing technique in automatic speech recognition[1,2] by means
of which the cepstrum (measure of the periodic wiggliness of a frequency
response) is computed that leads to a spectral envelope that depicts the subtle
periodicity in physicochemical characteristics of the sequence. A diversity of
proteins are extracted when this methodology is applied to the search of similar
protein folding patterns to a particular target. Extracted structures rank from
scant similarity in terms of amino acid composition to high similarity ones.
Then a more specific sequence alignment (like FASTA or BLAST) canbe
applied to the reduced set of structures obtained by our spectral oriented
methodology. This combined method has shown a high degree of effectiveness
to select optimal templates for a determined target, both in terms of processing
times as well as quality of template. The threading algorithm is then pursued
by an energy minimization process for the newly built structure.

1. De Carpio C.A. and Yoshimori A. (2002) Fully automated protein tertiary
structure prediction using Fourier transform spectral methods. Protein
structure prediction: Bioinformatic approach, International University Line
Publishers (IUL), 171-200.

2. Del Carpio C.A. and Carbgjal J.C. (2002) Folding Pattern Recognition in
Proteins Using Spectral Analysis Methods. Genome Informatics 13, 163-
172
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Casplta-FOX - 499 modelsfor 100 3D targets

FOX (FOId eXtractor): A protein fold recognition method using
iterative PSI-BLAST searches and structural alignments

P. Fontanal, F. Sirocco?, S.C.E. Tosﬁttoz, R. Velasco! and

S Toppo®
- Istituto Agrario di San Michele all'Adige
- Dip. di B|olog|a& CRIBI Biotech Centre, Universita’ di Padova
3. Dip. di Chimica Biologica, Universita' di Padova
stefano.toppo@unipd.it

We present a fold recognition method based on the combination of detailed
sequence searches and structural information. Presently the protocol
implements two different approaches to assign the most likely fold to the target
protein sequence: the first is based on database secondary structure search and
the second is based on iterative database sequence search.

In the first phase a secondary structure prediction of the target is performed
based on the ConSSPred! protocol. This prediction is used to search for hits
against a database of known secondary structures extracted from PDB (using
DSSP) by means of a global alignment search based on SSEA? (Secondary
Structure  Element Alignment) available a the following website
http://protein.cribi.unipd.it/ssea. At the end of the first phase a list of hits that
share a similar secondary structure topology with the target sequence is
extracted.

The second phase is based on a modified protocol for scanning the sequence
database called SENSER®. A procedure based on four iterations against NR60
database and the last one vs PDBAA is used to identify a templ ate structure for
the target sequence. NR60 is produced by applying the CD-HIT* agorithm to
cluster the NR database at 60% sequence identity. Once putative templates are
found, they are back validated. The back-validation step consists in using PSI-
BLAST® to find the target starting from a different query sequence. |.e. due to
the asymmetric nature of PSI-BLAST, if sequence A finds sequence B it is not
always the case that B also finds A. Sequences that back-validate are more
likely to be correct hits even at low sequence similarity. If no significant hit is
found, or the hit does not back-validate, a new PSI-BLAST search, using the
above "4+1" protocol on NR60 and PDBAA, is started for the highest ranking
sequences (i.e. lowest e-value) belonging to the sequence space or profile of the
target sequence. Once a sequence from PDBAA back-validates and its
secondary structure is compatible with the one of the target sequence as found
in the first phase, the protocol builds a target to template alignment and stops.

In order to produce an accurate alignment, a profile-profile alignment approach
has been used. The method is based on a program developed for the Arby



server® which uses information from secondary structure predictions and
sequence profiles. Alignments are automatically generated by systematically
testing 625 different parameter combinations involving the weigths given to
sequence profile and secondary structure of both target and template. Five
values of each parameter are tested and chosen from a reasonable range’. Each
target-template alignment is used to build a raw model whose quality is
evaluated on the basis of its estimated quality®. The best scoring target-template
alignment is chosen to build and refine the final model.

The final model is generated wusing the package HOMER
(http://protein.cribi.unipd.it/Homer). This involves the following steps. First a
raw model of the conserved parts is constructed from the template. The
conserved backbone 3D coordinates are copied and missing side chains placed
withSCWRL®. Insertions and deletions are reconstructed using an enhanced
version of the fast divide & conquer loop modeling method™. An experimental
version of the FOX server is available at the following website address
http://protein.cribi.unipd.it/fox.

1. Albrecht M., Tosatto S.C.E., Lengauer T. and Valle G. (2003)Simple
consensus procedures are effective and sufficient in secondary structure
prediction. Protein Engineering, 16, 459-462.

2. FontanaP., Bindewald E., Toppo S., Velasco R., Valle G. and Tosatto S.C.
(2005) The SSEA server for protein secondary structure alignment.
Bioinformatics 21, 393-395.

3. Koretke K.K., Russell R.B. and Lupas A.N. (2002) Fold recognition
without folds. Protein Science, 11, 1575-1579.

4. Li W., Jaroszewski L. and Godzik A. (2002) Tolerating some redundancy
significantly speeds up clustering of large protein databases.
Bioinformatics. 18, 77-82.

5. Altschul SIF., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W.
and Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucl. Acid. Res. 25, 3389-
3402.

6. Von Ohsen N., Sommer|., Zimmer R. and Lengauer T. (2004) Arby:
automatic protein structure prediction using profile-profile aignment and
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Improving the quality of protein structure models by selecting from
aignment alternatives. BMC Bioinformatics. 27, 364.

8. Tosatto S.C.E. (2005) The victor/FRST function for model quality
estimation. J Comput Biol. 12, 1316-1327.

9. Canutescu A.A., Shelenkov A.A. and Dunbrack R.L.Jr. (2003) A graph-
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Casplta-FRST - 93 modelsfor 93 QA targets

The Victor/FRST Function for Model Quality Estimation

S.C.E. Tosatto"
— Dept. of Biology and CRIBI Biotech Centre, University of Padova
silvio@cribi.unipd.it

1

TheVictor/FRST! (Function of Rapdf, Solvation and Torsion potentials)
function is a statistical scoring function used to estimate the quality of a protein
structure. It is implemented as the weighted linear combination of four different
components covering the major aspects of structure quality estimation.

The first component is an implementation of the RAPDF? statistical pairwise
potential. This potential of mean force discriminates between residue specific
non-bonded interactions at the atomic level, e.g. the C, of an Isoleucine is a
different type from the C, of a Glycine. It is used with published parameters. A
simple solvation potential is derived in analogy to the one described for
GenTHREADER?. The relative solvent accessibility is estimated as the number
of other Cg atoms within a sphere of radius 10 A centered on the residue’s Cg
atom. The reference state for this distribution is generated from the TOP500
database”. This database of high resolution crystal structuresis used to estimate
the relative probability of encountering a numberi (i = 0,...,40) of Czatoms
surrounding each of the 20 amino acids. The energy for a given structure is
calculated with the standard log scale for mean force potentials. A similar
scheme was aso used to parameterize the torsion angle potential. All (¢,y)
angle combinations, discretized in 10x10 degree bins, present in the TOP500
database® are used to estimate the reference state for each of the 20 amino acids.
The same log scale formulais applied to derive an energy for a given structure.
Finaly, a crude hydrogen bond potential was derived by counting the number
of backbone N — O pairs falling within a given distance cutoff*.

Since the four components have different orders of magnitude and cannot be
related directly to the same scale, weighting factors are used before summi ng
the partial energies. These factors were optimized on the CASP-4 decoy set
optimizing the linear correlation between total energy and GDT_TS score® as
target function. The final scoring function was used to submit QA predictions
to CASP-7.

1. Tosatto S.C. (2005) The Victor/FRST Function for Model Quality
Estimation. J Comput Biol, 12, 1316-1327.

2. Samudraa R., & Moult J. (1998) An al-atom distance-dependent
conditional probability discriminatory function for protein structure
prediction. J. Mol. Biol., 275, 895-916.



3. Jones D.T. (1999) GenTHREADER: an efficient and reliable protein fold
recognition method for genomic sequences. J. Mol. Biol., 287, 797-815.

4. Lovel S.C., Davis |.W., Arendal W.B.r., de Bakker PIl., Word JM.,
Prisant M.G., Richardson JS.,, & RichardsonD.C. (2003) Structure
validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins, 50,
437-450.

5. http://predictioncenter.lInl.gov/download_areasd CASP4/MODELS_SUBMI
TTED/

6. Zemla A. (2003) LGA: A method for finding 3D similarities in protein
structures. Nucleic Acids Res., 31, 3370-3374.
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FRST-SVM: Predicting Model Quality from Statistical Potentials
and Structural Features Using Kernel Machines

S.C.E. Tosatto', A. Vullo?, G. Pollastri®
! _ Dept. of Biology and CRIBI Biotech Centre, University of Padova,
2 _ school of Computer Science and Informatics, University College Dublin
silvio@cribi.unipd.it

FRST-SVM is an extension of the Victor/FRST? (Function of Rapdf, Solvation
and Torsion potentials, see accompanying abstract for group CaspltaFRST)
function for protein structure quality estimation. Unlike its predecessor, it uses
a support vector machine (SVM) to combine partial scores covering the mgjor
aspects of structure quality estimation. Several additional features describing
the structure under scrutiny were also added compared to the previous version.

The features used to train the SVM include the four previously described
statistical potentials used for FRST* and include pairwise, solvation, hydrogen-
bonding and torsion angle terms. A normalized torsion angle propensity derived
from scoring the model against the maximum attainable torsion angle score was
added together with ten structure based features. The latter represent the length
of the protein structure, its fraction of secondary structure (a, 3, coil) content
and hard sphere backbone C, — C, clashes at less than 2.75 A distance. Five
features are a count of C, — C, chain breaks (distance > 4.5 A) at increasing
distance thresholds (< 7.5, < 10, < 15, < 20, > 20 A).

SVM training was performed using the LIBSVM package’ with a radial basis
distribution function. Nearly 4,000 models from the CASP-4 decoy set® were
used as training set for cross-validation experiments. The SVYM was trained in
regression mode in order to predict the TMscore® of each decoy structure. The
final scoring function was used to submit QA predictions to CASP-7.
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Casplta-GOret - 227 models for 100 FN targets

GOretriever (Gene Ontology retriever): a fast automated protein
function annotation based on semantic similarities

P. Fontana’, A. Cestaro®, L. Dematté', R. Velasco® and S. Toppo?
L. |tituto Agrario di San Michele all'Adige
2. Dip. di Chimica Biologica, Universita' di Padova
stefano.toppo@unipd.it

We present a method, GOretriever, for fast annotation of protein functions
based on Gene Ontology (GO) terms' clustering. Presently the method is based
on two distinct phases to recover a putative function for the target protein. The
first step is based on a PSI-BLAST? search against UniProt® database of
annotated proteins. The second phase is a clustering procedure of GO terms that
belong to the found hits.

The Gene Ontology! (GO) is based on a structured vocabulary of protein
functions where each term is described as a father-child relationship and
multiple inheritances are alowed. In this framework protein functions are
represented by a DAG (Directed Acyclic Graph) starting from the root,
consisting of general terms, to the leafs containing different levels of detailed
descriptions. Such an ordered infrastructure makes feasible to infer and
measure semantic similarities of distant or different concepts simply looking at
the information content they share.

In its present form, the tool is based on afive iterations PSI-BLAST search vs.
the UniProt database to extract related proteins. We have used the default
searching cutoffs and increased the number of hits to show up to 1000 to assess
the statistical measures.

The GO terms extracted from the hits are processed in order to reconstruct all
of the possible paths that lead to the root node. During the recursive process



each node is scored adding the weights of the nodes encountered during the
path reconstruction. The weights of the nodes depend on the scores of the hits
found by the PSI-BLAST search. As a result we obtain a trimmed GO graph
consisting only of the terms found in the database search: for each term we
keep track of its occurrence and of its cumulative score.

Since the most frequent nodes are the least informative ones, as we get near the
root, the algorithm tries to find a good balance between the occurrence, weight
of a node and its measure of information content in order to find the most
probable paths. Since these nodes may still be highly spread, a clustering
approach has been used. GO terms are tentatively grouped on the basis of their
Information Content (IC) and their semantic distances calculated applying the
Linformula® that computes the amount of information shared. In this phase
only the most informative GO term is retained as group representative. The
final list of filtered and retained hits are then ranked efficiently using two
statistical scores and an entropy based measure: “Internal Confidence” (InC),
“ Absolute Confidence” (AC) and Theil Index (T1)°. The InC and AC scoring
methods have been specifically developed to assess the statistical significance
of the retrieved hits and are both based on non-cumulative node weights
divided by either cumulative root node weight (InC) or by the maximal
theoretical weight (AC) Theil index (TI) is derived from Shannon's measure of
informationentropy® and it is applied to measure the inequality of score
distribution over the trimmed GO graph. The program output is a list of ranked
GO terms with the highest score and information content (1C).

1. Harris M.A., Clark J, Ireland A., Lomax J., Ashburner M., Foulger R.,
et a. (2004) The Gene Ontology (GO) database and informatics resource.
Nucleic Acids Res 32: D258-61.

2. Altschul SF., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W.
& Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

3. Bairoch A., Apweiler R., Wu C.H., Barker W.C., Boeckmann B., Ferro S,,
Gasteiger E., Huang H., Lopez R., Magrane M., Martin M.J., Natale D.A.,
O'Donovan C., Redaschi & N., Yeh L.S. The Universal Protein Resource
(UniProt). Nucleic Acids Res. 33:D154-159.

4. Lin D. (1998) An Information-Theoretic Definition of Similarity.
Proceedings of the Fifteenth International Conference on Machine
Learning. 296-304

5. Henri T. (1979) The measurement of inequality by component of income.
Economics Letter 2.
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CBIS - 15 modelsfor 4 3D targets

A new ab initio mathematical model for protein structure
predictions

Yi Fang!, Junmei Jing?
L_Centre for Bioinformation Sciences, The Australian National University , *-
Centre for Bioinformation Science, The Australian National University
yi @maths.anu.edu.au

There are 4 well-known structural features of native structures of globular
proteins:

Highdensity;

Small surface areg;

Hydrophobiccore;

Long peptide chains fold into domains.

To form an ab initio mathematical model based on these features we make a
workinghypothesis:

Under complicated combined physico-chemical forces, in the physiological
environment nature pushes a globular protein to form a conformation which is
compactly packed, and simultaneously satisfies the above features in a cohesive
way.

We put a conformation P of a peptide chain U into a tailor-madeclosed
thermodynamic system S(P). Then the complicated physicochemical
interactions reduce to boundary conditions of the system. We trandate the
above features into 3 ariables. system volume V(P); system boundary area
A(P); system boundary hydrophobic area W(P). The above features show that
the smaller these quantities are, the higher the density and the better the
hydrophobic core will form. Thus by minimizing an energy function

u n(P) =E_nV(P), A(P), W(P))

among meaningful conformations, instead of all conformations, the model
imitates nature by pushing the peptide chain into a conformation that best suits
the above features. The E_n is an increasing function for each of its 3 variables
and n is the chain length. Due to the fourth feature, the energy function may
depend on n. By the hypothesis, a minimizing conformation isthenative
structure.

We use an al-atom space-filling model to represent a conformation. The
meaningful conformations are defined by steric conditions that reflect effects of
complicated physico-chemical interactions, except for the hydrophobic
interaction which is reflected by the energy function. The steric conditions
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restrict minimum atomic distances in a conformation and avoid inaccuraciesin
approximated energy calculations by passively relying on well-known
geometric restrictions of protein natve structures. For bonded atoms, the
alowed distance is around the standard bond length. For a pair of non-bonded
atoms, their physical-chemical properties in the molecule decide the minimum
distance. For example, atoms with different charges have smaller minimum
distance alowed than that for the same charged ones; sulphur atoms in different
Cysteins have minimum distance allowing disulfide bond. The steric
conditions play an equally important role as the energy functions, only with
them the model can distinguish very similar peptide chains such as awild chain
and a one-residue mutation.

We used the molecular surface as system boundary and linear functions, or
weighted averages of A(P), W(P) and the 2/3rd power of V(P) as energy
functions. Mathematically these are good approximations. We found that
secondary structures and hydrogen bonds, although never pursued by the
model, always appear in our predicted structures. These results partially verify
the working hypothesis since the appearance of secondary dructuresand
hydrogen bonds is an inference from the hypothesis.

Our prediction program uses the gradient method. Since the gradient program
was hot ready until August 4th we only predicted the last several targets. From
an extended conformation, we rotate all rotatable bonds in one round according
to the gradient. Then we check the steric conditions for the new conformation.
If not satisfied, we reduce the length of the gradient and try again. Continuing,
we either achieve a conformation that has zero gradient, or one for which any
tiny rotation around any rotatable bond will violate the steric conditions. In
either case, we have finished arun and record the structure. Then we will start
next run with a random change of the extended conformation. Using our digital
machine of 730 Mhz processor, each run needs about one hour. Accumulating
several runs, we select the best results as the predicted model. The most time
consuuing part is checking steric conditions. Due to bugs in our rotation and
checking programs, we omitted the checking to make the deadline. Since the
energy function counts only the hydrophobic interaction, this omission shows
that hydrophobic interaction alone produces secondary structures.

In later runs we get molting globes for various linear energy functions. With
deeper study about energy functions and better programming, this model has
very good potentials.
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Prediction of disordered coil regions in proteins by fold
recognition and secondary structure prediction

T. Noguchi®, M. Takizawa?, N. Inoue® and K. Tomii*
! _ Computational Biology Research Center
National Institute of Advanced Industrial Science and Technology, Japan
2. Graduate School of Science & Engineering, Waseda University, Japan
% _pharma Design, Inc., Japan
noguchi-tamotsu@aist.go.jp

We predicted structurally disordered coils in protein sequences using a protocol
based on the following three steps. 1) We identified putative coil regions using
foldrecognition methods or secondary structure predictions; 2) We calculated
the disorder propensity of the putative loop regions identified above. 3) Finaly,
we checked that the above predicteddisordered regions were not inter-domain
regions using domain linker prediction programs. This method was succeeded
in predicting the domain boundary in CASP6. We have updated our method by
using better fold recognition methods for CASP6 and the secondary structure
prediction methods, which are better prediction accuracy. We used FORTEL
[1], FUGUE2 [2], FFASO3 [3] and SAM-TO02 [4] for fold recognition, and
PSIPRED [5], NSSP [6], SSpro [7], Prof [8] and SAM-T02 for secondary
structure prediction. DLP [9] and DomCut [10] are used for the domain linker
prediction, which were used at CASP6.

For CASP7 targets, we have prepared the three different methods, based on
single fold recognition method (FORTEL), the consensus of three fold
recognition methods (FUGUE2, FFAS03 and SAM-T02) and the consensus of
the above five secondary structure predictions, to identify the coil regions.

In step 1, loop regions were determined using the fold recognition method or
the secondary structure prediction. For the methods based on the fold
recognition, we identified the coil regions of atarget sequence by asingle or a
consensus alignment on the template structure. When the template structures
differed among the three fold recognition methods, the alignment on the
template with SAM-T02 was used. For the method based on the secondary
structure prediction, consensus secondary structure predictions were used to
identify coils in regions. We prioritized predictions of PSIPRED, when no
consensus secondary structure prediction was obtained.

In step 2, we predicted disordered loop regions in proteins using the propensity
and the loop regions as defined above, and according to the following criteria.
All coail regions with three or more consecutive amino acids with high
propensity and with an average propensity greater than 1.2 were predicted to be
structurally disordered.



In the last step, we used two domain linker prediction methods to verify that the
predicted disordered regions do not belong to inter-domain regions. We
prioritized predictions of DLP, when no consensus domain linker prediction
wasobtained

The results by three methods were carefully analyzed with reference to the
template structure and/or the predicted structure, and the final disordered
regions and domains were determined.

1. Tomii K. & Akiyama Y. (2004) FORTE: a profile-profile comparison tool
for protein fold recognition. Bioinformatics, 20, 594-595.
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homology recognition using environment-specific substitution tables and
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3. Jaroszewski L., Rychlewski L., Li Z., Li W., Godzik A. (2005) FFAS03:a
server for profile-profile sequence alignments. Nucl. Acids Res. 33, W284-
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DiekhansM., Hughey R. (2003) Combining local-structure,fold-
recognition, and new fold methods for protein structure prediction.
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structure prediction server. Bioinformatics, 16,404-5.
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POODLE: predicting protein disorder using
machine-learning approaches

K. Shimizu®, S. Hirose?, N. Inoue?, S. Kanai? and T. Noguchi'
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National Institute of Advanced Industrial Science and Technology, Japan
2. pharma Design, Inc., Japan
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We predicted protein-disordered regions using machine-learningapproaches.
We prepared three types of disordered prediction (POODLE-S, L and W)
according to the length of the target disorder.

POODLE-S version puts emphasis on predicting short disorder regions'.
Because the amino acid composition has different propensities in the N-term,
C-term, and internal regions, the accuracy of prediction increases by dividing
training data into several regions and by predicting them separately. We
calculated the chi-square scores over al pairs of ten-residue windows for every
fiveresidues. Then, we separated the data using a chi-square score with a 5%
significance level so that each data item had the same amino acid compositional
tendency. Also, each defined region has different physico-chemical properties
(hydrophobic, positive, negative, charged, polar, small, tiny,aliphatic,
aromatic), which are important factors contributing to disorder. We selected
specific features for each region. The method for POODLE-S has three steps. In
the first step, PSSMs of target sequences are calculated viaPSI-BLAST. In the
next step, PSSMs are divided into sliding windows of size m (If the windows
are on terminal areas€-unclear, m=5. If not, m=15.). Then, each window ismxn
matrix E;; {i=1...m, j=1...20} (jshows 20 types of amino acids). In the last
step, features are extracted from windows. Each feature, F; {i=1...m, c=1...f} (f
shows the number of selected features for each region), is calculated as follows.
Fic= Ei;(if j has characteristic c). Then, each extracted feature is classified
into disorder or order using support vector machines (SVM)?.

POODLE-L version puts emphasis on predicting long disorder regions,
mainly ones longer than 40 consecutive amino acids. POODLE-L was a set of
disorder region prediction models. Each prediction model consisted of a two-
step prediction using SVM. In the first step, the model predicted whether the
sequence of 40 consecutive amino acids in the window was disordered or not,
based on ten physico-chemical descriptors. In the second step, it predicted
whether each residue was disordered or not, based on the distribution of
probabilities obtained in the first step. To start with, the model was designed
using the ten descriptors in the first step, which was called the original model.
Next, 62 models were created by changing six descriptors groups, into which
the ten parameters in the step were classified based on the physico-chemical



properties of amino acid. The prediction accuracy of these models was then
compared with that of the original model, and nine models with higher
performance than the original model were selected. POODLE-L integrated the
prediction results of the models and the original model by adopting a regional
consensus as follows. Windows with 7, 25, and 39 residues were set for every
prediction result created by the ten models. For the prediction results of each
model, the mean value of probability in each window was then calculated. The
results were sorted in a large order, and two top and bottom values were then
removed. Conseguently, six probabilities existed in each window. The average
score of 18 mean values of probability obtained in each window was finally
assumed to be the result of the disorder prediction in the center of the amino
acid in the window.

POODLE-W is a binary predictor, which classifies a target protein to be
mostly folded or disordered. POODLE-W was developed to avoid training data
biasusing a semi-supervised learning approach because few disordered proteins
areavailable. POODLE-W uses a spectral graph transducer® that utilizes the
information on structureknown proteins as well as the information on
structure-unknown proteins.

POODLE-S, L and W are trained on sequences that are extracted from PDB
and DisProt. POODLE-W also uses SwissProt for training. All information
about the POODLE seriesis provided at http://mbs.cbrc.jp/poodle/ .

1. Shimizu K., MuraokaY ., Hirose S. & Noguchi T. (2005) Feature Selection
Based on Physicochemical Properties of Redefined N-term Region and C-
term Regions for Predicting Disorder. Proceedings of 2005 IEEE
Symposium on Computational Intelligence in Bioinformatics and
Computational Biology, pp. 262-267.

2. Vladimir N. & Vapnik V.(1995) The Nature of Statistical Learning
Theory. Springer.

3. JoachimsT. (2003) Transductive Learning via Spectral Graph Partitioning.

Proceedings of International Conference on Machine Learning 43-151.
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CBSU - 287 modelsfor 100 3D targets

Protein Structure Models based on Fold-Recognition Templates
and Their Remote Structural Neighbors

D. R. Ripoll
Computational Biology Service Unit, Cornell Theory Center - Cornell
University; Rhodes Hall Ithaca NY 14853-3801
ripoll@tc.cornell.edu

We developed a protein structure prediction approach that was systematically
applied to all the CASP7 targets. The main source of structural information to
model each target was collected from a series of automatic servers, such as the
BIOINFO (3D-Jury)', ROBETTA? and LOOPP®. The templates used in the
structure generation of our models were selected as follows. (i) They
corresponded to top-score, high-confidence predictions identified by the servers
we used; (ii) if there was no consensus among the servers or the predictions
were given a low-level of confidence, then, we used templates for which most
of the secondary structure elements were arranged linearly as in the secondary
structure predictions of the target sequence. (iii) For those targets for which the
servers where not able to assign high confidence scores to any template and the
secondary structure predictions did not match the sequential arrangement of o-
helicesand B-strands, alternative templates were built by permutations in the
sequential  order of the secondary-structure elements of low-confidence
templates from the serverslist.

In addition, attempts were made to improve the predicted sequence alignments
provided by the servers in those cases where no obvious homology was
detected. To achieve this objective, structural alignments of the template
structure with proteins sharing the fold but having low sequence identity were
used to help identifying the essential secondary-structure elements specific to
the fold and the regions of high sequence and/or structure variability. Structural
neighbors of the templates were identified using the Combinatorial Extension
methodology of Shindyalov andBourne®. The commercial program ICM-Pro
(Molsoft, Inc) was also used for checking visually the pairwise assignmentsin
the structural alignments of templates and their structural neighbors. The DS
Modeling program (Accelrys Inc) was subsequently used in attempts to
optimize the initial alignment from the servers by using the structura alignment
of template and neighbors mentioned above, and properties such as
conservation of hydrophilic/hydrophobic residues in the experimental
structures. All-atoms 3D models for the targets were generated by using the
programs MODELLER® or ECEPPAK® and inspected visually for consistency.
A set of rules were systematically applied to all model: (a) putative fragment
deletion in the target sequence cannot eliminate a central strand from a -sheet;
(b) an insertion faling inside an a-helical region was, either shifted toward the


http://mbs.cbrc.jp/poodle/

nearest loop region in the template fold, or forced into ana-helica
conformation; (c) the insertions falling in the middle of ap-strand were shifted
toward the nearest loop region.

1. GinalskiK., Elofsson A., Fischer D., Rychlewski L. (2003) 3D-Jury:a
simple approach to improve protein structure predictions. Bioinformatics.
19, 1015-1018; (http://bicinfo.pl/meta/).
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protein tertiary structures from fragments with similar local sequences
using simulated annealing and Bayesian scoring functions. J Mol Biol. 268,
209-225.

3. TeodorescuO., Gaor T., Pillardy J. and Elber R.(2004) Enriching the
sequencesubstitution matrix by structural information. Prot., Struc, Funct.
Bioinform., 54, 41-48.

4. ShindyalovI.N., Bourne P.E. (1998) Protein structure alignment by
incremental combinatorial extension (CE) of the optimal path. Protein
Engineering 11, 739-747.

5. Sali A., Blundell T.L. (1993) Comparative protein modelling by
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CDAC - 4 modelsfor 4 3D targets

Hybrid Methods for Predicting the Protein Structures
V. Sundararajan and Swapna Gunda

Scientific and Engineering Computing Group
Center for Development of Advanced Computing
Pune University Campus. Pune-411 007, India.
vsundar @cdac.in, swapnag@cdac.in

In the post genomic era, with the explosion of protein sequence data, thereis a
need for understanding the structure of protein in order to elucidate their
function. Since experimental techniques cannot meet this challenge, theoretical
methods are required. Commonly used, knowledge based and abinitio
approaches are showing great promise in high-resolution structure prediction,
abeit their own pros and cons. Soan abinitio model is developed using
Genetic Algorithms (GA), which is based on the search for better structuresin a
torsion angle space. PSP is posed as a minimization of energy function with
torsion angles as the basic variables. The variables are coded in a binary string
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to represent 360 degrees variations and each angle is represented by binary
code of 9 bits. Genetic operations are carried over on a population of binary
strings of ¢,y (back bone dihedral angles) and y1(side chain dihedral angle) with
force field including van der Waals, electrostatic, hydrophobic and torsion
angle interactions. A pseudoentropic term is added to preclude extended
structure formation. The best individual is judged based on the energy being
minimum. Tournament selection is used with a selection pressure of two,
followed by crossover and mutation probability and this process is repeated.
Thisconstitutes the simple GA, which is being used by the current method as
the base.

All ssimulations were performed using Fortran 90 under Unix environment. The
internal coordinates required in building the molecule and the potential energy
function is taken from force field AMBER94. In the interactive process of GA
the most time consuming part of the calculation is the individual fitnesses. To
reduce this time complexity a data parallel model is done by a master-slave
approach, which distributes the calculation of fitnesses to different processors
in every generation. This is developed with MPI standard and run using
PARAM, a series of supercomputers developed by C-DAC implementing open
frame architecture. The code is portable to any other parallel machine.

Since the number of conformations accessible to a polypeptide chain grows
exponentialy with chain length, the logical starting point for the development
of models attempting to describe the folding of real protein is testing on very
small proteins of known structures. So initially the model is tested for peptides
of residue length<15 including Octaalanine, Alcohol Dehydrogenase, Citrate
Synthase and Troponin-C and observed to predict well with RMSD<3A. But
the results were not satisfied if peptide length increases showing higher RMSD
and also short-contacts. So a new strategy, named Divide & Evolve method has
been implemented based on the hypothesis that, “divide the polypeptide into
smaller fragments, predict each independently using simple GA, and evolve as
a whole again by varying only connecting angles between fragments using
Monte Carlo steps’. This method was tested for Villin HP-36, Crambin and
Amyloid beta. They were predicted with RMSD between 5 and 9A with some
of the secondary structure elements matching the experimental ones. The same
method is applied for predicting CASP targets T0348 (68 residues), T0335 (85
residues), TO358 (87 residues) and TO359 (97 residues). The structures were
predicted with out any geometrical inconsistencies. From the simulationsof
test-set proteins it was able to conclude that: (i) Addition of variation in side
chain dihedral angley; to back bone dihedral angles (¢ and ) has shown
improvement in the results. (ii) The structure represented by the average torsion
anglesof all minimum conformations obtained in simulation is observed to be
closer to the experimental result than the final minimum energy structure.
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Chen-Tan-Kihara - 653 models for 97 3D/ 34 QA targets

Fold recognition prediction based on suboptimal DP

H. Chen!, Y.F. Yang', Y .H. Tan?and D. Kihara' 2
1 _ Dept. of Biological Sciences, 2— Dept. of Computer Science, Purdue
University, West Lafayette, IN, USA
dkihara@purdue.edu

Current fold recognition methods usually build the predicted model based on
the optima structure-sequence alignment. However, by using suboptimal
alignments, we can extract more information for structure prediction. From this
idea, we developed our approach, named SUBWAYy, for the CASP7 structure
prediction category, which combines several suboptimal alignments to build the
final model.

The fold recognition method is established on the suboptimal dynamic
programmingalgorithm®. The scoring scheme in the algorithm is a weighted
combination of a profile-profile alignment and secondary structure information.
Theprofile-profile alignment is based on PSIC (Eosition-specific independent
counts) weighti ngz, PSI-BLAST pseudocount® and symmetriclog-odds
multinomial score’. The scoring matrix for secondary structure correspondence
is taken from a paper by Dunbrack et al®.

The template structure pool for this method consists of 4600 non-redundant
protein structures which are filtered out from the PDB-REPRDB®.

In the template recognition phase, the whole template pool is scanned for every
target. Five templates with the highest alignment scores are picked up for
model construction. If templates used by some other CAFASP models have a
higher alignment score, those templates were also considered.

In the model construction phase, every recognized template is aligned with the
target. The top 5 suboptimal alignments are fed to Modeller’ to build up an
average 3-D structure model. We check if the predicted model contains some
inter-Ca clashes. If a clash is found, a distance restriction was added to
Modeller to eliminate this clash and rebuild the model. This process was
iterated until no Ca clash exists in the predicted model. These refined models
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are ranked by their reliability score which reflects the confidence of the model
for final submission.
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Quality assessment using the diversity of suboptimal
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dkihara@purdue.edu

Quiality assessment of the structure prediction is crucial for its practical use and
this area is not fully developed: . Our previous work shows the diversity of
suboptimal alignments is a good indicator for prediction quality in global or
residue level. Based on this strategy, we implement our quality assessment
program, a variation of our threading program, SUBWAYy, for CASP7.

Our structure prediction program, SUBWAy, can generate a series of
suboptimal alignments between the target and the template. Every suboptimal



alignment is denoted as a pathway in the DP matrix plot. The diversity of the
assessed alignments can be defined as the average deviation of all suboptimal
alignments to the query alignment. Following this concept, a quantitative
diversity was assigned to every residue pair in the query alignment (local level)
and also to the whole alignment (global level).

Our previous work shows that the local diversity strongly correlates with the
distance betweenthe Ca atom in the predicted model and the corresponding
atom in the experimental model. The correlation is linearly regressed into:

log(Distan ce) = 0.3625* log(Diversity) +1.5672

The error estimate on per-residuebasis in the QMODE Il is calculated from this
formula. The global model quality score in the QMODE |1 is calculated by the
following formula:

10
10+ global diversity

Quality score=

Our submitted files of quality assessment follow the QMODE Il format. Since
our method is based on the aignments, in this CASP we only submitted quality
assessment for the predictions which provide the predicted alignment files.
However, it is very easy to transfer the 3D coordinate model to the structural
aignment and predict the quality based on this alignment> °, which will be
implemented in next CASP.
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CHIMERA - 542 models for 100 3D targets

Protein Structure Prediction using SKE-CHIMERA

M. Takeda- Shitaka, G. Terashi, K. Kanou, D. Takaya, K. Ohta,
A.Hosoi, M. Iwadate and H. Umeyama

26

School of Pharmacy, Kitasato University
shitakam@pharm.kitasato-u.ac.jp

Protein structure prediction using SKE-CHIMERA

In CASP6, we developed SKE-CHIMERA, a web-userinterface system for
protein structure prediction, through which a lot of data we prepare can be
analyzed, and homology modeling is easily carried out with human intervention
at necessary stages’. Although CHIMERA-group succeeded in CASPS, further
improvementswere required in our method. Therefore, we improved SKE-
CHIMERA in CASP7 by preparing much more data for modeling and
automating many steps. One of the major improvements is the devel opment of
amodel evaluation method called CIRCLE (see the abstract of CIRCLE-group
in the CASP7 Abstracts). CIRCLE score using the 3D1D scoring functions is
useful when we select the best model among the models that we constructed for
each target.

Side chain refinement targets

In the case of side chain refinement targets, modd structures constructed by
FAMS? were refined by energy minimization and molecular dynamics
simulation. After refinement, correct hydrogen bonds were added and the short
contacts between atoms were removed. The main-chainconformations
constructed by FAMS were not changed largely after refinement.

Multimer prediction targets

We predicted multimer targets using our new program FAMS Complex®, a fully
automated homology modeling system protein complex structures consisting of
two or more molecules. FAMS Complex requires only sequences and
aignments of the target protein as input and constructs all molecules
simultaneously and automatically. FAMS Complex is not docking software that
attempts to find the best matching between separate molecules, but is homology
modeling software for multi-chainproteins.

Results

The experimenta structures of 80 targets have been released as of October 3,
2006. Therefore, we calculated the total score of GDT_TS of every server
groupincluding CHIMERA-group by simply summing up the GDT_TSs of 80
targets to evauate the mainchain structures. Moreover, sidechain
conformations were evaluated by comparing the side-chain x1 torsional angles
with those in the native structures for the residues within 3.5  in the MaxSub
structurealignment. Side-chain conformations were considered correct if x1
were within 40° of the experimental structure values.

GDT_TS x1
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CIRCLE - 500 models for 100 3D targets

CIRCLE: Full automated homology-modeling server using the
3D1D scoring functions
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D. Takaya, A. Hosoi, K. Ohtaand H. Umeyama
Department of Biomolecular Design, School of Pharmacy, Kitasato University
terashig@pharm kitasato-u.ac.jp

We have developed CIRCLE server focused on scoring functionwhich
evauates model quality for CASP7.In thisserver, the scheme is based on
searching for the best models from many models, using the 3D1D scoring
functions without alignment score, biological information and consensus
scoringfunction such as 3d-jury. A new scoring function refined by CASP6
models was applied to select the models. In the following, we describe the
scheme and scoring function.

Method Description

1. Collect structure models and aignments: In the first, the CIRCLE server
submitted the target sequence to other alignments or modeling servers (FAMS,
FAMSD, FUNCTION, ROBETTA-onlyalignments, SP3, SPARKS2 and
GenTHREADER), and collected results of these servers automatically. For
generating refined models from alignments and models, which were collected
from other server results, CIRCLE server used our homology modeling
program fams'. The fams refined side chain conformations, main chain clashes
and main chain breaks. In this step, the refined models (100-120 models) were
collected to “ Structure pool”.

2. Predict target difficulty: For predicting the target difficulty, we used Support
Vector Machine (SVM) as the classification tool. The training data set was
CASP6 targets. The accuracy of this prediction was85% in CASP6 targets.
This predicted difficulty was used in the next evaluation step.

3. Evaluate al models: The all models in “Structure pool” were evaluated by
either the scoring functions for CM or FR, NF, which depends on target
difficulty as follow.

0.35x SSscore+3D1Dscore,,, CM
TotalScore = )
0.75x SSscore+ 3D1Dscore-,, FRor NF

SSscore = z f (SSorepicren » SSuope - cONfidence) (2)

SSscore represents the measure of secondary structure similarity (like Q3
value), calculated by comparing secondary structure of model and the result of
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PSIPRED?. SSprepicTep represents the secondary structure predicted by
PSIPRED. SSyopeL is the secondary structure of modd. “ confidence” is the
confidence of prediction, taken from PSIPRED output. 3D1Dscorecy and
3D1DscorergnrF are scoring function to evaluate side chain environments. These
functions were refined by CASP6 models and difficulties of targets. The 3D1D
score is calculated by 3 parameters (fraction of buried area, fraction of polar
area, Secondary structure). As shown in function (1),(2), SSscore is given more
weight in difficult targets (FR, NF) than easy targets (CM).

Assessment site category rank
MaxSub ALL 5
CAFASP5

MaxSubDom ALL 4
TM-Score ALL 4
CM_easy 4

) CM_hard 11

First_GDT_MM

- - FR_H 16

FR_A-NF 9
Robetta
CM_easy 4
) CM_hard 9
First_Z-score

- FR_H 18
FR_A-NF 9
ALL 5
SBC EASY 4
HARD 6

Conclusion

Now (in 9.29.2006) various assessment sites are opened. We summarized
ranking of CIRCLE server in 68 CASP servers (remove virtual team and human
predictor) in the following table. As shown in this table, the scoring function of
CIRCLE server did good selection especially in easy target.

1. Ogata K. and Umeyama H. (2000) An automatic homology modeling
method consisting of database searches and simulated annealing. J. Mol.
Graphics Mod. 18, 258-272.

2. Jones D.T (1999) Protein secondary structure prediction based on position-
specific scoring matrices J Mol Biol/J Mol Biol 292, 195-202.
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CIRCLE-FAMS - 496 models for 100 3D targets

Selection from all the server models using original 3D 1D
program -*CIRCLE”

G. Terashi, A. Hosoi, M. Takeda-Shitaka, K. Kanou, M. Iwadate,

D. Takaya, K. Ohtaand H. Umeyama
Department of Biomolecular Design, School of Pharmacy, Kitasato University
terashig@pharm kitasato-u.ac.jp

TheCIRCLE-FAMSteam is ameta-selector. In thisteam, we have selected
five models from al the server models (from TS1 to TS5) by using our
CIRCLE' team method. We describe the details of “CIRCLE-FAMS” as
follows.

Collecting server models
All the server models were taken from CASP7 home page.
Refinement of server models

These models include tertiary structures (TS) and aignments (AL), TS models
wererefined and mode structures were generated from alignments by using
FAMS?. Side-chain conformation, which was refined, was necessary for the
evaluation of CIRCLE. These refinement methods were same as our fams-ace
team”.

Evaluation of refinement models

All the refined models were evaluated by CIRCLE. We predicted category (CM
or FR) of the targetdifficulty by Support Vector Machine program*, weused
two kinds of evaluation methods which were the same as our CIRCLE server
team. Evaluated models weresorted by 3D1Dscore and 5 high-rankingmodels
with no wrong warning from CASP7 were submitted.

Results

In order to examine the ability of CIRCLE method, we calculated GDT_TS and
x1° angle originally (in 2006/10/3). In the calculation of X1 angle, “correct” side
chain residue is within 3.5 in the MaxSub superposition and within 40° from
native structure. The next table shows the ranking of server teams and our
meta-selector team “CIRCLE-FAMS’ by using these scores. Category of
targets was predicted by our Support Vector Machine program.
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GDT_TS x1
Rank Score (sum) Server name Rank Score (sum) Server name

1 4908.19 Zhang-Server 1 5326 CIRCLE-FAMS
2 4753.36 CIRCLE-FAMS 2 5196 ROBETTA

3 4617.83 Pmodeller6 3 5157 Pmodeller6

4 4604.31 HHpred2 4 5007 FAMSD

5 4574.06 CIRCLE 5 4999 Pcons6

6 4561.34 ROBETTA 6 4952 FAMS

7 4539.88 Pcons6 7 4889 Zhang-Server

8 4539.05 HHpred3 8 4870 CIRCLE
GDT_TSCM X1 CM

Rank Score (sum) Server name Rank Score (sum) Server name

1 3812.47 Zhang-Server 1 4754 CIRCLE-FAMS
2 3722.71 CIRCLE-FAMS 2 4620 ROBETTA

3 3657.96 CIRCLE 3 4559 Pmodeller6

4 3649.04 UNI-EID_expm 4 4539 FAMSD

The above results were obtained by good estimation of the side chain of our
original 3D1D CIRCLE method.

1. See“CIRCLE: Full automated homology-modeling server using the 3D1D
scoring functions in CASP7” item in this book.

2. Ogata K. and Umeyama H. (2000) An automatic homology modeling
method consisting of database searches and simulated annealing. J. Mol.
Graphics Mod. 18, 258-272.

3. See“fams-ace. Model selection from server results using original
threading program and consensus in CASP7” item in this book.

4.  SmartLab, http://www.smartlab.dibe.unige.it/

5. Daniel Fischer, Arne Elofsson, Leszek Rychlewski, Florencio Pazos,
Alfonso Vaencia, Burkhard Rost, Angel R. Ortiz, and Roland L.
Dunbrack, Jr. (2001) Proteins 5 171-183
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CIRCLE-QA - 100 modelsfor 100 QA targets

CIRCLE for quality assessment in CASP7

D. Takaya, G. Terashi M. Takeda-Shitaka, K. Kanou, M. Iwadate,

A. Hosoi, K. Ohta and H. Umeyama
Department of Biomolecular Design, School of Pharmacy,Kitasato University
p99150@st.pharm.kitasato-u.ac.jp

We have developed CIRCLE® since previous CASP because we didn’'t have
high-precision scoring function for tertiary structure. For participation in
quality assessment (QA) category of CASP7, CIRCLE-QA aims for ranking
server models (TS+AL) by relative score which was proposed by CASP7
organizers. Relative score was calculated based on CIRCLE.

Collecting server models

Server models were obtained from CASP7 home

http://www?2.predictioncenter.org/index_serv.html.

page

Refinement of server models

Thesemodels include tertiary structure (TS) and alignment (AL), and therefore
these were refined or changedto tertiary structure by FAMS®. If it was AL
format, a model was built based on this alignment. If it was TS format, a model
is refined by FAMS. We used all the server models as its template because
these models include CA model or having Iackin%residue. Moreover, our
CIRCLE 3D1D method needs side chain coordinates -

Ranking refined models.

CILCLE score corresponding to each predicted difficulty (i.e. CM or FR NF)®
was calculated for above refined models. We ranked theorder using this score.
According to the QA rule in CASP7, this score was converted into relative
score based on simple rule. The maximum score is 1.0, and the minimum is 0.0.
We haveadopted the interpretation that model having score of 1.0 is not native
structure but best model in each target.



Result
tid col.  tid col.  tid col.  tid col tid col
T0283 0.492 TO0303 0.872 T0321 0.368 TO0341 0.873 T0363 0.806
T0288 091 TO0304 0.545 T0322 0.882 T0342 0.773 TO0364 0.935
T0289 0.819 TO0305 0.931 T0323 0.702 T0345 0.893 T0366 0.852
T0290 0927 TO0306 0.193 T0324 0.858 T0346 0.93 T0367 0.78
T0291 0.831 TO0307 0.684 T0325 0.679 T0347 0582 T0368 0.703
T0292 0.866 TO0308 0.78 T0326 0.911 TO0348 0.471 TO0369 0.44
T0293 0.785 TO0309 0.244 T0327 0.794 T0349 0.639 TO0370 0.918
T0294 0.887 T0310 0.863 T0328 0.902 TO0350 0.685 TO371 0.8
T0295 0906 TO311 0.727 T0329 0.853 TO0351 0.523 TO0372 0.707
T0296 0.618 TO0312 0.573 TO0330 0.892 TO0353 0.659 TO0373 0.77
T0297 069 TO0313 0.859 TO0331 0.82 T0354 0528 TO374 0.856
T0298 0.853 TO0314 0.377 T0332 0.746 TO0357 0584 TO375 0.826
T0299 0349 TO0315 0.903 TO0335 0.619 TO0358 0.608 TO0376 0.866
TO300 0516 TO0316 0.489 T0338 0.789 T0359 0.695 TO0380 0.881
TO301 0.725 TO0317 0.937 TO0339 0.843 TO0361 0.298 TO0383 0.795
TO302 0.721 TO318 0.806 T0340 0.92 T0362 0.876 T0384 0.916
TO385 0.843

This table shows the correlation coefficient in each target between the GDT_TS
value and our CIRCLE score. Predicted CM targets(Bold in table) are T0288,
T0290, T0291, T0292, T0294, T0295, T0298, T0302, TO303, TO305, TO308,
T0310, T0313, TO315, TO317, TO318, TO324, T0326, T0328, TO332, TO338,
T0339, T0340, TO341, T0345, T0346, TO359, TO362, TO366, TO371, TO375,
TO376 and T0384. Predicted CM targets seem to be high correlation
coefficient. Accordingly our CIRCLE is useful in determining the order of
modeling quality.

1. See“CIRCLE: Full automated homology-modeling server using the 3D1D
scoring functions” item in this book.
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2. Ogata K. and Umeyama H. (2000) An automatic homology modeling
method consisting of database searches and simulated annealing. J. Mol.
Graphics Mod. 18 258-272.

3. See “FAMSD : Homology modeling server providing side chain models
with high accuracy” item in this book

CPHmMode's - 49 models for 49 3D targets

CPHmodels

Ole Lund, Claus Lundegaard, Morten Nielsen
Center for Biological Sequence Analysis, BioCentrum, Building208.
Technical University of Denmark. DK-2800 Lyngby. Denmark.
www.cbs.dtu.dk/services CPHmModels

Summary

CPHmodels is a server for fold recognition/ homology modeling, in which a
large sequence database is iteratively searched to construct a sequenceprofile
until a template can be found in a database of proteins with known structure.
The method differs from the PDB-BLAST method in that a sequence profile is
only made if atemplate is not readily found in a database of known structures.
A sequence profile is made for the template, using the same number of PSI-
BLAST iterations that were used to identify it. Query and template sequences
are subsequently aligned using a score based on profile-profilecomparisons.

The method is unchanged since 2002, except that the databases are updated
each week In CASP5 the alignment score was modified so as to ensure that
unreliable parts of the alignment are discarded. The average root mean square
deviation (RMSD) for the models which were solved before the CASP5
meeting was 2.3A. In CASP7 we did not make this modification.

The server is fast and easy to use. We plan to use it in combination with other
tools to visualize sequence features and build it together with other prediction
servers, such as epitope prediction servers.

Template identification

The program blastpgp [1] was used to search the databases. In order to find a
template, the query sequence was run against the pdb database. If a template
could not be found with an E vaue of less than 0.05 the sequencewas run
against sp, and a binary checkpoint file was saved as well as the position
specific scoring matrix in ASCII format. The checkpoint file was used to restart
a blastpgp search of the query sequence against the pdb database. The
procedure of iteratively using the sp database to generate a profile that in turn is


http://www.cbs.dtu.dk/services/CPHmodels

used to search the pdb database was continued until a template was found with
a E value of less than 0.05 or atotal number of five iterations against the pdb
database had been performed.

Alignment

If a template was identified, we attempted to improve the aignment by
performing a profile-profile alignment. In order to make a sequence profile for
the template sequence we ran the template sequence the same number of
iterations as the query sequence against the sp database and saved the scoring
matrix in ASCII format. If no sequence profile was generated for either the
query or the template sequence, it was constructed from a blosum62 matrix [2].
A scoring matrix Sij was constructed based on the two profiles.

Sij = (QPI(TAj)+TRI(QAI))/2-k

Where QPi(TAj) is the score of residue j in the template sequence with the
profile at position i in the query sequence, and TPRj(QAI) is the score of residue
i in the query sequence with the profile at position j in the template sequence.
These two scores were averaged and k can be subtracted to reduce the lengths
of the alignments and make them more accurate. In the online version of
CPHmodels which participated in CASP7 Kk is set to zero.

Modeling

Thecorresponding atoms derived from the alignment were extracted from the
template file and used as starting point for homology modeling. Missing atoms
were added using the segmod program [5], and structures were refined using
the encad program [6], both from the GeneMinepackage
( www.bi oinformatics.ucla.edu/genemine/).

1. Altschul SF. et a. (1997) Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res. 25:
3389-3402.

2. Henikoff S., Henikoff J.G. (1992) Amino acid substitution matrices from
protein blocks. Proc Natl Acad Sci U S A. 89: 10915-10919.

3. McLachlan A .D. (1982) Rapid Comparison of Protein Structres. Acta
Cryst. A38: 871-873

4. ShindyalovI.N., Bourne P.E. (1998) Protein structure alignment by
incremental combinatorial extension (CE) of the optimal path. Protein Eng.
11: 739-47.

5. Levitt M. (1992) Accurate modeling of protein conformation by automatic
segment matching. J. Moal. Biol. 226: 507-533

6. Levitt M ., Hirshberg M., Sharon R. and Daggett V. (1995) Potential
energy function and parameters for simulations of the molecular dynamics
of proteins and nucleic acids in solution. Computer Physics Comm. 91:
215-231.
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CRACOW.PL - 58 modelsfor 52 3D targets

Simulation of protein folding process rather then protein
structure prediction

Irena Roterman®?, Michal Brylinski'®, Marek Kochanczyk?
'Department of Bioinformatics and Telemedicine - Collegium Medicum —
Jagiellonian University, 31-501 Krakow, Kopernika 17 POLAND
2Faculty of Physics, Astronomy and Applied Informatics, Jagiellonian
University, 30-059 Krakow, Reymonta 4, POLAND
3Faculty of Chemistry, Jagiellonian University, 30-060 Krakow, Ingardena 3,
POLAND

The procedure for insilico protein foldingsimulation was applied to construct
the structures of target proteins. Two steps process was applied and represented
by early- (ES) and late-stage (L S) intermediates. The creation of ES structureis
assumed to be determined solely by the backbone conformation [Roterman
(1995) J. Theor Biol 177, 283-288, Roterman (1995) Biochimie 77, 204-216].
The limited sub-space (part of Ramachandran map) distinguished according to
low-energy mutual orientation between sequentia peptide bond planes
appeared to satisfy also the condition of balanced amount of information
carried by amino acid in the sequence with the amount necessary to select
particular structure of early intermediate [Jurkowski et al. (2004) Proteins:
Struct Func Bioinform. 55, 115-127]. The contingency table representing the
relation between sequences (tetrapeptide unit) and their structures (seven of
them distinguished in the limited conformational sub-space) [Jurkowski et al.
(2004) J. Biomol. Sruct Dynam. 22, 149-157, Brylinski et al. (2004)
Bioinformatics 20, 199-205] created on the basis of complete PDB structures
applied to the sequence of the protein of unknown structure allows creation of
ES structure which is treated as starting one for the LS dep of procedure
[Brylinski et al. (2005) J. Biomed Biotechnal. 2, 65-79, Meus et d. (2006) Med
i Monit 12, BR208-214, Brylinski et al. (2004) In Slico Biology 4, 0022].

The side chain-side chain interaction introduced as the driving force for LS
folding step and calculated according to the traditional non-bonding interaction
is extended by the hydrophobic interaction. Its presence is expressed by the
external force field of hydrophobic character in form of three-dimensional
Gauss function (“fuzzy oil drop”) [Konieczny et a. (2006) In Slico Biology
(2006) 6, 15-22]. The conformational changes of folding molecule decreasing
the difference between idealized and observed hydrophobicity density
distribution are accepted. The hydrophobic core in a central part of “fuzzy-oil-
drop” is created in consequence of this procedure. Surface of the molecule gets
covered by hydrophilic residues. The starting size of “oil drop” is determined
by the size of ES structure. Its size gets decreased step-wise reaching the size
characteristic for the molecule of particular polypeptide chain length. Every
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step of hydrophobicity oriented optimization is followed by the traditional non-
bonding energy optimization oriented procedure (ECEPP force field) to
eliminate the possible overlaps. The procedure stops when non-bonding energy
convergence criterion is reached and the size of drop is similar to the expected
one for protein of particular polypeptide length [Brylinski et al. (2006)J.
Biomol Sruct Dynam. 23, 519-527, Brylinski et a. ( 2006) Biochimie 88, 1229-
1239, Brylinski et al. Comp Biol Chem 30, 255-267].

The ES step of folding process was tested in CASP6 and the LS step was
applied in CASP7 [Konieczny et al. (2006) In Slico Biology (2006) 6, 15-22].

The top results in the structure prediction are not expected by the group. The
“fuzzy oil drop” model produces the very well soluble protein covered by
hydrophilic residues with no biological activity. The “fuzzy oil drop” model
applied to crystal structures of proteins reveals the significant discrepancy
between idealized (“fuzzy oil drop” model) and empiricaly observed
distribution of hydrophobicity density localized exactly in the area of substrate
or ligand binding. This observation suggests important role of “ligand” or
“substrate-like” molecule in folding process (what was shown in ribonuclease
folding simulation [Brylinski et al. (2006) Comp Biol Chem 30, 255-267]. As
long as the active participation of ligand or ligand-like molecule is not taken
into account in folding simulation, the structure prediction applying the “fuzzy-
oil-drop” model can not be successful. Although (as shown in the
TA03354_69_121 target of CASP6 [Konieczny et al. (2006) In Slico Biology
6, 15-22] in some small proteins the possible binding cavity can appear without
the ligand present.

The conclusion is that the active presence of ligand or substrate-like molecule is
necessary during folding process at least in folding processin silico.

Dill-ZAP - 30 modelsfor 6 DR targets

Physics-Based Protein Folding by Zipping and Assembly

M. S. Shell', S. B. Ozkan', V. VoelZ, G. A. Wu', V. Coutsias®,
J. Choderd?, R. Ritterson?, S. Cordes, K. Dill*
! _ Department of Pharmaceutical Chemistry, UC San Francisco,
2. Graduate Group in Biophysics, UC San Francisco,

3 _ Department of Mathematics and Statistics, Univ. of New Mexico
shell @maxwell.compbio.ucsf.edu

Our goal in CASP was to be as physical as possible. Our scoring function is
just a physics-based force field (Amber 96 + GB/SA solvent). We do not use
protein database information, such as secondary structure preferences or PDB-
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based potentials, or low-resolution starting models. For sampling, we aim to
mimic physical folding routes: (1) We do local searching by replica exchange
molecular dynamics (REMD), to ensure proper Boltzmann populations. (2) Our
global searching involves mechanistic folding routes that we learn on the fly.
Conformational sampling occurs along zipping and assembly routes (our
algorithm is called ZAM - Zipping & Assembly Method). As an offshoot, this
method also makes predictions about: (1) the physical folding routes (for four
non-CASP PDB proteins, we predict roughly correct Phi distributions) and (2)
protein stability (however, the current force field gives ion-pairs that are too
strong).

In the Zipping & Assembly mechanism, an unfolded chain first explores locally
favorablestructures at multiple independent positions along the chain. These
local structures tend to have hydrophobic contacts and contain small a-helical
or B-turn structures. While only transiently stable on their own, such local
structures can then either: (a) grow (which we call zipping) by recruiting
neighboring amino acids in the sequence to form additional contacts, or (b)
come together as units (assembly). In these ways, the protein chain grows
increasingly ordered and native-like.

More specifically, ZAM works as follows:

1. The full protein is parsed into overlapping 8-mer fragments spaced
every 3 residues apart. Each such fragment begins in the extended
state, and is then energy-minimized with AMBER ff96 + the
Generalized Born implicit solvation model of Onufriev, Bashford, and
Case, followed by 5 ns of REMD, in the absence of the rest of the
chain.

2. We retain those 8-mers that satisfy either of two criteria: () either
they have persistent structure (see below), or those 8-mers can recruit
additional local residues to grow more structure cooperatively (i.e.,
with non-additive free energies), as determined by a look-ahead
analysis (PUNCH). New chain is then added to those 8-mers, to grow
them into 12mers, followed by REMD for another 5 ns. The processis
repeated to reach partially structured 16-mers.

3. Stable contacts are identified within each 16-mer fragment using the
potential of mean force (PMF) vs. distance for all possible
hydrophobic residue pairs in each fragment, computed by weighted
histogramanalysis (WHAM). We take the residue pairs for which the
PMFs show a pronounced minimum in free energy at a distance less
than 8.0 A as favorable and stable (i.e. sampled at least 50% of the
time). Any fragment having mutually exclusive (i.e.,“competing”)



stable contacts is split into separate ensembles in which that fragment
has either of the two possible contacts.

4. To enforce any particular emerging folding route, a stable contact is
locked into place by imposing a harmonic restraint between residue
centroids with a force constant of 0.5 kcal / (mol A?). Fragments are
then grown by adding new residues at each terminus, followed by 5 ns
REMD simulations. Thus, most of the new sampling focuses on the
newly added residues, largely avoiding re-samplingtheexisting
structure. Steps 3 and 4 are iterated until fragments cannot be grown
further, and until no new contacts are persistent.

5. When fragments cannot zip further, assembly of existing fragmentsis
attempted, in two steps. (a) We generate a distribution of rigid body
arrangements of the two structured fragments (PHAT — packing by
hydrophobic alignment tool). (b) The loops are connected and
sampled by a fast analytical robotics-based method (called SPLAT —
Sampled Protein Loop Assembly Tool). The assembled structures are
clustered and ranked by hydrophobic radius of gyration, and the top-
ranked structures are used as initial conformations for another round of
REMD simulations. This gives a fast way to sample possible
topological assemblies.

6. Oursampling of this physical force field remains severely limited, so
we cannot directly compute the relative free energies of the various
possible final states. Instead, we filtered our final structures, keeping
only those that have small hydrophobic radius of gyration.

DI Spro (server, disorder) - 100 modelsfor 100 DR targets

Protein Disordered Region Prediction Using DISpro
Jianlin Cheng, Mike Sweredoski, and Pierre Baldi

Institute for Genomics and Bioinformatics, School of Information and
Computer Science
University of California Irvine, CA 92697

Intrinsically disordered regions in proteins are relatively frequent and important
for our understanding of molecular recognition and assembly, and protein
structure and function. Our ab initio predictor of disordered regionscalled
DISpro participated in CASP7. DISpro [1] uses evolutionary information in the
form of profiles, predicted secondary structure and relative solvent
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accessibility, and ensembles of 1D-recursive neural networks to predict
disordered region.

1. Cheng J, Sweredoski M., and Baldi P. (2005) Accurate Prediction of
Protein Disordered Regions by Mining Protein Structure Data, Data
Mining and Knowledge Discovery, vol. 11, no. 3, pp. 213-222.

Distill - 800 modelsfor 100 3D/100 DP/100 DR/100RR targets

Distill_human - 800 models for 100 3D/100 DP/100
DR/100RR targets

Draft protein structures by machine learning

Davide Bal'', Alberto J. Martin®, Catherine Mooney?,
Alessandro Vullo', lan Walsh?, Silvio Tosatto?,
GianlucaPollastri'’

School of Computer Science and Informatics,
University College Dublin, Ireland
CRIBI, Universita di Padova, Italy
* gianluca.pollastri@ucd.ie

Distill is a fully automated system for the prediction of draft protein structures.
Distill has two main components. a set of predictors of protein features
(secondary structure, relative solvent accessibility, contact density, residue
contact maps, etc.) based on machine learning techniques; an optimisation
algorithm that searches the space of protein backbones under the guidance of a
potential based on these features.

Secondary structure is predicted by Porter’, relative solvent accessibility by
PaleAle?, contact density by BrownAle®, residuecontact and distance maps by
XX Stout®. Residue contact maps submitted to CASP (8A) are obtained by
XXStout, and are not directly used to predict 3D coordinates. 4-class distance
map predictions by an architecture identical to XXStout’s are adopted instead.
All structural feature predictors are based on single- or dual-layer Recursive
Neural Network architectures for Directed Acyclic Graphs (DAG RNNs)*.
One-dimensional feature predictors (i.e. those mapping the primary sequence
into a sequence of the same length) are based on 1D DAG RNNs, while contact
and distance map predictors are based on 2D DAG RNNs. Secondary structure,
solvent accessibility and distance map predictors are provided structurd
information about PDB templates as a further input, when templates are
available. Templates are identified as follows. 2 rounds of PSI-BLAST are run
against UniProt; the resulting PSSM, plus predictions of structural motifs by



Porter+°, are aligned locally against all the sequences and corresponding
structural motifs in the PDB. Because of a glitch in the updating procedure, at
CASP we used an outdated PDB (March 2005), resulting in suboptimal
predictions for numerous targets.

In the next stage, wereconstruct sets of Ca coordinates. The reconstructionis
carried out by minimising a potential function containing terms that penalise
the violation of predicted distances between residues, and enforce predicted
strand locations, hard-core repulsion between amino acids, and virtual Ca-Ca
bondlengths. The actual search is performed in 3 stages:

Initial structures are generated, in which helices predicted by Porter are
modelled, consecutive Ca atoms are set at a redistic distance (~3.8A), and
virtual Ca angles are restricted to the 90°-180° interval.

A search from these initia structures is performed by introducing perturbations
in them. Helices are treated as rigid “rods’ and their core Cas are never moved
on their own. The search is carried out by simulated annealing with a linear
schedule for the temperature. 5,000 moves of every non-helical Ca and helical
termini are attempted for each search. 50 searches are run for each protein
structure.

Finaly, the structures obtained are ranked. Inthe abinitio case we rank the
structures by a neural network trained to map a number of characteristics
(enforcement of of predicted constraints, secondary structure composition,
compaction, etc.) of each structure into its quality, measured as its TM score
against the correct structure. In the case templates from the PDB are available,
similarity to the templates is used as further information for ranking.

We also submitted predictions of protein domains and protein disorder by
predictors that are not integrated in Distill’s pipeline. The predictor or protein
domains (Shandy) has three stages. one in which proteins are classified as most
likely single-domain vs. possibly multi-domain (currently implemented as a
hard threshold of 180 residues); a second stage (a 1D DAG Recurrent Neural
Network) in which residues in the latter proteins are marked as domain
boundary vs. intradomain; a third stage in which the previous predictions are
smoothed and the location of domain boundaries is decided. Disorder is
predicted by Spritz®, a combination of experts implemented by kernel
machines.

Distill_human is the same, fully automated predictor as Distill (see abstract).
Given the looser deadlines for human submission, al predictions by
Distill_human are based on an improved fold recognition component which
was introduced into Distill after the first 10 targets. All the following
submissions are identical to Distill.

1. Pollastri G. & McLysaght A. (2005) Porter, A new, accurate server for
protein secondary structure prediction, Bioinformatics, 21(8), 1719-1720.

2. Bal D., MatinA.JM., Mooney C., Vullo A., Walsh |I. & Pollastri G.
(2006) Distill: A suite of web servers for the prediction of one-, two- and
three-dimensional structural features of proteins, BMC Bioinformatics, 7,
402.

3. Vullo A.,, Walsh |. & Pollastri G. (2006) A two-stage approach for
improved prediction of residue contact maps, BMC Bioinformatics, 7, 180.

4. Badi P. & Pollastri G. (2003) The Principled Design of Large-Scale
Recursive Neural Network Architectures— DAG-RNNs and the Protein
Structure Prediction Problem.

5. Journa of Machine Learning Research, 4, 575-602.

6. Mooney C., Vullo A. & Pollastri G. (2006) Protein Structural Motif
Prediction in Multidimensional @-y Space leads to improved Secondary
Structure Prediction, Journal of Computational Biology, 13(8), 1489-1502.

7. Vullo A., Bortolami O., Pollastri G. & Tosatto S. (2006) Spritz: a server
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A Filtering Approach for Improved Modeling of Predicted
Contact Maps
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{albertoj,alessandro.vullo,gianluca.pollastri} @ucd.ie

For CASP7 we predicted contact maps as follows: contact information is first
predicted by our ab initio algorithm (XXStout [1]); an ensemble of multi-
layered perceptrons filters the initial predictions. The mapping is implemented
by providing the filtering ensemble with information about physical
realisability, violations of basic principles and long range contact information
observed in the predicted contact maps.

XXStout uses information from multiple sequences alignment profiles,
predicted secondary structure, solvent accessibility and contact density.
XXStout’s predictions contain errors, mainly because they are local: the
patterns of contacts between secondary structure elements are often shaped
differently from those found in real contact maps; some amino acids are in



contact with too many other amino acids or with too few, making predicted
maps not physically realisable.

The filtering stage is implemented by training two different sets of multilayered
perceptrons to filter different positions of the contact map; one for positions
close to the diagonal, one for positions far from the diagonal, since the rules
governing contact probability are likdy to be different for the former case
(mainly made by backbone atoms, reflecting secondary structure) than for the
latter (where contacts mainly occur between the side chains of amino acids
placed in different secondary structure elements). For each pair of residues (i,j),
the input features of both learners are the following: a square window of
predicted contact probabilities (by XXStout) centred on (i,j); predicted
secondary structure in three states, by Porter [2]; the number of amino acids
predictedto be contact with either residue i or j; the number of amino acids
predicted to be in contact with both residues; i’s and j’s contact order [3].

1. Vulo A., Wadsh I., and Pollastri G. (2006) A two-stage approach for
improved prediction of residue contact maps. BMC Bioinformatics, 7:180.

2. Pollastri G. and McLysaght A. (2005) Porter, a new, accurate server for
protein secondary structure prediction. Bioinformatics, 21(8):1719-1720.

3. Plaxco K.W., Simons K.T., and Baker D. (1998) Contact order, transition
state placement and the refolding rates of single domain proteins. J. Mol.
Biol. 277, 985-994.
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Ab Initio Structure Prediction by Rapid Sampling of Protein
Conformational Space

F. Ding, A.W. Serohijos, S. Sharma, H. Nig, S. Yin,
N.V. Dokholyan

Department of Biochemistry and Biophysics, School of Medicine, UNC-CH
dokh@med.unc.edu

One of the primary bottlenecks in theabinitioprotein structure prediction is
the adequate sampling of the vast conformational space on which the native
structure of the protein resides. Here, we develop anabinitio protein structure
methodology that rapidly searches the protein energy landscape for the global
energy minimum. We use a dynamic sampling algorithm, discrete molecular
dynamics(DMD?), to rapidly sample the conformational space, and a
recently-developedall-atom energy function to guide the DMD simulation
toward the low-energy state®.

35

First, we reduce the protein conformation available to the target sequence by
constructing a linear peptide with secondary structures (helix, beta strand, and
random coil) derived from consensus among several secondary structure
prediction schemes (e.g., PSIPRED, SAM, PROFSEC). In regions with low
consensus secondary structure prediction, we generate different models with
either helix, beta strand, or random coil constraints assigned to the low
confidence regions.

Second, we fold the linear peptides using replica exchange* DMD simulations.
Using square-well potentials and collision driven dynamics, DMD is able to
rapidly sample the protein conformational space and follow long time scale
events of proteins such as folding. In the folding simulation, we employed
united atom models of proteins which include all heavy atoms and polar
hydrogens. The energy of a protein conformation is computed as a linear sum
of the following terms:

E= deedlﬁ’nded\Ndwvd_\Esolvs\évlvbgphgondehbtn_E schb nts_ciﬁonngch_bOE'db_bschbon

Here, Eponded iS the bonded energy, Eygwand Egy, are the VDW and solvation
energies, Epp nbond: Esc nbond @Nd Epp s hbond @€ the hydrogen bond energies
among backbones, among sidechains, and between backbones and sidechains,
respectively. The detailed descri Ption of the energy terms and the
parametrization is described in Ref.”. The secondary structures from the first
step areincorporated into the simulations as constraints to quickly bias the
initial linear chain into the defined secondary structures. For each secondary
structure model as defined in the first step, we perform two rounds of replica
exchange simulations. In the first round, we sample the neighborhood of the
protein folding transition by replica simulations around the melting transition.
We then construct a preliminary decoy set composed of structures with low
values of potential energies and radii of gyration. All the decoys generated from
different secondary structure schemes are subject to clustering algorithm. The
centroids for the top-populated clusters are selected for the next round of
simulations. The objective of the first round of simulation is to transform the
linear peptide into molten globular state with correct topological wiring. In the
second round of folding simulations, each structure in the preliminary decoy set
was subjected to replica exchange-DMD with exchange temperatures below the
folding transition. This round of folding simulation improves hydrogen bond
pattern formations and protein packing density by eliminating void spaces
within the structure. We then construct a final decoy set based on the following
criteriac low energy, hydrophobic packing, minimal buried charged residues,
and minimal internal void spaces.

Lastly, asafina stage refinement, we optimize the side-chain rotamer states of
the candidate structure using Monte Carlo-based search for low-energy rotamer
states. For a given rotamer state, there are associated dihedral angle variations
with their standard deviations tabulated in a rotamer library®. A trial rotamer is



rejected or accepted based on the difference of the minimum energy of thetrial
rotamer after minimization and the original energy.
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Atomic-Resolution Prediction of Protein Structure Using
Constrained Replica-Exchange Annealing
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N.V. Dokholyan
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Prediction of tertiary structure of proteins based on comparative modeling is
one of the most ubiquitous approaches for protein structure prediction with
atomic level accuracy. Often target sequence has a high homology with proteins
having experimentally known structure, in which cases a very accurate
prediction of the target sequence can be achieved using comparative modeling.
However a major bottleneck of homology-based structure prediction techniques
isof achieving adequate conformational sampling to find the most stable
tertiary structure for a putative secondary structure predicted by homology.
Here we present a biophysically-principled approach for predicting the tertiary
structure of proteins using comparative modeling followed by replica-exchange
simulations to achieve the global energy minima’. We exploit the rapid
conformational sampling abilities of discrete molecular dynamics(DMD) > to
reach the minimum energy conformation for the protein

In this approach, the 3D-Jury Metaserver® (http://bioinfo.pl/meta/) is used to
assess a consensus homology prediction of secondary structure for the target
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sequence. Multiple databases available at the 3D-Jury server are used to
generate a consensus prediction - the target sequence is submitted to 3D-Jury
meta-server which scores putative structural models based on their similarity to
other models. A similarity metric (Jscore) is assigned by the 3D-Jury server,
corresponding to the number of C-alpha atoms after superposition within 3.5 A
root mean square deviations from the native structure. The most homologous
structure for the target sequence, as predicted by the 3D-Jury Metaserver is
selected to define the secondary structure of the target.

In the second step, the predicted secondary structure is used to ascribe
interaction-constrains between all pairs of heavy-atoms in the structure which
define the secondary structure. Using the MEDUSA software', a linear-chain
model of the peptide is generated along-with the secondary structure constrains
and the MEDUSA force-field® designed for all-atom DMD simulations of
proteins. Next we perform a short-duration, low temperature simulation for
relaxing the linear conformation of the protein and generating multiple initial
structures to be used in replica-exchange simulation. We then perform multiple
replica exchange annealing simulations of this model using these initial
conformations, and eight replicas for relaxing the protein structure under the
secondary structure constrains.  Upon completion of replicaexchange
simulations, tentative predictions having lowest energy among al replicas are
selected and another run of replica-exchange simulations is performed, starting
with these tentative predictions. Upon completion of second round of replica
exchange simulations, structures having lowest mean radii are selected (i.e.
those structures which form compact topologies) as the putative heavy atom
structure of the target protein.

Finally, hydrogen atoms are added to the putative heavy atom structure and the
side-chain packing, rotamer states of these structures is then optimized using
fixed-backbone redesign module of MEDUSA software’. In this step, a Monte
Carlo-based search for low-energy rotamer states is performed using the
Dunbrack rotamer library®: For a given rotamer state, there are associated
dihedral angle values with their fluctuations are recorded in a rotamer library. A
trial rotamer is rejected or accepted based on the difference of the minimum
energy of the trial rotamer after minimization and the origina energy.

1. Ding F. & Dokholyan N.V. (2006) Emergence of protein foldfamilies
through rational design. PLoS. Comput. Biol. 2, e85.

2. Ding F. & Dokholyan N.V. (2005) Simple but predictive protein models.
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(2002) 1. Direct molecular dynamics observation of protein folding
transition state ensemble. Biophys. J. 83, 3525-3532.

4. Ginalski K., Elofsson A., Fischer D. & Rychlewski L. (2003) 3D-Jury:a
simple approach to improve protein structure predictions. Bioinformatics.
19, 1015-1018.
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A combined approach to automated protein domain prediction
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The DomFOLD server uses a consensus of four different methods for domain
prediction. The output from DomSSEA®, mGenTHREADER? nFOL D?and
DISOPRED? is parsed to form a domain prediction for each method. The final
prediction is then a ssimple vote taken on the domain assignment of each
residue. Where the vote is evenly split, the lowest domain number is taken.

The first method used for domain prediction is DomSSEA, which has been
describedpreviously. DomSSEA is based on the alignment of the PSIPRED*
predicted secondary structure of the target agjai nst a fold library of known
secondary structures, determined using DSSP°. The domain boundaries of
templates within the fold library are assigned using SCOP’, which are then

mapped onto the target structure.

The second method parses the top alignments from mGenTHREADER.
Domain boundaries are assigned by the location of each fold aligned to the
target sequence. Where possible, the boundaries of aligned folds with multiple
domains are appropriately subdivided using the SCOP domain assignment. The
aignment rankings are used to discriminate between conflicting domain
assignments, i.e. where domain boundaries of different folds overlap the
mMGenTHREADER score is used to select the highest ranking domain.
Therefore, the overall domain assignment for this method is essentialy
determined by the top model.

The third method is similar to that above, however data from multiple models
are used to determine boundaries. Alignments from the top five NnFOLD models
are used to provide five alternative domain assignments. The consensus domain
assignment is then used to determine overall domain boundaries for this
method.

The fourth method is based on disordered regions predicted using the
DISOPRED method. The premise of this method is that regions of the target
protein that are predicted to be disordered may indicate flexible domain linkers.
Domain boundaries are predicted in stretches of disorder which are more than
twenty residues from the N- and C-termini.
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Protein Structure Refinement by Molecular Dynamics
Simulation
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We participated in the CASPR experiment and the structure refinement session
of the CASP7 experiment. We used Molecular Dynamics (MD) simulations to
refine the structures that were predicted in CASP experiments. The simulations
were carried out by using the AMBERS program® with the ff03 force field? and
the Generalized Born (GB) implicit solvent model®. To remove serious steric
clashes in the starting structures, energy minimization was conducted prior to
MD simulations, until energy gradient reached 10 kcal/mol-A. No cutoff was
used in the energy minimization. In MD simulations, the minimized structures
were first heated gradually from 10K to 300K in 40 ps and then the temperature
was maintained with a temperature-coupling constant of 1.0 ps for 10 ns. A
time step of 1 fs was used, and the non-bonded interactions were updated every
25 time steps with a cutoff of 12A.



The simulation trgjectories were analyzed by computing the root-mean-square
deviation (RMSD) against the experimental structures and the total energies.
Two models were submitted for each of the refinement target: one with the
lowest RMSD (or the last snapshot structure in the blind test cases) and the
other with the lowest energy. The lowest RMSDs and the lowest energies
varied with different targets. Small RM SDs were obtained for the proteins that
are monomers in their biological forms, for example, 1.21A in the case of target
TMRO04 and 1.88A in the case of target TMROL. But for the proteins that are
dimmers and tetramers, simulations of their monomers generated structures far
from the starting structures and large conformational changes were observed
because of lack of the stabilization from other monomer counterparts. Other
factors that affected the performance of the refinement were the RMSDs of the
starting structures and the severity of bad contacts in the starting structures.

1. Case D. A,, Cheatham,T. E., Darden T., Gohlke H., Luo R., Merz K. M.,
Onufriev A., Simmerling C., Wang B. & Woods R. J. (2005) The Amber
biomolecular simulation programs. J Comput Chem. 26, 1668-1688.
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point-charge force field for molecular mechanics simulations of proteins
based on condensed-phase quantum mechanical calculations. J. Comput.
Chem. 24, 1999-2012.

3. Onufriev A., Bashford D. & Case D.A. (2004) Exploring protein native
states and large-scale conformational changes with a modified generalized
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Assembly Evolutionary Algorithm
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The prediction method is an evolutionary algorithm that identifies the native
structure as the global minimum of an energetic fitness function on a
discretized conformational space.

A heavy-atom representation of the backbone is used, where bond lengths and
angles have ideal values' and peptide units are assumed to be planar. Side
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chains are added to all non-Glycine residues, and are simplified to a single beta
carbon that is located along a fixed direction® but whose distance from the alpha
carbon depends on aminoacid type’. The conformational degrees of freedom
thus reduce to the mere sequence of PHI and PSI backbone torsional angles. As
afurther constraint, model conformations are built through dipeptide fragment
assembly, where each fragment is represented by a contiguous (PSI, PHI) pair
extracted from the PDB_SELECT25 database®. The entire collection of
extracted pairs has been partitioned by dipeptide aminoacid type into
20x20=400 subsets, so that each dipeptide in the query protein is forced to
sample only pairs of its own type. Within each subset, pairs are identified by a
numerical index, allowing conformations to be encoded as strings of integer
genes.

Each run of the evolutionary algorithm is 1600 generations long and uses a
population of 800 conformations. Coarse-grained exploration of the search
space is carried out by one-point crossover and single-gene mutation: the
former, applied at a 0.7 rate, makes two conformations exchange their G
terminal portion, whose length depends on where the crossover point fals; the
latter, applied at a 0.001 rate, blindly replaces one of the conformation's (PSI,
PHI) pairs with a random pair from the same subset, producing a rotation of the
C-termina portion that starts at the mutation site. As a special case of sngle-
gene mutation, a fine-tuning operator has also been devised, which alows to
explore the neighbourhood of a given conformation by replacing a (PSI, PHI)
pair with a similar one. This operator is used in the context of a local-search
process, that isapplied to each conformation with probability 1.0 and adapts
itself to be either an optimization or exploration tool according to the
distribution of fitness values among the population *.

The fitness of a conformation is defined to be a linear combination of three
quantities: the first measures steric violations by adding a penalty term for each
pair of atoms at a distance less than their summed van der Waals radii; the
second is the pairwise contact energy of residues, calculated from a previously-
reported contact-energy table®; and the third is the radius of gyration of the
conformation. The relative weights of these three quantities have been
determined by experiments on atraining set of 12 proteins®, which were aimed
a finding a general correlation between fitness function and RMSD to the
native state. Interestingly, the best correlation, together with a sufficient steric
feasibility of conformations, is achieved when the radius of gyration is assigned
aweight far greater than the other two.
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Assessing a new approach for protein structure modeling
combining structural alphabet local conformation prediction
and greedy algorithm for reconstruction.
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We have developed a modeling approach that relies on the concept of structural
aphabet (SA), i.e. the description of the local structure of proteins using
prototype conformations. Here we use a Hidden Markov Model (HMM)
derived structural alphabet (HMM-SA) of 27 “letters’l. Each letter of the
aphabet describes the conformation of fragments of 4 residues length,
consecutive fragments overlap by 3 residues. Each protein can thus be
described by a series of SA letters, or trajectory.

Our modeling process relies on three steps: (i) prediction of the local structure
of proteins from the amino-acid sequence (ii) search for structural candidates
local or global using a similarity search facility based on the alignment of series
of letters of the structural aphabet. (iii) fragment assembly.

The prediction of the SA trgjectory from the amino-acid sequence results from
alearning over 3439 proteins. It can be constrained by the results of secondary
structure prediction tools such as PSI-PRED2, or the knowledge of the
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conformation of regions of the structure. Starting from this predicted
description of protein structures, we search for 3D candidate fragments
(manuscript in preparation) matching that prediction in the PDB, using classical
sequence alignment methods transposed to SA3.

Theassembly of the candidate fragmentsis achieved using a greedy algorithm.
Starting from a description of the protein as overlapping fragments (HMM-SA
letters), we have recently shown that stochastic greedy algorithm is able to
rebuilt protein structures witha satisfying accuracy4, using RMSd or Go
potential as objective functions. For CASP, we have used a modified version of
the OPEP force field5 to drive the greedy algorithm during the rebuilding
process.

For CASP7, we have assessed two different strategies for modeling. In the first,
we start from the predicted HMM-SA description conditioned by PSI-PRED
profiles, refined by the search for candidate fragments against the PDB. Such
strategy was used for the de novo modeling. In the second, used for
comparative modeling, we use information from a template as a constraint.
Possible templates have been determined using the 3D-Jury6 Meta Server
(http://bioinfo.pl/Metal), alocal implementation of PDB-Blast, or our structural
similarity search tools. In the aligned regions, we use the SA description of the
template. The prediction of loop conformations is constrained by the trgjectory
of the template on the flanking regions.

A final refinement is performed using Gromacs/, and SABBACS.
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Protein tertiary structure prediction based on contact number
prediction
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We used a potential based on contact number prediction for both homology and
denovo prediction. This potential uses the contact number of residues in a
protein structure and the absolute contact number of residues predicted from its
amino acid sequence using a prediction method based on a support vector
regression(SVR) . The contact number of an amino acid residue in a protein
structure is defined by the number of residues around a given residue. First, we
predicted the contact number of each residue using SVR from Position Specific
Score Matrices (PSSMs) in a 15-residue window centered on the target residue.
Then, the potential of the protein structure iscalculated from the probability
distribution of the native contact numbers corresponding to the predicted ones.

To predict protein structures, we first searched templates using PSI-BLAST and
FORTE? server via the Net. If there were some good templates, we generated
100 models for each template by using Modeller. We selected final models
from these predicted models using the above potential based on contact number
prediction.

For NF targets, we produced tertiary structure models by using our de novo
modeling system based on the general fragment assembly method®. We

searched candidate fragments of each position using the Pearson’s correlation
coefficient between the PSSMs of a query subsequence and the PSSMs of a
target subsequence. Using the fragment libraries, we searched conformational
spaces using a potential energy function by simulated annealing method. Our
potential energy function includes a term of above potential based on contact
number prediction, atom clashes, and hydrogen bonding. We produced about
10,000 models for each target, and selected 5 prediction models by using the
potential energy and structural clustering. Finally, sidechain modeling was
performed by using SCWRL version 3.0.
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FAMS is the homology modeling server including theab-initiomethod.
Homology modeling method is effective if the homologous proteins of the
target are found, but not effective when no homologous proteins are found. In
the previous CASP experiment, many models constructed using the homology
modeling program “FAMS’ * were good in the CM category, but not so good in
thenon-CM, especialy NF category. In this time, FAMS server had included
ab-initio method based on fragment assembly (we call ‘TEMPLA’; TEMPlate-
Less Ab-initio) for NF-targets.

Method Description
1. Constructingstructure using TEMPLA

If the alignment score of sparks2? is higher than 4.5 and the length of target
sequence is less than 150, TEMPLA had been executed with following
fragment assembly algorithm.

In the first step, the peptide fragments were generated according to segment-
distance calculated by equation as follows*:

DISTANCE = f (AAfrequencies, SSconfidence)

where AAfregquencies is the frequencies of amino acid from profile which had
been calculated by PSI-BLAST , SSconfidence is the confidences of secondary



structure prediction calculated by PSI-PRED®. Next, we simulatedfolding
process with simulated annealing method, started from random coil structure.
Folding potential in this process is as follows’:

Vtota] :VvdW +Vrama +VHP +VHB +Vpajrwise

where Vyqtq i physically total potential, V ama i ramahcandran potential, Vo is
torsions, phi and psi, potentia, Viqw iS van der Waals interaction, Vy,is
hydrogen bond interaction, Vy, is hydrophobic interaction, and V pairwise iS pair-
wise interaction.

2. Evaluating TEMPLA models:

Our 3D1D score of ‘CIRCLE-FR’ was used to evaluate TEMPLA models. If
these score were higher than that of our CIECLE server models, we had
submitted TEMPLA models ranked by the ‘CIRCLE-FR’ score which
combined with ASA. Otherwise we executed homology modeling method as
follows.

3. Constructingstructure using FAM S-multi

To obtain the best alignment, 15 homology models which constructed by other
server teams of our laboratory, FAMSD, CIRCLE and FUNCTION were
collected. These models were scored by the 3D1Dscore of ‘CIRCLE10’, and
then the alignment of the first scored model was used to rebuild model using
FAMS-multi (see FAMS-multi abstract).

Results

Now (in 2006/10/03) experimental structures of 80 targets are released. We
assessed CA and side chain torsion angles of all server models (TS1).

In the evaluation of CA (GDT_TS) function ranked 12 of 68 servers (all 80
targets). And in the evaluation of x1 angle (“correct” side chain residue is
within 3.5 in the MaxSub superposition and within 40° from native structure)
this FAMS team ranked 5 following ROBETTA, Pmodeller6, FAMSD, and
Pcons6. Furthermore in the evaluation of correct side chain number within 2.0

and 1.0 in the MaxSub superposition, this team ranked 4 and 3,
respectively.

1. Ogata K. and Umeyama H. (2000) An automatic homology modeling
method consisting of database searches and simulated annealing J Mol
Graph Model/J Mol Graph Model 18, 258-272, 305-256.

2. Zhou H., Zhou Y. (2004) Single-body residue-level knowledge-based
energy score combined with sequence-profile and secondary structure
information for fold recognition.Proteins.1;55(4):1005-13.

3. Kim T. Simons, Charlie Strauss and David Baker (2001) Prospects for ab
initio Protein Structural Genomics J. Mal. Biol. 306, 1191-1199
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4. Jones D.T (1999) Protein secondary structure prediction based on position-
specific scoring matrices J. Mol Biol/J. Mol Biol 292, 195-202.

5. Yoshimi Fujitsuka, George Chikenji, Shoji Takada (2006) SimFold
Energy Function For De Novo Protein Structure Prediction: Consensus
with Rosetta PROTEINS 62:381-398

FAMS_ACE - 500 modelsfor 100 3D targets

Model selection from server results using original
threading(3D1D) program and consensus

Mitsuo Iwadate, Kazuhiko Kanou, Genki Terashi, Daisuke
Takaya, Kazuhiro Ohta, Akio Hosoi, Mayuko Takeda- Shitaka and
Hideaki Umeyama
Department of Biomolecular Design
School of Pharmaceutical Sciences, Kitasato University
iwadatem@pharm.kitasato-u.ac.jp

“fams_ace” is meta-selector team using all the server models. Concept of the
meta-selector that appears with CASP5 2002, has freed many predictors from
suffering hardship work. Then we have registered as the manual team,
“fams_ace” in CASP7. This team downloaded all the server answers in the
CASP7 sight and chose an appropriate model from the submitted model. Again,
“fams_ace” has registered in the manual team, but in fact it is a meta-sel ector or

ameta server.
Method
There is 3 points in methodology in choosing the submitted structure.

LAIll downloaded server models from CASP7 were rebuilt using homology
modeling software, FAMS (3).

2.Many servers that have been registered in the sight of CASP7 had submitted 5
structures. In the process of one structure selection from these 5 structuresin
each server, the series of the threading software, named “CIRCLE” which was
developed in our research group was used. This program separately participates
as aserver in CASP7. In the process for selection of best one in 5 structure in
each team, “fams_ace” used the “CIRCLE".

3.After step 1 mentioned above, best structure are selected using the consensus
opinion method. It is clone software of 3D-JULY made by us.

Self-assessment of GDT_TS



Especially many servers refer thethird point mentioned above, then the
submitted structure of “fams_ace” tends to be similar to structures submitted by
many Servers.

Now (in 2006/10/03) experimental structures of 80 targets are released. For
predicting the target difficulty, we used SVM program using both of PSI-
BLAST(1) and SPARKS(2) score and homology percent value. The training
data set was CASP6 targets. The accuracy of this prediction was 85% in
CASPS6 targets. Each target sequence is not divided to domain regions. Total
GDT_TS of the 52 targets are 3795.93 by fams_ace. In CASP7 68 severs only
Zhang-Server gives the higher point than fams ace. Accordingly, fams ace is
able to become atop level server.

GDT_TS

Rank Score Server name
1 4908.19 Zhang-Server
2 4815.21 fams ace

3 4617.83  Pmodeller6

4 4604.31  HHpred2

5 4574.06 CIRCLE

6 4561.34 ROBETTA

7 4539.88  Pconst

8 4539.05 HHpred3

GDT_TSCM 52 targets GDT_TSFR 28 targets

Rank Score Server name Rank Score Server name

1 3812.47 Zhang-Server 1 1095.72 Zhang-Server

2 3798.93 fams_ace 2 1067.11 Pmodeller6

3 3657.96 CIRCLE 3 1019.28 fams ace

4 3649.04 UNI-EID_expm 4 97719 MetaTasser

1. Altschul SF., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W.

and Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs Nucleic Acids Res/Nucleic
Acids Res 25, 3389-3402.
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2. Zhou H., Zhou Y. (2004) Single-body residue-level knowledge-based
energy score combined with sequence-profile and secondary structure
information for fold recognition.Proteins.1;55(4):1005-13.

3. Ogata K. and Umeyama H. (2000) An automatic homology modeling
method consisting of database searches and simulated annealing J Mol
Graph Model/J Mol Graph Model 18, 258-272, 305-256.

FAM SD - 500 models for 100 3D targets

Homology modeling server providing

side chain models with high accuracy

K. Kanou?, G. Terashi!, M. lwadate!, Akio Hosoi', Kazuhiro
Ohta', D. Takaya', M. Takeda-Shitaka® and H. Umeyama®

! Department of Biomolecular Design
School of Pharmaceutical Sciences, Kitasato University
kanouk@pharm.kitasato-u.ac.jp

FAMSD is a homology modeling server constructing high accuracy side chain
models. In the previous CASP experience (CASP6), FAMSD server used only
the alignment score and hadn't used the structure score to select the best model.
As a result FAMSD had not selected the good side chain models in the
CM/easy category. Sowe have reconstructed FAMSD server focused on
selecting good side chain models for CASP7 using both alignment score and
structure score.

Prediction target difficulty

For predicting the target difficulty, we used SVM program. The training data
set was CASP6 targets. The accuracy of this prediction was 85% in CASP6
targets. This predicted difficulty was used in the next evaluation step.|f
difficulty of target sequence is ‘CM’, the model was constructed according to
the following scheme, else the method was same as our CIRCLE server except
for no use of the outside server for our research laboratory.

Method description for ‘CM’ target

1. Selectingalignments: The alignmentselection for constructing highly
accurate backbone models using homology modelingis as follows. 8 kinds of
methods, BLAST [1], PSI-BLAST, PSF-BLAST, RPS-BLAST, IMPALA,
FASTA, Pfam and sparks2 [2] were executed for each amino acid sequence of
query proteins.



PSF-BLAST is PSI-BLAST whose sequence profile of PSSM construction
process is revised, and the selection criterion is E-value<=0.001 from template
PDB sequence on PSI-BLAST search.

Forselecting the alignment candidatesin 7 kinds of alignment methods
(excludesparks?2), the score-function that was constructed by model length,
homology% and degree of secondary structure agreement between PSI-PRED
and STRIDE was defined:

score= f (k;,Hom, Len, SS)

Len isresidue length of model protein. HOMindicate homology % value, the

ratio between the number of match residuesand Len. SSis so caled Q3
value, degree of secondary structure agreement between PSI-PRED and

STRIDE. K are coefficients of each alignment method.

Top 5 alignments ranked by this score and the first scored alignment of sparks2
were selected for homology modeling. Then the each number of selecting
alignments (i.e. “top 5" and “first scored”) was optimized using CASP6 server
models as a training set.

2. Homology Modeling and Refinement models Models were constructed
using selected alignments by homology modeling software FAMS (full
automatic modeling system) [3]. After homology modeling, both of Energy
Minimization and Molecular Dynamics are applied for refinement models.
Especially the hydrogen bonds and collision of model are refined.

3. Selecting good side chain models: All constructed models were evaluated
by new 3D1D score ‘CIRCLE-10HB’. This score considered hydrogen bonds
on the defining ‘environment’ of each amino acid residues. And this score was
optimized for selecting high accurate side chain models using CASP6 server
models as a training set.

Results

Now (in 2006/10/03) experimental structures of 80 targets are released. We
assessed CA and side chain torsion angles of all server models (TS1).

In the evaluation of CA (GDT_TS) FAMSD ranked 9 of 68 servers (all 80
targets). And in the evaluation of x1 angle (“correct” side chain residue is
within3.5 in the MaxSub superposition and within 40° fromnative
structure) this FAMSD team ranked 3 following ROBETTA, Pmodeller6.
Furthermore in the evaluation of correct side chain number within 2.0  and
1.0 in the MaxSub superposition, this team ranked 2 and 2, respectively.

1. Altschul S.IF., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W.
andLipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new
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generation of protein database search programs Nucleic Acids Res/Nucleic
Acids Res 25, 3389-3402.

2. Zhou H., Zhou Y. (2004) Single-body residue-level knowledge-based
energy score combined with sequence-profile and secondary structure
information for fold recognition.Proteins.1;55(4):1005-13.

3. Ogata K. and Umeyama H. (2000) An automatic homology modeling
method consisting of database searches and simulated annealing J Mol
Graph Model/J Mol Graph Model 18, 258-272, 305-256.

fams-multi- 509 models for 100 3D/9 TR targets

Homology modeling meta-server using multiple reference
proteins

K. Kanou!, G. Terashi!, M. lwadate', Akio Hosoil, D. Takayal,
Kazuhiro Ohtat, M. Takeda- Shitaka' and H. Umeyama®
! . Department of Biomolecular Design

School of Pharmaceutical Sciences, Kitasato University
kanouk@phar m.kitasato-u.ac.jp

Fams-multi is a homology modeling metarserver using all submitted models
which were constructed by all the server teams in CASP7. Such submitted
models were used to generate the better alignments and rebuilt models by
automatic homology modeling software ‘FAMS-multi’ which is multiple
reference-proteins version of FAMS [1]. This server aimed to build models
with high quality loop and side chain. In the following, we describe the scheme.

Generating ‘best’ pairwise alignments

All server models (TS1-TS5) were refined by FAMS for the purpose of
removing collision, and these models were evaluated and ranked by the same
method as our CIRCLE server. Then top 5 models (in excluding models which
hasn’t described reference PDB code on the ‘PARENT’ record) wereselected
to generate alignments. The alignment was generated by structural alignment
between the model and ‘parent’ PDB using CE program [2].

Constructing models by FAM S-multi

First some reference proteins were chosen based on the certain criteria
concerning sequence and structural similarity with ‘parent’” PDB. Maximum
number of the reference proteins is 30. Next, a multiple structural alignment
based on the superposition of CA atoms was performed among the reference
proteins. For this alignment, thetarget sequence was put on by sequence
aignment generated by CE. This alignment was evaluated to determine if
inserted gaps were concentrated in loop and variable regions (VRS), which are



defined by residues having the distance between CA atoms greater than 1.0 A,
Thus, we get a result of multiple alignment between a target and reference
proteins.

Using this alignment tertiary structure was constructed with mainly next three
steps, CA construction, main-chain construction, side-chain construction. In the
each step optimization by the simulated annealing method was executed.

CA construction step: For the initiadl CA coordinates, first, the weighted average
of CA coordinates and the average distancewere obtained from pairwase
structural alignment based on the superposition of CA atoms between the target
and reference proteins. Next, simulated annealing optimized the coordinates of
CA atoms.

Main-chain construction step: Initia coordinates of main-chain atoms were
constructed in the same method as FAMS. In the simulated annealing step,
structural information for potential function, which consists of (1) the weighted
average of the coordinates of main-chain atoms, (2) the average of distance, and
(3) the pair of N and O atoms forming the hydrogen bond, was used.

Side-chain construction step: For the generated main-chain atoms, conserved
side-chain torsion angles were obtained from homologous proteins. The
coordinates of side-chain atoms consisting of conserved side-chaintorsion
angles were placed in relation to the fixed main-chain atoms. The structural
information, the weighted average of the coordinates, average of distance, and
the pair of N and O atoms forming the hydrogen bond, was derived from
homologous proteins, and this information was used in optimization procedure.

Evaluatingmodels

5 models constructed using FAMS-multi were selected in the same method as
our CIRCLE server.

Refinement experiment

Fams-multi had participated in refinement experiment using Energy minimize
& Molecular dynamics. Refined models are correctly revised for hydrogen
bonds, main-chain torsion angles, side-chain torsion angles and the decreasing
collision between hydrophobic atoms.

Results

The model 2 of fams-multi on T0288 was adopted as the initial strucutre of
refinement experiment. This model scored second according to the GDT_TS
score. Comparing with all the server teams (TS1) in 2006/10/03, in the
GDT_TS estimation and x1 estimation this meta-server fams-multi team ranked
2 and 2, respectively. In the case of CM (see FAMSD abstract) this team ranked
2 and 1, respectively.

1. Ogata K. and Umeyama H. (2000) An automatic homology modeling
method consisting of database searches and simulated annealing JMol
Graph Model/J Mol Graph Model 18, 258-272, 305-256.

2. ShindyalovI.N., Bourne P.E. (1998) Protein structure alignment by
incremental combinatorial extension (CE) of the optimal path. Protein
Engineering 11(9) 739-747.

Felg - 469 modelsfor 99 3D targets

Sampling and Scoring Strategies in an Iterated Protocol for
Protein Structure Prediction

K atarzynaMaksimiak'*, Andrew Stumpff-Kane! and
Michael Feig'?
'Department of Biochemistry and Molecular Biology
%Dept. of Chemistry, Michigan State University, East Lansing, MI 48824; USA
feig@msu.edu

We have developed an iterated protocol for protein structure prediction. In this
protocol, we seek to build homology models by, first, generating a diverseset
of potential alignments for each target; creating models from each alignment
using loop modeling to fill gaps as necessary; and evaluating the models using
various scoring functions combined with statistical techniques to reduce the
effect of noise. In appropriate cases we seek to refine the models further,
employing iterative rounds of lattice modeling or, in cases of high homology,
normal mode-based sampling to generate additional sample conformations. In
particular, initial templates were obtainedusing both sequence- and fold-
recognition methods; then, for each template, an ensemble of “suboptimal”
alignments was generated using PROBA. To score the models we used a
combination of the knowledge-based scoring functions DFIRE?, Verify3D?,
RAPDF® and Prosall*; together with clustering and a correlation-based method
for reducing noise®. In the refinement stage, we employed MONSSTER® to
generate samples for medium-homology templates and normal-mode-based
sampling, in connection with DFIRE, for high-homology templates.

1. ZhangC, Liu S, Zhu Q.Q. & Zhou Y.Q. (2005) A knowledge-based
energy function fro protein-ligand, protein-protein, and protein-DNA
complexes, J. Med. Chem. 48, 2325-2335.

2. Luthy R, Bowie JU. & Eisenberg D. (1992) Assessment of protein
models with three-dimensional profiles, Nature 356 83—85.

3. Samudrala R. & Moult J. (1998) An dl-atom distance-dependent
conditional probability discriminatory function for protenstructure
prediction, J. Mol. Biol 275, 895-916.
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4.  Sippl M.J. (1993) Recognition of errors in three-dimensional structures of
proteins, Proteins 17, 355-362.

5.  Stumpff-Kane A. & Feig M. (2006) A correlation-based method for the
enhancement of scoring functions on funnel-shaped energy landscapes
Proteins 63, 155-164.

6. Skolnick J, Kolinski A. & Ortiz A.R. (1997) MONSSTER: A method for
folding globular proteins with a smal number of distance restraints,
J. Mal. Biol 265, 217-41.

fleil - 311 models for 63 3D targets

Comparative modeling with all-atom refinement using molecular
dynamics simulation

S. Fuchigami?, T. Amemiya’, S. Oomori* & R. Koike'?

1. International Graduate School of Arts and Sciences, Yokohama City
University, 2- Global Scientific Information and Computing Center, Tokyo
Institute of Technology
sotaro@tsurumi.yokohama-cu.ac.jp

We have focused on tertiary structure prediction of target proteins categorized
into comparative modeling. Our method starts from conventional approaches
consisting of template selection, sequence alignment and loop modeling. For
the constructed models, we further performed an all-atom refinement using
energy minimization and molecular dynamics (MD) simulation in explicit
solvent.

Template structures for modeling of target sequences were selected by PSI-
BLAST! searches against the PDB database using position-specificscoring
matrices generated by PSI-BLAST with 10 iterations against the nr sequence
database. For some targets, we also used information of secondary structure
prediction performed by PSIPRED? to choose templates. Target sequences were
digned to the templates using PSI-BLAST and/or MODELLER®. Missing
loops of target structures were modeled by MODELLER.

As pointed out by Misura et al.*, models produced with MODELLER generally
contain atomic clashes, which are detected by using the program Probe®. To
remove the atomic clashes in the models, we carried out energy minimization
by steepest descents using theMD program system, MARBLES, withthe
CHARMM22 force field for proteins’and the CMAP correction for peptide
backbone ¢,  dihedral crossterms®. Consequently the clashes were
considerably reduced to the same extent or less than observed in native crystal
structures.
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In order to sample possible conformations of the target proteins at atomistic
level, we performed MD simulation in NPT ensemble with explicit water,
started with the energy-minimized structures, using the MARBLE® with the
same CHARMM force filed parameters as mentioned above. The initial
structures were dissolved in water molecules with the addition of counter ions
to neutralize the net charges of the system. The temperature and pressure of the
system were set at 300 K and 1 atom, respectively. Water molecules and
hydrogen-containing group (e.g. CHs, NH,, OH, etc.) were treated as rigid
bodies (partial rigid-body method), enabling to use a 2.0 fs time step.
Coulombic interactions were evaluated using the particle-mesh Ewald method”.
For some targets, additional refinements were carried out using simulated
annealing to relax the sampled conformations of the target, especialy
fluctuatingloops

Submitted models were chosen from a set of models generated using different
templates and alignments based on complete-linkage clustering, ranking of radii
of gyration, or visual inspection.

1. Altschul SIF., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W.
& Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucl. Acids Res. 25, 3389-3402.

2. Jones D.T. (1999) Protein secondary structure prediction based on
position-specific scoring matrices. J. Mal. Biol. 292, 195-202.

3. Sdi A. & Blundell T.L. (1993) Comparative protein modelling by
satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815.

4. Misura K.M.S,, ChivianD., Rohl C.A., Kim D.E. & Baker D. (2006)
Physically realistic homology models built with ROSETTA can be more
accurate than their templates. Proc. Natl Acad. Sci. 103, 5361-5366.

5. Word JM,, Lovell S.C., LaBean T.H., Taylor H.C., Zdis M.E., Presley
B.K.,Richardson JS. & RichardsonD.C. (1999) Visuadizing and
Quantifying Molecular Goodness-of-Fit: Small-probe Contact Dots with
Explicit Hydrogen Atoms. J. Mal. Biol. 285, 1709-1731.

6. Ikeguchi M. (2004) Partial Rigid-Body Dynamicsin NPT, NPAT and NPT
Ensembles for Proteins and Membranes. J. Comput. Chem. 25, 529-541.

7. MacKerell A.D., Jr.,Brooks B., BrooksC.L., IlI, Nilsson L., Roux B.,
Won Y. & Karplus M. (1998) CHARMM: The Energy Function and Its
Parameterization with an Overview of the Program. in The Encyclopedia
of Computational Chemistry edited by Schleyer,P.v.R. et al., (John Wiley
& Sons, Chichester, 1998), Vol. 1, pp. 271-277.

8. MacKerell A.D., J. (2004) Empirical Force Fields for Biological
Macromolecules: Overview and Issues. J. Comput. Chem. 25, 1584-1606.

9. Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H. & Pedersen
L.G. (1995) A smooth particle mesh Ewald method. J. Chem. Phys. 103,
8577-8593.



Floudas - 150 modelsfor 30 3D/1 TR targets

First Principles Protein Structure Prediction

SRMcAllister!, R. Rgjgaria® and C.A. Floudas'
L. Princeton University
floudas@titan.princeton.edu

We present the development and application of ASTRO-FOLD, a novel and
complete approach for the first principles prediction of protein structures given
only the amino acid sequences of the proteins’. The approach exhibits many
novel components and the merits of its application have been examined for a
suite of protein systems, including targets from severa CASPexperiments.
The main thrusts of this approach area-helical prediction through detailed
energy caculations, a global optimization formulation for thep-sheet
prediction, the derivation of secondary structure restraints and loop modeling,
and the application of a hybrid global optimization algorithm to tetiary
structure prediction.

The first stage involves the identification of helical segments and is
accomplished by first partitioning the amino acid sequence into overlapping
oligopeptides®. These oligopeptides are modeled at the atomistic level using
the ECEPP/3 force field, where an ensemble of low energy conformations is
generated. Given this ensemble, the free energies are calculated, including
entropic, cavity formation, polarization and ionization contributions for each
oligopeptide. The helical propensity for each residue is then identified using
equilibrium occupational probabilities of helical clusters. However, due to the
time constraints of predictions, information from the PSI-PRED server has been
used as the base prediction, supplemented by this first stage approach.

The second stage focuses on the prediction of B-sheet and disulfide bridge
topology by first postulating ap-strand superstructure that encompasses all
alternativebeta-strandarrangements®. This B-strand superstructure is used to
model the hydrophobic driving force important for B-structureformation
through an integer linear optimization model originally developed in the area of
process synthesis of chemical systems. The resulting optimization model is
solved to maximize the hydrophobic contact energy, thus providing a rank
ordered list of preferred hydrophobic residue contacts, beta strand topologies
and disulfide bridge connectivities. Due to time constraints, only a few

predicted -sheet topologies were selected for further study.

The third stage involves the derivation of restraints based on helical and beta
sheet predictions in the form of dihedral angle and atomic distance restraints to

enforce the predicted secondary and tertiary arrangements. For entirely a-
helical proteins, a novel optimization framework has been used to predict
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topological contacts and generate interhelical distance restraints between
hydrophobicresidues®. Additional restraints are determined for the intervening
loop residues connecting helical and strand regions through dihedral angle
sampling and a novel clustering approach®.

The fourth and final stage of the approach involves the prediction of the tertiary
structure of the full protein sequence. The problem formulation, which relies
on dihedral angle and atomic distance restraints introduced from the previous
stages as well as detailed atomistic energy modeling, represents a nonconvex
constrained global optimization problem, which is solved through the
combination of a deterministically based global optimization approach, the
oBB, and torsion angle dynamics. The use of theaBB global optimization
algorithm guarantees convergence to the global minimum solution by a
convergence of upper and lower bounds on the potential energy minimum. By
applying torsion angle dynamics (TAD) as an initialization step and a stochastic
global optimization method such as conformation space annealing (CSA), the
difficulty of converging to the global minimum is significantly reduced by the
quick determination of low energy conformations®. This hybrid approach was
run only for a limited time due to the deadlines imposed.

1. Klepeis JL. & Floudas C.A. (2003) A combinatorial and global
optimization framework for ab initio prediction of three-dimensional
structures of proteins from the amino acid sequence. Biophys. J. 85, 2119-
2146.

2. Klepeis JL. & Floudas C.A.(2002) Ab initio prediction of helical
segments in polypeptides. J. Comput. Chem. 23, 245-266.

3. Klepeis JL. & Floudas C.A. (2003) Prediction of beta-sheet topology and
disulfide bridges in polypeptides. J. Comput. Chem. 24, 191-208.

4. McAllister SRR., Mickus B.E., KlepeisJL. & Floudas C.A.(2006) A
novel approach for alpha-helical topology prediction in globular proteins:
generation of interhelical restraints. Prot. Struct. Funct. Bioinf., accepted
for publication.

5. Ménnigmann M. & Floudas C.A. (2005) Protein loop structure prediction
with flexible stem geometries. Prot. Struct. Funct. Bioinf. 61, 748-762.

6. KlepeisJL, PiglaM.T. & Floudas C.A. (2003) Hybrid global optimization
algorithms for protein structure prediction: alternating hybrids. Biophys. J.
84, 869-882.



FOL Dpro (server, domain) - 600 models for 100 3D/
100 DP targets

Domain Prediction Using FOLDpro and DOMpro

Jianlin Cheng, Mike Sweredoski, and Pierre Baldi
Ingtitute for Genomics and Bioinformatics, School of Information and
Computer Science
University of California Irvine, CA 92697

In CASP7, we combine fold recognition approach [1] and abinitio approach
[3] together to predict protein domains. For a query protein, our domain
prediction server (FOLDpro) first ranks templates by using support vector
machine (SVM) to integrate alignment and structural features of query-template
pairs [1]. If the top template is significant enough (SVM score >-0.5),
FOLDpro generates a 3D model for the query protein from the template and
uses PDP [2] to parse the model into domains. If domains generated by PDP do
not cover the whole query sequence, FOLDpro uses a post processing step to
assign uncovered regions to adjacent domains. If no significant template is
found, FOLDpro invokesDOMpro [3], anabinitio domain predictor using
neural networks, profiles, and structural features, to predict domains.

1. ChengJ,and Baldi P. (2006) A Machine Learning Information Retrieval
Approach to Protein Fold Recognition. Bioinformatics, vol. 22, no. 12, pp.
1456-1463.

2. Alexandrov N. and Shindyalov |. (2003) PDP: protein domain parser.
Bioinformatics, vol. 19, pp. 429-430.

3. Cheng J.,,Sweredoski M., and Baldi P. (2006) DOMpro: Protein Domain
Prediction Using Profiles, Secondary Structure, Relative Solvent
Accessibility, and Recursive Neura Networks. Data Mining and
Knowledge Discovery, val. 13, no. 1, pp. 1-10.
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FORTEL - 499 modelsfor 100 3D targets

FORTEZ1L: A Profile-Profile Comparison Method for Fold
Recognition

K. Tomii
Computational Biology Research Center, National Institute of Advanced
Industrial Science and Technology, 2-42 Aomi, Koto-ku, Tokyo, Japan
k-tomii @aist.go.jp

We have built automated fold recognition server, FORTEL, based on a profile-
profile comparison method since the CASP5 experiment. FORTE is an
abbreviation for "FOId Recognition TEchnique’. Theserver! is publicly
available for academic use. This approach has also been applied to protein
structure prediction of the CASP7 targets.

The FORTEL system uses position-specific score matrices (PSSMs) of both the
guery and templates as profiles. It identifies proper templates and produces
profile-profile alignments of a target and temglates. To caculate PSSMs of
both the query and templates, PSI-BLAST® iterations are performed a
maximum of 20 times with the NCBI non-redundant database. The amino acid
sequences of templates are derived from the ASTRAL® 40% identity list and
selected PDB* entries that are not registered in the SCOP database.
Furthermore, the full-length sequences, which are divided into structural
domains in SCOP, are also prepared.

The standard dynamic programming algorithm is used with gap penalties that
are optimized by ourexperiments to align two PSSMs. The dynamic
programming algorithm requires a matrix containing similarity scores for the
pairs of positions in the PSSMs that are to be compared. The similarity score
for each pair of PSSM columns is defined as Pearson’s correlation coefficient
of them. We use the globa alignment algorithm with no penalty for the terminal
gaps to obtain an optimal sequencestructurealignment. The statistical
significance of each alignment score is estimated by calculating the Z-scores
with a simple log-lengthcorrection. Candidates of sequencestructure
alignments were sorted by their Z-scores. We submitted prediction results in the
AL format.

1. Tomii K., & Akiyama Y. (2004) FORTE: a profile-profilecomparison
tool for protein fold recognition. Bioinformatics 20, 594-595.

2. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W.,
& Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.



3. Chandonia JM., Hon G., Waker N.S., Lo Conte L., Koehl P., Levitt M. &
Brenner S.E. (2004) The ASTRAL compendium in 2004. Nucleic Acids
Res. 32, D189-D192.

4. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H.,
Shindyalov I.N. & BourneP.E. (2000) The Protein Data Bank. Nucleic
Acids Res. 28, 235-242.

5. Andreeva A., HoworthD., Brenner S.E., Hubbard T.J.P.,Chothia C. &
Murzin A.G. (2004) SCOP database in 2004: refinements integrate
structure and segquence family data. Nucleic Acids Res. 32, D226-D229.

FORTE2Z - 499 modelsfor 100 3D targets

FORTE2: Automated Fold Recognition Server with Enhanced
Profile Library

K. Tomii

Computational Biology Research Center, National Institute of Advanced
Industrial Science and Technology, 2-42 Aomi, Koto-ku, Tokyo, Japan
k-tomii @aist.go.jp

To elucidate effects including very distantly related sequences into profilesfor
alignment accuracy, as well as sensitivity and selectivity of fold recognition, we
have constructed our new server: FORTE2 (FORTE is an abbreviation for
"FOld Recognition TEchnique"). Its system uses the same protocol as
FORTE1". It has enriched profiles by incorporating highly diverged sequences
detected by FORTEL into the sets of sequences that are gathered by PSI-
BLAST?. We have found that FORTE2 can detect relationships between
proteins that are different from those detected by FORTEL through the CASP6
experiments®.

Here is the method of profile construction for FORTE2. First, protein domain
sequences were derived from a 40% identity list of SCOP*. Their profiles were
constructed using the FORTEL procedure. Those sequences and profiles were
prepared as a representative data set. Through an dl-against-all search of this
data set by FORTE1, we identified the true positive pairs of proteins with Z-
score, ranging from 4 to 10. In this case, we determined true positive pairs as
those proteins that are assigned the same fold in the SCOP classification. We
constructed new profiles using alignments of those pairs for FORTE2. Those
alignments, provided by FORTEL, were used as seed alignments for profile
construction by PSI-BLAST iterations with the NCBI non-redundant database.

The FORTE2 system also uses position-specific score matrices (PSSMs) of
both the query and templates to predict the structure of the query sequence, as
FORTELX does. The enhanced profile library was updated. Procedures to obtain
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an optimal sequence-structure alignment and estimate its statistical significance
are the same as those of FORTEL Candidates of the sequencestructure
alignments were sorted by their Z-scores. Subsequently, we submitted
prediction resultsin the AL format.

1. Tomii K., & AkiyamaY. (2004) FORTE: a profile-profile comparison tool
for protein fold recognition. Bioinformatics 20, 594-595.

2. Tomii K., HirokawaT. & Motono C. (2005) Protein structure prediction
using various profile libraries and 3D verification. Proteins 61, 114-121.

3. Altschul SF., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W.
& Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

4. Murzin A., Brenner S.E., Hubbard T. & Chothia C. (1995) SCOP: a
structural classification of proteins database for the investigation of
seguences and structures. J. Mol. Biol. 247, 536-540.

FPSOLVER_SERVER- 436 modelsfor 96 3D targets

Ab-initio Protein Structure Prediction Using Backtrack Search

Miguel Bugalho® and Arlindo L. Oliveirat
L INESC-ID/IST Lisboa Portugal
mmfb@al gos.inesc-id.pr

In this approach we used a search based method for the ab-initio prediction of
tertiary protein structure. We worked with a fixed set of Phi/Psi dihedral angles
for each amino acid in the protein chain. The exact set of values used for each
dihedral angle depends of the type of amino acid.

The amber99' Van der Walls energy is used to detect and avoid clashes in the
structure and the radius of gyration isused to bound the search, since one is
aiming for a compact structure. The side chains are set using a rotamer library?.

Our search method is guided by a statistical energy function generated from the
proteins in the Whatif® database (2004). Instead of using the function for
evaluating each pair of dihedral angles, we generate several fragments of N
amino acids and then use the function to choose one of those fragments (the
fragment technique is successfully used by many other methods, like, for
example, theROSETTA* method). This technique avoids the problem of not
having enough information to make a decision, as it would have happened if we
position one amino acid at atime.

The proposed approach is not guaranteed to find a structure equal or arbitrarily
near the target protein, but a nearby solution (lower than 3 angstroms of



RMSD) is achievable in many cases. Since the solution can than be refined to a
nearer solution by other techniques, the problem is then to find a good search
strategy in the exponentially large search space.

Some search approaches have been described in the literature, normally to
sample the conformational space for small proteins or parts of proteins. These
approaches commonly use methods like filtering, perform sorting using scoring
functions, or use clustering for choosing some of the conformations in the
sample. The proposed approach tries to use these techniques to guide the search
and create near native conformations, instead of just conformational samples.

Some of the most successful algorithms for ab-initio prediction use simulated
annealing for searching chain conformations. This simple method has obtained
good results in many minimization problems.

Although the search based approach isper se also a simple method, the search
method used, the heuristics, the pruning strategies and all other techniques that
can be used in conjunction with the search provide much more room for
adapting the method to the protein structure prediction problem. This type of
adaptation is normally made in the simulated annealing method through the
modification of the function to minimize. Unfortunately, the problem of finding
agood heuristic related with the energy that can be use to effectively guide the
search is still far from being solved.

Theproposed approach uses a technique that is not so heavily dependent on the
fitness function, and can therefore accommodate other information. Preliminary
results show that this approach is able to generate good solutions for very small
proteins, but that the search techniques still need improvements to make the
method applicable to larger proteins.

1. Cornell D., Cieplak P., Bayly I., Gould I.R., Merz K.M., Ferguson D.M.,
Spellmeyer D.C., Fox T., Cadwel JW. and Kollman P.A. (1995) A
Second Generation Force Field for the Simulation of Proteins, Nucleic
Acids and Organic Molecules. J. of the American Chemical Society 117,
5179-5197.

2. Dunbrack R.L., J. and Karplus M. (1993) Backbone-dependent Rotamer
Library for Proteins. Application to Side-chain prediction. J. Mol. Biol.
230, 543-574.

3. Vriend G. (1990) WHAT IF: A molecular modeling and drug design
program., J. Mol. Graph. 8, 52-56.

4. SimonsK.T., Kooperberg C., Huang E., Baker D. (1997) Assembly of
protein tertiary structures from fragments with similar local sequences
using simulate anealing and Bayesian scoring functions. J Mol Biol 268,
209-25.
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FUNCTION - 500 models for 100 3D targets

Building many models using FAMS and selecting model with
Special scoring Function

Mitsuo Iwadate, Kazuhiko Kanou, Genki Terashi, Daisuke
Takaya, Kazuhiro Ohta, Akio Hosoi, Mayuko Takeda- Shitaka and
Hideaki Umeyama
Department of Biomolecular Design
School of Pharmaceutical Sciences, Kitasato University
iwadatem@pharm.kitasato-u.ac.jp

FUNCTION is a homology-modeling server constructing high accuracy side
chainmodels. In the previous CASP experience (CASP5 in 2002), FAMSD
server used both of the alignment score and the structure score to select the best
model. Asaresult FAMSD in CASP5 had selected the good side chain models
in the CM/easy category in CAFASP3 section. Sowe have reconstructed
FAMSD server focused on selecting good side chain models for CASP7 using
both alignment score and the same structure score. Additionally in CASP6
SPARKS2[2] calculates good structure, and then the software was also used.

Prediction target difficulty

For predicting the target difficulty, we used SVM  program
(http://www.smartlab.dibe.unige.it/). The training data set was CASP6 targets.
The accuracy of this prediction was 85% in CASP6 targets. This predicted
difficulty was used in the next process.

Method
Alignments:

The alignmentselection for constructing highly accurate backbone models
using homology modeling is as follows. 8 kinds of methods, BLAST [1], PSI-
BLAST, PSF-BLAST, RPS-BLAST, IMPALA, FASTA, Pfam and sparks2 [2]
were executed for each amino acid sequence of query proteins.

PSF-BLAST is PSI-BLAST whose sequence profile of PSSM construction
process isrevised, and the selection criterion is E-value<=0.001 from template
PDB sequence on PSI-BLAST search.

Modeling:
For al the alignments of E-value<=0.1 were built structural models.

Top 5 alignments ranked by this scoring function and the first scored alignment
of sparks2 were selected for homology modeling.

Model selection


http://www.smartlab.dibe.unige.it/

For selecting the model candidatesin 7kinds of alignment methods(in
excluding sparks2), the score-function that was constructed by model length, e
value and degree of secondary structure agreement between PSI-PRED and
STRIDE was defined:

score = f (e, Len, SS,enesosui)

Len is residue length of model protein. €indicate e value of BLAST or

FASTA, the ratio between the number of match residues and Len. SSis so
called Q3 value, degree of secondary structure agreement between PSI-PRED
and STRIDE. enesosui is degree of hydrophobic interaction.

Results

Now (in 2006/10/03) experimental structures of 80 targets are released. We
assessed CA and side chain torsion angles of all server models (TS1).

In the evaluation of CA (GDT_TS) FUNCTION ranked 21 of 68 servers (all 80
targets). And in the evaluation of x1 angle (“correct” side chain residue is
within 3.5 in the MaxSub superposition andwithin40° fromnative
structure) this FUNCTION team ranked 8 following ROBETTA, Pmodeller6,
FAMSD, Pcons6, FAMS, Zhang-Server, CIRCLE. Furthermore in the
evaluation of correct side chain numberwithin 2.0 in the MaxSub
superposition, this team ranked 6 following ROBETTA, FAMSD, Pmodeller6,
FAMS, Pcons6.

1. Altschul SF., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W.
and Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs Nucleic Acids Res/Nucleic
Acids Res 25, 3389-3402.

2. Zhou H., Zhou Y. (2004) Single-body residue-level knowledge-based
energy score combined with sequence-profile and secondary structure
information for fold recognition.Proteins.1;55(4):1005-13.

3. Ogata K. and Umeyama H. (2000) An automatic homology modeling
method consisting of database searches and simulated annealing J Mol
Graph Model/J Mol Graph Model 18, 258-272, 305-256.
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GeneSilico - 616 models for 96 3D/ 92 DP/ 91 QA targets

Identification and refinement of potential errors in protein
structures.

M. Boniecki®, M. Pawlowski'?, M.J. Ggjda'®, M.J. Pietal’?,
A. Kaminski'?, A. Obarska'?, M. Fijalkowski*, M. Feder?,
G. Papaj?, Tkaczuk K.L.** Lopez Munoz L.°, J. Orlowski,
M.A. Kurowskit, JM. Sasint, JM. Bujnicki*", and J. Kosinski*
! International Institute of Molecular and Cell Biology, Trojdena 4, 02-109
War saw, Poland
2 Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106
War saw, Poland
% Faculty of Mathematics and Information Science, Warsaw University of
Technology Warsaw, Poland
4 Institute of Technical Biochemistry, Technical University of Lodz,
Sefanowskiego 4/10, 90-924 Lodz, Poland
® |CM, Warsaw University, Pawinskiego 5A, 02-106 Warsaw, Poland. *
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In CASP7, we used the strategy developed in the course of CASP5 and CASPS,
with several important modifications and the shift of emphasis from building of
models to model quality assessment and refinement.

First, we upgraded some of our old tools. We developed a new version of the
GeneSilicometa-server 1, which now contains multiple methods for protein
domain identification, and residue-level prediction of disorder, secondary
structure and solvent accessibility. We have also developed a set of new tools
forvisualization and clustering of protein contact maps (e.g. PROTMAP2D,
M.J.P., Irina Tuszynska and J.M.B., manuscript in preparation), which have
been used to identify independently folded protein domains. We incorporated
new fold-recognition algorithms into the metaserver, in particular the
HHSearch method  for profile-profile alignments and a number of tools for
post-processing of crude 3D models, including the creation of hybrid models
according to the ‘ Frankenstein’s monster’ philosophy * % °

Second, we developed a new ‘metaserver’ for model quality assessment
(Meta-MQAP), which uses severa primary MQAPs to derive a score that
represents a predicted deviation (in Angstroms) of individual residues in the
model with respect to their counterparts in the (unknown) native structure.
According to our benchmarks, MetasMQAP is significantly better from all
primary methods (M.P., Ryszard Matlak, and J.M.B., in preparation).

Third, we developed a system for data management caled UniMod, which we
use as a framework with a common WWW interface to run different in-house
andthird-party methods using common formats (an example is the possibility


mailto:iamb@genesilico.pl

to run MODELLER with a project file generated in SwissPDBViewer, with
additional restraints e.g. on predicted secondary structure), to store the results in
a database and to pass the files between different programs. In particular,
UniMod has been used to generate models and to score them according to
MetaM QAP.

The evaluated models obtained from the meta-server and the UniMod pipeline
were used as a source of spatial restraints for simulations, in a similar manner
to the strategy used by the Kolinski-Bujnicki group in CASP6, but with a few
important differences. In particular, for de-novo folding based on restraints we
used a real-space method REFINER © with a new potential of mean force. In
confident models (those based on highly similar templates or with very high
averageMetaM QAP scores), we refined only the regions with very poor scores
or high diversity between different model variants. The REFINER and
MetaM QAP scores were used as the primary criteria for selection of the final
models. For difficult targets we generated additiona de-novo models using
REFINER ¢ and ROSETTA ' and clustered them together with the fold-
recognition models to identify the most frequently occurringconformations
with low energy. Members of the selected clusters were then used as a source
of spatial restraints (derived from residues with good MetaM QAP scores) to
generate a representative structure with REFINER. Because REFINER uses a
reduced representation and the reconstructed full-atom models sometimes
exhibit minor stereochemical errors, the fina models were ‘idealized” with
MODELLER .

1. Kurowski M.A. and Bujnicki JM. (2003) GeneSilico protein structure
prediction meta-server, Nucleic Acids Res., 31, 3305 - 3307.

2. Sbding J. (2005) Protein homology detection by HMM—-HMM comparison
Bioinformatics., 21, 951 - 960.

3. Kosinski J, Cymerman |.A., Feder M., Kurowski M.A., Sasin JM.,
Bujnicki JM. (2003) A ldquoFRankenstein's monsterrdquo approach to
comparative modeling:Merging the finest fragments of Fold-Recognition
models and iterativemodel refinement aided by 3D structure evaluation,
Proteins: Structure, Function, and Genetics., 53, 369-379.

4. Kosinski J., Gada M.J.,, Cymerman I.A., Kurowski M.A., Pawlowski M.,
Boniecki M., ObarskaA., Papgj G., Sroczynska-Obuchowicz P., Tkaczuk
K.L., Sniezynska P., Sasin JM, Augustyn A., Bujnicki JM., Feder M.
(2005) FRankenstein becomes a cyborg: The automatic recombination and
realignment of fold recognition models in CASP6 Proteins: Structure,
Function, and Bioinformatics, 61, S7, 106-113.

5. Kolinski A., Bujnicki J.M. (2005) Generalized protein structure prediction
based on combination of fold-recognition with de novo folding and
evaluation of models. Proteins, 61, S7, 84-90.

6. Boniecki M., Rotkiewicz P., Skolnick J.,, Kolinski A. (2003) Protein
fragment reconstruction using various modeling techniques. J Comput
Aided Mol Des., 725-38.
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7. Simons K.T., Kooperberg C., Huang E., Baker D. (1997) Assembly of
protein tertiary structures from fragments with similar local sequences
using simulated annealing and Bayesian scoring functions. J Mol Biol.,
268(1), 209-25.

8. Sdi A. Blundell T.L. (1993) Comparative protein modelling by
satisfaction of spatial restraints. J Mol Biol., 234(3), 779-815.

Gerloff

A simplified representation of electrostatic model surfaces for
addressing protein-protein interaction problems
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d.gerloff@ed.ac.uk

The electrostatic surface properties of protein structures can provide clues
towards the interactions with other molecules in which they engage.
Particularly the comparison of the electrostatic surfaces of several homologous
proteins can prove interesting in this regard — and their structures can often be
modelled using comparative modelling techniques. Even if one takes into
consideration that the surface properties of a comparative model can merely be
an approximation of those of the true structure, it should be of great interest in
the context of various protein-protein interaction problems to be able to
compare electrostatic model surfaces systematically. Only very few methods
exist currently for undertaking such comparisons.

We have developed a novel way of simplifying the comparison of the
electrostatic molecular surfaces of proteins to comparing 1-D “ electr ostatic
surfaceprofiles’. In these surface profiles the electrostatic surface charge of
each protein is essentially apportioned to its individual residues. On our poster
we will show two examples of how comparisons of the electrostatic model
surfaces of homologous proteins using surface profiles may prove useful in
protein-protein interaction questions (see below). Whilethe simplified 1-D
representation proposed here will necessarily mean a “neglect” of more fine-
grained information the profile format offers many advantages over the classic
3-D format of electrostatic potential surfaces. Most obviously analyses as those
described below could be combined more easily with multiple sequence
analyses of various kinds, e.g. correlated mutation analysis between potential
partner proteins in protein-protein interactions.

Binding site prediction - Complement Receptor 1 (CR1): Our results indicate
that systematic comparisons of surface profiles are helpful for pinpointing
functionally important domains within a set of homologous domains in the



same protein (e.g. in the human immuneregulating protein Complement
Receptor 1). While CR1 is known to be involved in protein-protein interactions
with several partners at several sites along its length (1998 aa), not al partners
are known and the location of the binding sites on different domains, with
respect to their common structural scaffold, can differ. Comparing the surface
profiles of the models of the 30 homologous domainsin CR1" to each other, by
reference to their sequence similarity, suggests which domain surfaces seem to
have changed more than would be expected — which may reflect the acquisition
of new interaction partners during evolution. While some specifics of how best
to select the most “outstanding” domains remain to be worked out better before
this screening approach can be generalised fully, our results agree well with
visual inspection of GRASP? pictures and can be compared to those of other
methods for electrostatic surface comparison. While experimental information
about interactions between CR1 and other proteins is scarce, the domains
pinpointed by our comparisons seem to be involved in such interactions and our
results are compatible with the current biological knowledge.

Partner prediction - CDK-cyclin homologues in Arabidopsisthaliana: Where
families of paralogous proteins exist (within the same species), not evey
member of the one protein family will necessarily interact with every member
of the other protein family. In a previous project®, we investigated the potential
of a molecular docking approach with modelled protein structures for
answering the question which are the most plausibly interacting partners in
CDK-cyclin like transient complexes between the approximately 35 CDK and
50 cyclin homologues inArabidopsisthaliana ( At). In contrast to the
interaction problem described above, the three-dimensional orientation of the
two partner proteins in putative complexes can be assumed to be similar in all
complexes formed. Intersecting the results of molecular docking using
ZDOCK* with electrostatic complementarity analysis using the program
MOLSURFER® suggested 19 most likely interacting CDK-cyclin pairs out of
the 1188 possible pairs. An alternative prediction method for this problem is
being derived in which all possible CDK-cyclin combinations were modelled
and the electrostatic surface profiles of their subunits examined for
complementarity over the range of their interacting residues. While there are
hardly any wet-lab data against which to validate the results by both
approaches, their predictions can be compared to one another.

1. Soares D.C., Gerloff D.L., Syme N.R., Coulson A.F.W., Parkinson J. &
Barlow P.N. (2005) Large-scale modelling as a route to multiple surface
comparisons of the CCP module family. Prot. Eng. Des. Sel. 18, 379-88.

2. Nicholls A., Shap K.A., & HonigB. (1991) Protein folding and
association: insights from the interfacial and thermodynamic properties of
hydrocarbons. Proteins 11, 281-296.

3. Quan X., Doerner P. & Gerloff D.L. (2006) in preparation.
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4. Chen R, LiL. & Weng Z. (2003) ZDOCK: an initial-stageprotein-
docking algorithm. Proteins 52, 80-87.

5. Gabdoulline R.R.,WadeR.C. & D. Wather (2003) MolSurfer: a
macromolecular interface navigator. Nucl. Acids Res. 31, 3349-3351.

gtg - 201 modelsfor 45 3D targets

Transitive alignment of distantly-related proteins

Christopher Wilton', Swapan Mallick?, LiisaHolm®
L Institute of Biotechnology, University of Helsinki
liisa.holm@hel sinki.fi
Thegtg-server used during the CASP7 prediction season was buggy and
therefore the predictions submitted do not represent the real performance of the
method.

The method was developed on a different computer from the server computer.
A wrong version of a database index file was transferred to the server. As a
consequenceof this, only asmall part of the database was visible to the search
engine.

We noticed the bug only after the CASP7 prediction season. A set of
predictions generated using a correctly functioning gtg-server is available from
http://ekhidna.biocenter.hel sinki.fi/casp7/.

The Global Trace Graph (GTG) v2 was used to find PDB templates. The search
uses transitive alignment of distantly-related proteins using a weighted
Consistency-Motif score. The concepts of consistency and transitive alignment
are described in detail in [1].

The method generates a local sequence alignment (AL format) between the
prediction target and a protein in the PDB. Alignment scores above 1000
generaly indicate a homologous relationship. Very distant homologues are
recognized with scores between 200 and 1000, with reliability around 50 %
towards the lower end of scores. Since the method uses transitivity to find the
relationship between the query sequence and all proteins that have a structure
associated with them, a score of less than 200 is a prediction of a new fold.

This is a purely sequence based method which uses no structural information to
generatealignments.

1. Heger A, Lappe M. & Holm L. (2003) Accurate detection of very sparse
sequence motifs. RECOMB 2003: Proceedings of the 7th Annual
International Conference on Research in Computational Biology, Eds
Miller et al. Association for Computing Machinery, New York, NY. pp.
139-147.
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Homology-based structure, function, and domain prediction by
HMM-HMM comparison

Johannes Soding®
1_Max-Planck-Institute for Developmental Biology
johannes.soeding@tuebingen.mpg.de

HHpredl is an automatic version of our structure and function prediction server
HHpred (http://hhpred.tuebingen.mpg.de/) and is the simplest of four related
servers participating in CASP7 (HHpred1 to 3, BayesHH). It uses HMM-HMM
comparison with integrated secondary structure comparison, correlation
scoring,and a novel loca HMM-HMM maximum aposteriori probability
(MAP) alignment scheme. Its main difference from a HHpred.2 in CASP6 is its
use of a weekly updated HMM database derived from the PDB instead of
SCOP and the use of alocal MAP alignment scheme.

The tertiary structure prediction proceeds in four steps:

1. HHpred builds a multiple alignment from the target sequence with PSI-
BLAST (1) (up to 8 rounds with E-value threshold 1E-3). PSIPRED (2) is used
for secondary structure prediction.

2. The aignment is converted to an HMM and compared with a database of
HMMs derived from representative sequences in the PDB (70% maximum
sequence identity) using the HHsearch software (3) in loca Viterbi alignment
mode.

3. The top alignments are redetermined using the local MAP scheme.

4. The alignment for the best Viterbi match is submitted to MODELLER (3) to
generate a homology model.

For function prediction, the target HMM is compared with the PDB and the
Interpro database (5) using HHM-HMM comparison. Mappings to GO numbers
are either provided by the GOA (6) and InterPro databases or, if these are not
available, assigned by weighted word counts In this case, each word in the
PFAM or PDB name and description text casts votes for GO terms containing
this word. Words are wwighted depending on their frequency in the GO
definition file and on a word frequency table for standard english.

For homol ogy-based domain prediction, the target HMM is compared with the
SCOP (7) and Pfam (8) databases using HHsearch in local Viterbi mode. The
top alignments are realigned in global Viterbi mode and the aligned regions of
thetop-scoring hits overlapping not more than 20 residues and possessing at
least 50 aligned residues define the domain boundaries.
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1. Altschul SF., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W.,
Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25:3389-3402.

2. JonesD.T. (1999) Protein secondary structure prediction based on
position-specific scoring matrices. J Mol Biol. 292:195-202.

3. Sdding J. (2005) Protein homology detection by HMM-HMM comparison.

Bioinformatics. 21:951-960.
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HHpred2 - 100 models for 100 3D targets

Homology-based structure prediction by HMM-HMM
comparison and multiple template selection

Johannes Soding*
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johannes.soeding@tuebingen.mpg.de

HHpred2 is an automatic version of our structure and function prediction server
HHpred (http://hhpred.tuebingen.mpg.de/) and is one of four related servers
participating in CASP7 (HHpredl to 3, BayesHH). It uses HMM-HMM
comparison with integrated secondary structure comparison, correlation
scoring, a novel local HMM-HMM maximum a-posteriori probability (MAP)
alignment scheme, and multiple template selection. It typically returns a 3D
model within ~15 minutes.

The tertiary structure prediction proceeds in five steps (Steps 1, 2, and 4 are the
same for HHpred1):

1. Build a multiple alignment from the target sequence with PSI-BLAST (1)
(up to 8 rounds with E-value threshold 1E-3). PSIPRED (2) is used for
secondary structure prediction.

2. The alignment is converted to an HMM and compared with a database of
HMMs derived from representative sequences in the PDB, using the HHsearch
software (3) in local Viterbi alignment mode.

3. The top 20 matches are clustered by UPGMA into a forest of separate trees,
based on the structure comparison scores of TM-align (4). The clustering stops
when the highest average pairwise TM-score drops below 0.7. For each tree, a
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multiple structural aignment is calculated with MUSTANG (5). The
corresponding PSI-BLAST aignments are merged into a super-alignment in a
master-slave fashion and an HMM is generated. The target HMM is compared
with these HMMs and the best match defines a set of templates.

4. The top-scoring alignment with these templates is redetermined using the
local MAP scheme.

5. MODELLER (6) is used to generate a homology model from this multiple
template alignment.

1. Altschul SF., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W.,
Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25:3389-3402.
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4. ZhangY., Skolnick J. (2004) Scoring function for automated assessment of
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Homology-based structure, function, and domain prediction by
HMM-HMM comparison, multiple template selection, and
intermediate profile search

Johannes Soding*
1_Max-Planck-Institute for Developmental Biology
johannes.soeding@tuebingen.mpg.de

HHpred3 is an automatic version of our structure and function prediction server
HHpred (http://hhpred.tuebingen.mpg.de/) and is one of four related servers
participating in CASP7 (HHpredl to 3, BayesHH). It uses HMM-HMM
comparison with integrated secondary structure comparison, correlation
scoring, a novel local HMM-HMM maximum a-posteriori probability (MAP)
aignment scheme, multiple template selection, and intermediate profile
searching.

The tertiary structure prediction proceeds in five steps (all but step 3 are the
same for HHpred?2):

1. Build a multiple alignment from the target sequence with PSI-BLAST (1)
(up to 8 rounds with E-value threshold 1E-3). PSIPRED (2) is used for
secondary structure prediction.

2. The alignment is converted to an HMM and compared with a database of
HMMs derived from representative sequences in the PDB, using the HHsearch
software (3) in local Viterbi alignment mode.

3. If the top hit has a probability of less than 90% to be homologous, our
intermediate profile search method HHsenser (4) is used to enrich the query
alignment with more remote homol ogs.

4, The top 20 matches are clustered by UPGMA into a forest of separate trees,
based on the structure comparison scores of TM-align (Zhang & Skolnick). The
clustering stops when the highest average pairwise TM-score drops below 0.7.
For each tree, a multiple structural alignment is calculated with MUSTANG
(AS. Konagurthu et al.). The corresponding PSI-BLAST alignments are merged
into a super-alignment in a master-slave fashion and an HMM is generated. The
target HMM is compared with these HMMs and the best match defines a set of
templates.

5. The top-scoring alignment with these templates is redetermined using the
local MAP scheme.

6. MODELLER (A. Sali et al.) is used to generate a homology model from this
multiple template alignment.

For function prediction, the target HMM from step 3 above is compared with
the PDB and the Interpro database (8) using HHM-HMM comparison.
Mappings to GO numbers are either provided by the GOA (9) and InterPro
databases or, if these are not available, assigned by weighted word counts In
this case, each word in the PFAM or PDB name and description text casts votes
for GO terms containing this word. Words are wwighted depending on their
frequency in the GO definition file and on a word frequency table for standard
english.

For homol ogy-based domain prediction, the target HMM from step 3 above is
compared with the SCOP (10) and Pfam (11) databases using HHsearch in local
Viterbi mode. The top alignments are realigned in global Viterbi mode and the
aligned regions of the top-scoring hits overlapping not more than 20 residues
and possessing at least 50 aligned residues define the domain boundaries.
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The FRPPSP fold recognition method
Qi-wen Dong, Xiao-long Wang, Lin Lel
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Qwdong, wangxl, linl@insun.hit.edu.cn

We developed a Fold Recognition method by combining Profile-profile
aignment and Profile-level Statistical Potentials (FRPPSP). The profile-level
statistical potentials are described in our previous study', which use the
evolutionary information of profiles and provide better discriminatory ability
than those at the residue level.

In this study, the profile-level statistical potentialsintegrate the three single-
body potentials, that is, the ®/¥ dihedral angle, accessible surface and contact
statistical potentials:

E() = E(L,0)+W'E' (,§) + WEGLN)

where Et, Ef, Ec is the®/¥ dihedra angle, accessible surface and contact
statistical potentials respectively, i is the profile type at the i-th position of the
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sequence, wf and wc are the weights of accessible surface and contact statistical
potentials.

Theprofile-profile alignment method used here is the PICASSO3 method?,
which gives the best results of fold recognition . Theprofile-profile score to
align the position i of a sequence q and the position j of atemplatet is given by:

20
m; = _kz [fifS}k + Sl(ll fjtk]
-1

@)

where fikq, fikt, Sikg and Sikt are thefrequencies and the position-specific
score matrix (PSSM) scores of amino acid k at position i of a sequence g and
position j of atemplatet, respectively.

The profile-profile alignment is combined with the knowledge-based score for
threading. The total scoreis given by:

u® =m; + WE,(s)
(©)

where Ej(si) is the combined potentials score of the template at position j with

the residue type (for residue-threading) or profile type (for profile-threading) si

of the position i of the query sequence, ws is the weight factors for structure

scores. The dynamic programming algorithm is employed to find the minimum

of the total score of the sequence-template alignments.

All profiles are generated by running PSI-BLAST3 on the NRDB90 database
fromEBI®. The five most favorable templates and the corresponding
alignments are inputted to MODELLER ° to generated the 3D structure.

1. Dong QW., Wang X.I., Lin L. (2006) Novel knowledge-based mean force
potential at the profile level. BMC Bioinformatics;7:324.
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measures for profile-profile comparison yield more accurate short seed
alignments. Bioinformatics;19(12):1531-1539.
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protein database search programs. Nucleic Acids Research; 25(17):3389-
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large protein sequence collections. Bioinformatics; 14(5):423-429.
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Template-based protein structure prediction using an
automated modeling pipeline, manual target analysis and fast
model evaluation
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! _ Howard Hughes Medical Institute, Department of Biochemistry and
Molecular Biophysics, Columbia University
2 _ Dept. of Biochemistry and Molecular Biophysics, Columbia University
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The central problem of template based protein structure prediction is, of course,
identifying those regions of a target structure that have a conformation different
from the equivalent region of its template(s), and modeling these regions using
some abinitio method or through composite model building. Such regions can
frequently be identified and modeled through an analysis the structural
neighbors of potential templates and many successful methods use such an
approach. As more and more experimentally determined protein structures
becomeavailable, such approaches will concurrently grow in applicability.
However, the optimal method of analyzing and using the structural neighbors is
unclear, and the methods used at each stage of the modeling process can depend
on the particular group of templates being considered. Consequently, a certain
degree of expert analysis is often necessary.

We have developed an automated homology modeling pipeline whose design
was guided by several principles. it should allow the use of a wide variety of
methods depending on the characteristics of the target under consideration; it
should allow the convenient examination and analysis of the templates,
alignments and models at each stage of the prediction process; and it should
adlow a user to resubmit templates, dignments or models to the pipeline
depending on the results of this analysis.

This pipeline was used extensively by our group during our participation in
CASP7. A structure prediction for a given target was performed as follows.
Our modeling pipeline was used to generate an initial set of models (usually
~100) in a completely automated way using a “standard” set of methods. In
particular, template selection and alignment was carried out using a
combination of our in-houseprofile-profile alignment tool HMAP! and the
SP3? fold recognition tool. Models were constructed using NEST® and were
evaluated using the statistical potential DFIRE* and Verify3D.® The interface
to our pipeline was then used to analyze the automated modeling results.
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Several types of analysis can be carried out using this interface, including
comparison of alignments of the target to different templates, querying of a
functional annotation database, and creation of “project files’ that can be
viewed in the program GRASP2°, which allows visualization and structure-
based alignment of the templates and models, as well as manual alignment
adjustment.

Based on the results of this analysis, selected templates/models were subjected
to more comprehensive modeling. This decision was made based on several
criteria: 1) The top ranked templates (in terms of statistical significance of the
alignments) were checked for consistency in their function annotation. This
was also carried out for the top-ranked models (based on the effective energy
functions used). 2) As much as possible, where there were variations in the
alignments of the target to different templates, all alignments were tried on al
templates and evaluated based on the energy of the models. 3) Depending on
the known characteristics of the target, primarily the presence of ligands and
quaternary structure, templates that matched those characteristics were selected
and models were generated that included the appropriate ligands and
multimeric partners. 4) In situations where no single template had secondary
structure that completely matched the predicted secondary structure of the
target, models based on different templates were combined based on how well
they locally matched the secondary structure prediction of the target.

Refinement was carried out primarily with two programs. Our inhouse
refinement method IMO and the program PLOP. IMO’ uses a torsion-space
local sampling algorithm, DFIRE and energy-driven clustering of the models.
It was used for several purposes. to refine secondary structure elements in
situations where the predicted length or type of secondary structure differed
from the template, to combine models and to refine N- and C-termina tails.
PLOP® usestorsion-space sampling combined with all-atom energy functions
and fast screening and clustering techniques to reduce the set of possible
conformations to a small number of candidates that are evaluated via an
optimized minimization algorithm. PLOP was used primarily for loop
prediction, especialy in situations where it was necessary to simultaneousy
model a loop as well asits nearby environment.

A final decision as to which model to submit was based on a combination of
manual analysis and evaluation of the models using the statistical potential
DFIRE.
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alignment of fragments. Proteins. 58, 321-328.
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Fischerlab automatic predictions

T. Seth, M. Gattie and D. Fischer
{tseth, mtgattie, df33}@cse.buffalo.edu

We have submitted automated predictions using two approaches:
metaprediction using the shub and beautshot servers and metaselection using
the Verify, Taruna and MQAPcons procedures. Shub and beautshot are new
autonomous servers generating models using an improved shotgun paradigm
followed by the beautify refinement. Shub considers only models generated by
inub, whereas beautshot includes also local implementations of the sp3 and
prospect methods. To compare the value of the shotgun assembly, we submitted
beautshotbase which corresponds to the same shotgun selection as beautshot
but without the shotgun assembly. For metaselection we used models from
about 10 servers and submitted the selected beautified model. Veify
corresponds to Verify3D, Taruna is a shotgun-like selection (sum of maxsub
al-vs-al comparisons, and without assembly) and MQAPcons is a combination
of MQAPs with Taruna.

57

igor - 66 modelsfor 52 3D targets

A Simple Easily-Integratable Model of a Protein Chain

M.J.Dudek
mdudek@nethere.com

A residue ising model is used as a simplified representation of a single
polypeptidechain. We work with a 3 state model, meaning each residue exists
in 1 of 3 possible secondary structure states: H=a-helix, E=extended strand of a
B-sheet, or C=coil. The abbreviation ss will be used for secondary structure.
Let nR be the number of residues in a chain. The states of a residue ising
model consist of all mappings of the set of residues into the set of ss states
{1,...,nR}-->{H,E,C}. Thefunction that maps states to energiesis formed as a
sum of contributions each of which depends only on the ss state within a small
window of 6 or less residues. Theseenergy contributions, referred to as residue
impulses, are attributed to patterns in the residue sequences within the small
windows.

We define a ss element as a contiguous block of residues such that each residue
of the block has the same ss state and any residue adjacent to the block on
either side has a different ss state. The space of discrete chemical compositions
for a ss element is the combinatorially large set of all possible lengths and
residuesequences. We partition this space into 16 element types based on
elementlength and 3 hydrophobic moments. An element composition for the
chain is defined to be a partitioning of the chain into elements. Thereexist
2**(nR-1) possible element compositions corresponding to al possible choices
of a set of elementboundaries, or alternatively a binary yes or no choice of an
element boundary at each residue boundary. Analogous to ising model
representation of a residue sequence, we use also an ising model torepresent
the element sequence of an element composition. Let nG be the number of
elements in a chain. While the set of residues is a fixed property of achain, the
set of elements differs for each choice of element composition. The states of
the element ising model consist of al mappings of the set of elements

into the set of ss states{1,...,nG}-->{H,E,C} such that no 2 adjacent elements
have the same ss state. The number of states, therefore, is 3*(2**(nG-1)). The
function that maps states to energiesis formed as a sum of contributions each of
which depends only on the ss state within a small window of 5 or less elements.
These energy contributions, referred to as element impulses, are attributed to
patterns in the element sequences within the small windows.

In this work, weintroduce a new model for representing a protein chain, which
we refer to as an igor model. The ss states of an igor model are the same asthe
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3**(nR) ss states of aresidue ising model. While a residue ising model is short
range in nature, the more flexible form of the igor model energy function

attempts to account for medium and long range residue-residueinteractions.
Igor model energy is a function of element composition, a collection of
3*(2**(nG-1)) states, as opposed to a single whole chain ss state.

LetZ[restelem](a) be the partition function for the element ising model
representation of the element composition o that includes both residue and
elementimpulses. Similarly, letZ[elem](a) and S[elem](a) be the partition
function andentropy for the element ising model representation that includes
only element impulses. The full energy, e(o)= ¢0(a) +e1l(a) +e2(a) +e3(at), is
a sum of 4 components.

€0(at) is an energy attributed to formation of single elements and short strings
of elements.

gl(a)= In( 3*(2** (nG(a.)-1)) *Z[restelem](a)/Z[elem](a)).
g2(a)=-S[elem] ().

¢{3}(a) is an energy attributed to threading of the element ising model into the
fold of a best-fittemplate from the set of scop40 domains. Thisenergy
includes the short range energy of distortion requiredfor the element ising
model to adopt the ss state of the aligned template, and the long range element-
element interaction energies obtained by packing of the ss elements of the
target in the fold of the template. We note that the level of crudeness of the
element ising model is such that our use of alignment to templates is much
more

a mechanism for sampling a large number of packing arrangements of ss
elements, as opposed to a sensitive mechanism for fold recognition.

The igor model enablescalculation of single residue ss state probability
distributions and, more importantly, sampling of the collection of individual
element compositions that contribute most to the partition function. Perhaps
the major application for the igor model will be in protein structure prediction,
to enable efficient sampling of backbone conformations to provide starting
points for optimization of a more accurate energy function. A procedure for
translating element compositions of the igor model into consistent full-atom
structures uses homology model building based on the alignment to the best hit
template.

ISTZORAN - 99 modelsfor 99 DR targets

Length-Dependent Prediction of Protein Intrinsic Disorder
K. Peng', P. Radivojac?, S. Vucetict, A.K. Dunker®, Z. Obradovic
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TheVSL2! predictor is a slightly improved version of the original VSL1?
predictor which is applicable to disordered regions of arbitrary length.It
consists of two specialized predictors, VSL2-L for long (>30 residues) and
VSL2-Sfor short (<30 residues) disordered regions, and ameta predictor to
integrate outputs of the two specialized predictors. The fina predictionis
calculatedas O, x Oy + Os x (1— Oy),where O, Os, and Oy are outputs of
VSL2-L, VSL2-S, and the meta predictor, respectively.

The training data for VSL2 consisted of 1,327 non-redundant protein sequences
withpairwiseidentity <25%. In total there were 1,389 short and 217 long
disordered regions with 34,911 residues. 483 very short disordered regions of
1-3residues were not used in predictor training. The dataalso contained
406,342 ordered residues, about 8% of which came from regions of high B-
factors. These residues were excluded since high B-factor regions are known to
be similar to short disordered regions.

For all three component predictors, a same set of 51 features were constructed
for each residue using a sliding window. These featuresincluded local amino
acidfrequencies, local sequence complexity, average net charge, average
flexibility, average hydropathy, charge/hydropathy ratio, average PSI-BLAST
profiles, average secondary structure predictions, and an additional one to
indicate if the current residue is close to a terminus. The window lengths were
chosen as 41 for VSL2-L, 15 for VSL2-S, and 61 for the meta predictor.

All component predictors were built aslinear support vector machines (SVM)
instead of the logistic regression modelsforVSL1. The SVM outputswere
calibrated into posterior probabilities using a single-input logistic regression
model. As in our previous studies, moving-average was applied to smooth the
raw predictions to remove occasional misclassifications. The sliding window
lengths forVSL2-L and VSL2-S, and metapredictor were 31, 5, and 1,
respectively.

1. Peng K., Radivojac P., Vucetic S., Dunker A.K. & Obradovic Z. (2006)
Length-dependent prediction of protein intrinsic disorder. BMC
Bioinformatics 7, 208.

2. Obradovic Z., Peng K., Vucetic S., Radivojac P. & Dunker A.K. (2005)
Exploiting heterogeneous sequence properties improves prediction of
protein disorder. Proteins 61(S7), 176-182.
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Protein function prediction from sequence, properties and
literature
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Despite numerous high-throughput experimental efforts, the number of
sequenced and trandated proteins withunknown cellular function isgrowing
rapidly. Currently, there are 385 completely finished genomes, while 56
archaeal, 933 bacterial, and 608 eukaryotic genomes are being sequenced
around the world (http://www.genomesonline.org/). The major protein
sequence repository, GenBank, contains over 3.6 million sequences, which
includes al publicly sequenced/translated proteins as well asnumerous
isoforms and engineered sequences. At the same time, the number of non-
redundant (<90% sequence identity) proteins with high-confidenceannotations
in the Gene Ontology database [1] is less than 25,000. Consequently, one of the
major objectives of bioinformatics is to develop methodologies and tools for
automated protein annotation that can be used by researchers working on
individual proteins but also on a genomic scale. Here we report on a machine
learning approach we used in CASP7 for the prediction in the “function”
category.

Problemformulation. Given a query proteinp, a set of functional termsG =
{91, 92, ...9ig}» and a set of proteins annotated with the terms from G, thegoal
is to output the subset of most likely annotation terms that characterize p. The
outputs are sorted according to the approximated posterior probabilities for

each particular g € G.

Methodology. Data representation. Three groups of features were explored: (i)
sequencealignment-based features, (ii) features based on amino acid sequence
and it properties, and (iii) features based on literature. We note that property-
based features were derived from protein amino acid sequence, but were
separated  because they reflect their physicochemical properties. High
dimensional data representation was developed for each functional term
containing at least 10 nonredundant sequences. Data selection and
preprocessing. To gather unbiased and high-quality data we eliminated
sequence redundancy and used only functional evidence of high confidence. In
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particular, our starting dataset was an intersection of all proteins with
appropriate GO evidence and the UniRef90 database. Only segquences with 1EA
IPI, 1GI, TAS, IMP, IDA evidence codes were used as these annotations are
most reliable. Dimensionalityreduction. We explored feature selection filters to
eliminate unpromising features and principal component analysis to remove
feature correlation. Model selection. Linear support-vector machines were used
[2]. One-versus-dl training was performed and final outputs were combined
from al individual models.

In CASP7 we evaluated 3 models: (i) model using sequence- , property- and
literature-based features; (ii) model using sequence- and property-based
features only, and (iii) model using literature-based features only.

1. Ashburner M., Bal C.A., Blake J.A.,Botstein D.,Butler H.,Cherry JM.,
Davis A.P., Dalinski K.,Dwight S.S., Eppig J.T.,Harris M.A., Hill D.P,,
Issel-Tarver L., Kasarskis A.,Lewis S.,Matese J.C.,Richardson JE.,
Ringwald M., Rubin G.M., and Sherlock G. (2000) Gene ontology: tool
for the unification of biology. The Gene Ontology Consortium. Nat. Genet.
25(1), 25-29.

2. JoachimsT. (2002) Learning to classify text using support vector
machines. methods, theory, and algorithms. Kluwer Academic Publishers.
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Prediction of protein structure using template-free assembly of
secondary and super-secondary motifs.
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JVE assumes a hierarchy of protein structure: amino acid conformation,
secondary structure, super-secondary motif and globular subunit or domain.
Predictions or knowledge of the secondary structure are used to influence
predictions of super-secondary structure, based on conformational class
predictions from the SLoopdatabase™®. These super-secondary structure
predictions are combined to build up structures of larger modules and domains
using a Monte Carlo simulation incorporating an A* agorithn™* and a
stochastic refinement protocol to remove local atomic clashes. These are then
evaluated using filters describing known features of protein structure.



In CASP7, the secondary structure for each target was predicted using psipred®,
phd® and jpred’ and a consensus produced. All of these were collectively used
to predict super-secondary fragments of loops from the SLoop database. For
comparative modelling targets, tertiary structure fragments were also derived
from filtered models produced by CASP7 server predictions. Final models were
assessed visually and models close to those produced by CASP7 servers were
not submitted.

1. Burke D.F.,Deane C.M. and Blundell T.L. (2000) A browsable and
searchable web interface to the SLoop database of structurally-classified
loops connecting elements of protein secondary structure. Bioinformatics:
16(6),513-519

2. Burke D.F. and Deane C.M. (2001) Improved Loop prediction from
sequence alone Protein Engineering 14(7), 473-478

3. Hart P.E.,Nilsson N.J. and Raphadl B. (1968) A formal basis for the
heuristic determination of minimum cost paths IEEE Transactions On
Systems and Cybernetics SSC, 4(2), 100-107

4. Lermen M. and Reinert K. (2000) The Practical Use of the A* agorithm
for exact multiple sequence alignments J.Comp.Biology, 7(5), 655-671

5. McGuffin L.J.,Bryson K.,Jones D.T. (2000) The PSIPRED protein
structure prediction server. Bioinformatics 16, 404-405

6. Rost B., Sander C.,Schneider R.(1994) PHD--an automatic mail server
for protein secondary structure prediction. Comput Appl Biosci 10(1), 53-
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JPred: a consensus secondary structure prediction server. Bioinformatics.
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Use of Fragment Assembly, Threading and Model Quality
Assessment Methods to Predict Protein Folds
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Our pair potential based threading program THREADER' was used to predict
targets which were not predicted with high confidence by mGenTHREADER?.
However, in making full CASP7 submissions, we also considered other models
obtained from ourwebservers aong with functional information where
available and the results from external servers. Typicaly, easier fold
recognition and comparative modeling targets were built using a consensus
approach from the top scoring mGenTHREADER hits. A simple C-al pha-based
model refinement program (HOOKEMODEL) was used to splice the best
models together and then fill-in any remaining gaps in the hybrid structure.

For CASP7 targets which we believed could not be reliably predicted using fold
recognition methods, FRAGFOLD ® was used to generate up to 5 structures.
This approach to protein tertiary structure prediction is based on the assembly
of recognized supersecondary structural fragments taken from highly resolved
protein structures using a simulated annealing algorithm. The main changes to
FRAGFOLD since CASP6 have been to a) improve the rotamer library used to
build side chain positions, b) improve the steric energy function, c) improve the
hydrogen bond function and d) greatly increase the efficiency of the program
when handling multiple sequences. This latter feature is a major distinguishing
feature of FRAGFOLD in that for family of sequences, each sequence is
effectively folded in parallel and the energies for each sequence averaged.
Between 1000 and 3000 structures were generated for each target using a 300-
CPU Beowulf cluster, and a simplerigid-body structural clustering algorithm
used to select the models representing the largest clusters of conformations.
Submitted predictions were made using little or no human intervention apart
from initial domain assignment and preparation of input secondary structure
and sequence alignment files.

For al targets (including CM and FR targets), regions of native disorder were
predicted using DISOPRED2 *°. DISOPRED? is based on a reimplementation
of DISOPRED using Support Vector Machines rather than neural networks.



Several new Model Quality Assessment programs were tried in CASP7
aongside our existing MODCHECK® method. The most sophisticated of these
iSMODCHECK-EEKS (Everything Except the Kitchen Sink) which combines
a very wide array of features inorder to assess model quality. Components
include an atomic solvation potential, side chain and main chain torsion angles,
pair potentials using MODCHECK and detailed hydrogen bonding analysis.
This method was used in the QA section of CASP, the model refinement
section and to select the best FRAGFOLD models from the largest clusters in
somecases.

1. Jones D.T., Taylor W.R. & Thornton JM. (1992) A new approach to
protein fold recognition. Nature 358, 86-89.

2. McGuffinL. J, Smith R.T., Bryson K., Sorensen S.A. & Jones D.T. (2006)
High throughput profile-profile based fold recognition for the entire
Human proteome. BMC Bioinformatics, 7, 288

3. Jones D.T. (1997) Successful ab initio prediction of the tertiary structure of
NK-Lysin using multiple sequences and recognizedsupersecondary
structural motifs. PROTEINS. Suppl. 1, 185-191.

4. JonesD.T. & Ward J.J. (2003) Prediction of disordered regionsin proteins
from position specific score matrices. Proteins. S6, 573-578.

5. Ward JJ, Sodhi JS., McGuffin L.J., Buxton B.F., Jones, D.T. (2004)
Prediction and functional analysis of native disorder in proteins from the
three kingdoms of life. J. Mol. Biol., 337, 635-645.
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In addition to our manual predictions for CASP7, we also entered predictions
from a number of our publicly available servers. The first of these is a fold

recognitionserver mGen3D, based on the mGenTHREADER1-3 method. The
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core method has been improved through the use of a better profile-profile
alignmentalgorithm® since CASP6. All of the parameters for the method have
also been tuned using a genetic algorithm which optimized model quality over a
set of 50 hard fold recognition targets.

The major new feature being tested in CASPY is the generation of 3-D models
from the fold recognition hits from mGenTHREADER. A simple algorithm is
employed which potentially can take into account both continuous and
discontinuous domains in the target sequence. In the first step, the top hit from
mMGenTHREADER is used to generate a main chain plus beta-carbon model.
Subsequent alignments are then evaluated to see if they overlap with the first
model. If a sufficient number of residues in a lower scoring alignment do not
overlap with a region which has aready been modelled then a new model is
generated and evaluated for compactness. If a lower scoring aignment
corresponds to a real domain then the new model should be approximately
globular and compact. This process is continued until there are either less than
30 residues remaining or until the top 50 hits have been considered.

The DomPred Server* contains our previously published method for domain
prediction, DOmSSEA®, combined with a newly developed method called
Domains Predicted from Sequence (DPS).

DOmSSEA uses a fold recognition approach, based on aligning the PSIPRED®
predicted secondary structure for the query sequence against the observed
secondary structures in a fold library. It then transfers the assigned domain
boundaries from the best fold match to the query sequence.

DPS carries out a PSI-BLAST® search of the query sequence against a sequence
database. Significant local alignment fragments are examined, and the total
numbers of C- and N-terminals for the fragments are recorded for each residue
position in the query sequence. These distributions are smoothed. They are then
combined giving additional weight to positions which have high values for both
the C- and N-terminals, since this provides more evidence for a domain
boundary in which one conserved sequence region ends and ancther starts. The
combined values are then turned into Z-scores by dividing throughout by the
standard deviation over the entire query protein. A threshold is then applied to
these z-score values in order to predict domainboundaries.

Lastly, the DISOPRED server® was evaluated. This server predicts regions of
native disorder from sequence profiles using a Support Vector Machine.

1. Jones D.T. (1999) GenTHREADER: An efficient and reliable protein fold
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method for genomic fold recognition. Bioinformatics, 19, 874-881.
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karypis - 161 models for 83 3D targets

Protein Structure Prediction using learning based methods,
fragment assembly and simple alignment techniques.

H. Rangwalal, C. Kauffman®, K. Deronne!, and G. Karypisl,
1- University of Minnesota, Twin Cities.
{rangwala, kauffman, deronne, karypis}@cs.umn.edu

Our group participated in CASP7 manually and with three automatic servers:
karypis.srv, karypis.srv.2, and karypis.srv.4. All follow the same basic protocol
which begins with the selection of possible templates for a given target using
profile and secondary structure information. This is followed by comparative
modeling and model selection. These steps are described in detail below.

Given a query protein sequence, we primarily used DOM Pro3 to identify the
possible domain boundaries which are further verified and changed based on
domain prediction results of several other methods. Each predicted domain of a
target is treated separately for subsequent steps.

The strategy of karypis.srv for template selection is to select based on a local
alignment between the target and potential template. The aignment program

uses profile and secondary structure based (YASSPPl) scoring to generate the
top ten templates for each target. We rely on karypis.srv to generate templates
for karypis.srv.4 and the manual prediction.
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Alternatively, server karypis.srv.2 classifies the target domain sequences into
one of 945 fold classes derived from the SCOP database (Version 1.69).
Proteins belonging to the same fold tend to share the same structures, but may
not exhibit high sequence similarity. We use direct profile based kernel

methods? where we build 945 oneversus-rest discrimi natory support vector
machine based classifiers. Based on the prediction of these classifiers we are
able to classify the domains into one of the folds. The top three scoring folds
are selected and we then use the alignment scheme of karypis.srv to select from
within each fold the top ten templates giving a total of thirty templates. For
efficiency, the whole process is parallelized across 40 processors of a Linux-
cluster. We aso tried several other methods for selecting the best possible fold
for target sequences. These include classifying the targets into one of the 1538
superfamilies(remote homology detection) and coupling the prediction output
of the superfamily and fold level classifiers using a set of novel multi-class

classification schemes”.

After the generation of templates, each is aligned against the target and
MODELER is used by karypis.srv, karypis.srv.2, and manua prediction to
generate structures. All servers use a similar alignment technique to generate a
target-template correspondence. Both servers employ side-chainrefinement
using SCWRL. In our manual submission, we use hand-tuned multiple structure

alignments of several templates (generated with MUSTA NGG) as a guide for
MODELER..

We select from amongst the generated structures using severa criteria. For
karypis.srv and manual submission, the energy-based DOPE score produced by
MODELER determines the top models. ProQ, a neura network method for
structure quality evaluation, is employed by karypis.srv.2 to select the top
models for submission.

Rather than use, MODELER, karypis.srv.4 constructs a model by assembling

fragments of known protein structures’ for five templates. Fragment placement
is based on optimizing the RMSD between the working structure and the
template. Models are evaluated based on their GDT_TS to the template.
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keasar - 573 models for 100 3D/84 QA/2 TR targets

Refinement of Fold Recognition Models with Cooperative
Solvation Potentials

Nir Kalisman, Ohad Greenshpan, and Chen Keasar
Department of Computer Science, Ben-Gurion Universiry, Israel
keasar @cs.bgu.ac.il

In this round of CASP our group submitted models for all CASP targets. All-
atom refinement of FR models was the method of choice for most targets,
although semi-automatic modeling without template was used for 15 targets
with low fold-recognition scores. Initial FR alignments were downloaded from
the 3D-Jury server!, and all further modeling was done within the framework of
MESHI2. Two novel solvation terms, detailed and coarse, were used
extensively throughout the modeling process and are briefly described in this
abstract. They differ in their levels of atomic detail and were used accordingly
for various degrees of homology. Before modeling, the targets were sorted into
easy/hard categories according to the quality of their alignments and their
compliance with the predicted secondary structure. Each category was
processed differently.

Easytargets. All-atom models were trivialy generated from the top 20
aignments of 3D-Jury. They were evaluated with a scoring function that
combined the coarse solvation energy of each model with its original 3D-Jury
rank. The models were ranked according to the new score, and the top 5 were
selected for further refinement. Selected alignments were manually curated, so
that gaps were removed from template secondary structures and the burial of
polar side chains was minimized. An al-atom model was created from each
curated alignments, and its side chains were modeled concurrently by our
program SCMOD. Gaps were completed and the entire model was submitted to
energy minimization with standard terms and the detailed solvationterm.
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Usudly a set of a few hundred models was generated by slightly perturbing
each model prior to minimization. The final models were selected according to
their final minimization score.

Hardtargets. Parts of the harder targets for which suitable templateswere
available were processed as in the easy target procedure. Next, the missing or
unreliable parts of the templates were modeled according to the predicted
secondary structures. The unreliable parts were then randomly perturbed and
subjectedto minimization that included the coarse solvation term. Models for
submission were selected from the resulting model set according to the final
minimization energy.

Modeling without templates. The secondary structure prediction was
manually checked for the existence of clear structura motifs such as tight
antiparallel beta sheets or strand-helix-strand. These motifs were modeled first.
Next, the motifs along with the rest of the sequence were perturbed relative to
each other and minimized with the coarse solvation term. Models for
submission were again selected according to their final energy.

Coar se solvation term. The motivation for this term was to uncouple the side
chain conformation from the backbone structure prediction, within the
framework of the all-atom model. To this end, all the side chains were modeled
to their most frequent backbone dependent rotamer. The solvation energy of
each residue was then evaluated as a non-linear function of the number of
neighboring carbon atoms in its first hydration shell. Hydrogen bonding and
other polar interactions that require detailed placement of the side chains were
ignored. The resulting term therefore assess the solvation of a residue based
only on its backbone coordinates, and is therefore fast to compute. Ye
important information about the probable side chain location is also included.
The solvation is also less sensitive to small deviations of the backbone from its
native state because the side chain positions are only approximated.

Detailed solvation term. In this term the solvation of each atom is a non-linear
function of the number of neighboring carbon atomsin its first hydration shell.
Y et, unlike similar solvent exclusion models, the number of hydrogen bondsin
which the atom participates is aso taken into consideration. As a result, the
solvation of aburied polar atom that participates in a hydrogen bond is similar
to its exposed state. This term is useful when the hydrogen network of the
protein is partially known, i.e. when the backbone position is close to its native
state.

1. Ginaski et. a. (2003) 3D-Jury: a simple approach to improve protein
structure predictions. Bioinformatics 19, 1015-8.

2. Kalisman et. a. (2005) MESHI: A new library of Java classes for
molecular modeling. Bioinformatics 21, 3931-2.



KIHARA _PFP - 99 modelsfor 97 FN targets

Partially automated, comprehensive annotation with PFP
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For manual function prediction in CASP7, we partially automated and built on
our multi-dimensional approach from CASP6. The process of defining
functions for uncharacterized protein targets involved four major stages: (1)
automatically annotating the target sequence with GO terms by PFPand
determining likely functional sites using MINER?, (2) searching the target
sequence against functional databases, (3) manually building and refining data
from these primary searches, and (4) assigning additional GO or E.C.
definitions to the target sequence based on our predicted 3D models. This
method was used to gather predictions for the GO Molecular Function,
Biological Process, and Cellular Component categories as well as E.C.
definitions when applicable.

PFP* is a sequence-based function prediction algorithm which g)redicts GO
terms for a target sequence based on term frequency in PSI-BLAST” results and
contextual term association in annotated sequence databases. PFP is aso
implemented as a fully automated server, which participated in the function
prediction server category of CASP7 (see group PFP_HAWKINS). MINER? is
a multiple sequence alignment-based method which predicts functional sites in
atarget sequence whose phylogenetic trees have the most similarity to that of
the complete sequence. PROSITE* PRINTS® and Blocks® were used for
functional motif searching; Pfam and Pfam-FS’ were used to for family
alignments; PSORT® was used for subcellular localization; and STRING® was
used for additional functional associations in primary searches. Information in
the KEGG Pathway database™® and thorough literature searches were used to
refine and build on the data gathered from primary searches in the cases where
that data was not sufficient to make a reasonable prediction of GO categories.
Using this method, reasonable predictions were made for each of the 100 valid
protein targetsin CASP7.
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Simulation of Protein Folding Structures
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To simulate the folding structures of a protein, we used a simple off-lattice
model with the unified-residue point, which represents the alpha carbon of each
amino acid in the protein model. This model has two angle variables, one for
the angle between two consecutive virtual bonds, residuesi to j and j to k, the
other for the rotational angle of the virtual bonds consisting of residues i, j, k
and . In order to generate the structural conformations the Monte Carlo method
was used with the starting point of random coil conformations. During this



procedure the range of the i-j-k angle was limited between 60 to 150 degrees.
Among the trajectory data obtained from the navigation through the potential
surface, about half of them were accepted and stored. The knowledge-based
potential was used to obtain the potential energy surface. It was derived from
theknown protein structures. The total number of the accepted conformations
was about 10E3 and the total steps for one run were about 10E8. Finaly, al the
conformations were clustered using the energy and RMS between the alpha
carbon traces. Then the obtained representative conformations were minimized
with the potential energy.

kitaura-fams - 8 modelsfor 8 3D targets

Refinement of protein structures using the fragment molecular
orbital (FMO) method

Toyokazu Ishida®, Dmitri G. Fedorov?, K. Kanou?,

M. Takeda-Shitaka?, H. Umeyama?, and Kazuo Kitaura®
. National Institute of Advanced Industrial Science and TechnologyiAl ST)
2. Department of Biomolecular Design School of Pharmacy,
KitasatoUniversity
kanouk@ pharm.kitasato-u.ac.jp ( toyokazu.ishida@aist.go.jp)

Thefragment-based abinitio MO method (the FMO method?) was applied to
therefinement of the target protein structures, tr288, tr368 and tr370. In the
method, a molecule is divided into fragments and ab initio MO calculations are
performed on the fragments and their dimers to obtain the total energy and
other properties of the whole molecule. The FMO method reproduces regular
ab initio MO results with high accuracy, hence molecular geometry optimized
with this method is expected to have nearly abinitio quality. The method has
been incorporated into GAMESS program package’ with an efficient parallel
agorithm (GDDI3), which was used for all FMO calculations in this work.

In the geometry optimization calculations all degrees of freedom were
optimized at the FMO-RHF/3-21G level of theory with one residue/fragment
partition of the proteins except for Gly which grouped with its neighboring
residue because of its small size. We prepared the initial geometry by adding
missing hydrogen atoms to the given coordinate data assuming the standard
charge state of residues; Glu and Asp were deprotonated and Arg, Lys and His
protonated. Preceding the FMO calculations, a rough minimization (about 100
steps) was carried out with the Amber96 force field to remove unphysically
short contacts of atoms in the given protein geometry.
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Geometry optimization of tr288 was completed; the maximum gradient (MaxG)
was less than the convergence criterion of 5*10% Hartree/Bohr. The
computational time was 367 hours on 180 2.0 GHz Opteron CPUs. The
geometry optimizations of tr368 and tr370 were not completed by the deadline
and their final MaxGs were 1.5*102 and 4.4*10° Hartree/Bohr, respectively.
The reported geometries of these proteins, therefore, are not final.

Geometry optimizations of gasphase proteins often result in the proton
transfers along salt-bridges. In tr368 and tr370 proton transfers occurred along
several salt-bridges: Arg19-Aspl6, His41-Asp55, and His59-Asp55 (tr368), as
well as Arg71-GIn86, Asp48-Argl24 and Aspl54-Argl2 (tr370), and the
protons migrated between the acidic and basic sites during the optimizations.
According to our experience, the geometry distortion due to the proton-transfer
is limited to local regions and global conformations are not changed greatly.
The relatively small RMS gradient (4.6*10“ and 3.6*10* Hartree/Bohr, for
tr368 and tr370, respectively) suggests that the large gradient values are limited
to atoms involved in the proton-transfers and the gradients for the majority of
atoms are rather small. So the refined geometries of tr368 and tr370 at the
present level may be useful although their optimizations are not completed.

Because there was not enough time to perform the FMO calculation, the same
method as fams-multi team (see fams-multi abstract) had been applied for the
targets of tr322, tr362, tr367, and tr380. Famsmulti had participatedin
refinement experiment using Energy minimize & Molecular dynamics. Under
some constraint conditions to maintain no great conformatiornrchange, the
refined models were correctly revised for hydrogen bonds, main-chaintorsion
angles, side-chaintorsion angles and the decreasing collision between
hydrophobic atoms.

1. Fedorov D.G. and Kitaura K (2006) Modern methods for theoretical
physical chemistry and biopolymers, edited by E. Starikow, S. Tanaka and
J. Lewis, Elsevier, Amsterdam, pp. 3-38.

2. GAMESS, http://www.msg.ameslab.gov/GAMESS/GAMESS.html

3. Fedorov D.G.,Olson R.M.,Kitaura K., Gordon M.S,, Koseki S. (2004)
J.Comp.Chem., 25, 872-880.
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A coarse-grained Langevin molecular dynamics approach to de
novo structure prediction
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Team KORO focuses on de novo structure prediction. The strategy is based on
the Langevin dynamics simulation of the coarse-grained protein chain, in which
eachamino-acid residue is expressed as one particle’. First, we consulted the
3D-jury? and other servers to select the new fold targets from all targets. For
each target we selected, we prepared the fragment candidates for each 9-residue
window. And then, to simulate the folding process to make model structures of
these targets, short and long range interactions among amino-acid residues were
empirically constructed from these fragment candidates and from other known
proteinstructures. For short-range interactions, we constructed the two-body
and multi-body potentials to represent the 9-residuestructure from structure
information of fragment candidates. Thesepotentials should representthe
propensity of secondary structure and other local structure formation. For long-
range interactions, we constructed the neighboring-number potential and the
beta-sheet potential. The neighboring-number potential expresses the
hydrophobic interaction and the exclusive repulsion. This potentia was
constructed from the knownprotein structuresfrom which the fragment
candidates were abstracted. The parallel and anti-parallel associations of a pair
of beta-strands were represented by the betasheet potential. The strength of the
pseudo-hydrogen bonds between residues in beta-sheets were weighted by
using the prediction results of the BETAproS.

Using this coarse-grained model, the Langevin molecular dynamics simulations
were carried out for theselected targets starting from a sretchedlinear
configuration with simulated annealing. For smaller targets, a few hundred
folding simulations were carried out for each target to get low energy
structures. For larger ones, we carried out the folding simulations as much as
possible.

From thesestructures obtained from folding simulations we selected the model
structures by using the energy criterion and the cluster analysis. For smaller
targets, the model_1 and model_2 structures were the lowest and second-lowest
energy structures, andthe other 3 model structures were selected from the
results of the clustering analysis. For larger targets, we mostly selectedthe 5
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low-energy structures as the 5 model structures. Additionally, we sometimes
used SOSUIbreaker* ® to check the results.

1. Sasaki T.N., & Sasai M. (2005) A coarse-grained Langevin molecular
dynamics approach to protein structure reproduction, Chem. Phys. Lett.
402, 102-106.
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3. Cheng J., & Baldi P. (2005) Three-stage prediction of protein betasheets
by neura networks, alignments and graph algorithms, Bioinformatics 21,
Suppl 1;i75-84.

4. Ima K., & Mitaku S. (2005) Mechanisms of secondary structure breakers
in soluble proteins, BIOPHY SICS 1, 55-65.

5. Ima K.,Asakawa N.,Tsuji T.,Sonoyama M. & Mitaku S.(2005)
Secondary structure breakers and hairpin structures in myoglobin and
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Quality Assessment of 3D-models by LIBRA_rotamer
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In template-based modeling, and even in the case of template-free modeling, it
isimportant to select more accurate 3D-models among a pool of candidate
structures produced by a given appropriate way. However, our conventional
method to select the best model for a target sequence does not always succeed.
For that reason, a more effective scheme is required for 3D-model eval uation.
To this end, we used the new evaluation function, the socalled
LIBRA_rotamer.

The LIBRA_rotamer was originaly developed for threading and protein
sequence design. It checks side-chain packings, hydration, local conformations,
and repulsions of 3D-models. The side-chain packing term is a function of
amino acid pair types, spatial distances, and types of side-chain rotamers. A
rotamer library including 56 templates was used. The sidechainpacking
function is defined when the sequence separation is greater than four residues.
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The hydration function is defined by the number of surrounding heavy atoms.
The local conformational classes are defined by conformations of penta-peptide
fragments. The local conformational function is also defined for each rotamer
(seeref.1 for details).

We recognized that the correlation between the accuracies of our submitted
models in previous CASP and the scores of LIBRA_rotamer is better than those
obtained using our conventional method. In this study, we tested the ranking
ability of the function by assessing the quality of the models that were
submitted by prediction servers.

We ranked al submitted 3D-models by prediction servers using this evaluation
function, according to the assessment scheme in CASP7. Because the
coordinates of sidechain atoms are necessary for evaluation using the function,
only the structural quality scores for 3D-models that possess sidechains are
calculated. The correlation between the model accuracy and scores becomes
obscure at the bad (high) zone of scores. Therefore, we generaly ranked 3D-
models with good (low) scores only.

1. Ota M., Isogai Y. & NishikawaK. (2001) Knowledge-based potential
defined for a rotamer library to design protein sequences. Protein Eng. 14,
557-564.
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Prediction of protein function using local descriptors of protein
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Although tools such as BLAST® revolutionized experimental biology by
providingtestable hypotheses of protein function, identifyingfunctionally
characterized homologues using sequence similarity is only possible for less
than 50% of the proteins predicted from genome sequencing projects Since
structure is evolutionarily more conserved than sequence, it is believed that
experimental structures and predicted models from structural genomics projects
may provide a solution for the remaining proteins’.

We have developed a new method for representing and comparing protein
structure based on local descriptors of protein structure®. A local descriptor isa
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set of short backbone fragments centered in three dimensions around a
particular amino acid. A local descriptor is built by @) identifying all close
amino acids within a radius of 6.5 A, b) for each close amino acid, adding four
sequence neighbors, two from each side, to obtain continuous backbone
fragments of five amino acids, and ¢) merging any overlapping fragments into
segments. We first computed local descriptors from all amino acids ina
representative set of protein domains from PDB with less than 40% sequence
identity to each other (ASTRAL version 1.63%). Wethen constructed a library
of commonly reoccurring local descriptors by a) for each local descriptor
identifying the group of all structurally similar local descriptors and b) selecting
a set of 3720 representative, partially overlapping descriptor groups.

We represented all protein structures in ASTRAL in terms of structuraly
matching or not matching each of the local substructures in the descriptor
library. For CASP targets we matched the local descriptors to structures
predicted by Robetta’. In addition to structure, we added sequence information
in terms of PROSITE?® patterns and matches to families in Pfam’.

We used the ROSETTA system® to model the relationship between
sequence/structure and function with IFFTHEN rules. The rules consist of
minima combinations of properties (local substructures and/or sequence
motifs/families) (IF-part) that discriminate one molecular function from other,
discernible functions (THEN-part). Function predictions are obtained based on
the combined evidence given by all matching rules.

The rule model was induced based on 3963 Gene Ontology (GO)® annotation,
distributed over 87 molecular function classes, to 2541 proteins in ASTRAL.
Using 10 fold cross validation we were able to correctly predict 68% of these
annotation, and at least one correct prediction for 74% of the proteins, with
47% of the predictions being correct. For CASP, the GO predictions were also
mapped to EC numbers using ec2go.

The approach described here represent a model-based approach to function
prediction in which a general library of local substructures, capable of
assembling large parts of most proteins in ASTRAL, are used todescribe
proteinfunctions as given by aset of training examples.
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For the prediction of the 3D structures of 100 CASP7 targds, we have
developed a procedure which is based on globa optimization of score functions
in three levels. The whole procedure is composed of the following five steps:

1. Fold recognition: To collect fold candidates of a given target sequence, we
considered top scoring templates from the metaserver provided by
http://bioinfo.pl/~3djury, and another top scoring templates from an in-house
method called FoldFinder. FoldFinder is a profile-profile aignment method
utilizing predicted secondary structures. We have used a fold database of 17930
protein chains obtained from PISCES [1] at the 99 % sequence identity level.
After collecting these templates, we performed a preliminary assortment of
structural clustering often leading to 2 or 3 sets of template lists. These lists are
the input to the following procedure.
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2. Multiple sequence/structure alignment by MSACSA: This is the most crucial
and computationally time consuming part of the method. We have performed
multiple sequence/structure alignment for each template list obtained from the
fold recognition step. Unlike the other heuristic (progressive) alignment
methods popular in the literature, we have applied a rigorous global
optimization method to an in-houseconsistency-based scoring function similar
tothe COFFEE [2] by using the conformational space annealing [3] (CSA)
method. We have constructed a pair-wise restraint library generated from
profile-profile aignment between the query sequence and template sequences
and structure-structure alignment between templates using TM-align [4]. The
lowest scoring alignment among the 100 final ones from the CSA is used as the
input to the following 3D modeling step. The maximum number of templates
performed in the multiple alignment for this CASP7 was 25.

3.Modeling of the 3D structure by ModellerCSA: The 3D structures of target
proteins are constructed by optimizing the MODELLER [5] energy function
using the CSA method. For each multiple alignment (containing up to 25
templates), a total of 100 models are generated and they are used for the list
selecting procedure in the following step. This is the second most
computationally time consuming part of the method.

4, List selection and the clustering of models for final model selection: For
most cases, we have more than one list of templates, and we have applied a
neural network based in-house procedure to assess the quality of the models
obtained for each list. From the dominating winning list (if exists), we have
applied the clustering method SPICKER [6], to find the center model of the
cluster. We also selected lowest scoring models in terms of the Modeller energy
and/or DFIRE [7] energy. When there are competing lists, we have used more
than one list to select 5 models for final submission.

5. Side-chain modeling for selected targets by ROTCSA: For targets that we
have decided worth side-chain modeling, we have constructed side chains as
follows. For each list, a rotamer library is constructed based on the consistency
of the side chains in the final 100 models obtained in the step 3. To this library,
we have added a backbone dependent and sequence specific rotamer library
similar to the SCWRL3.0 [8]. Using the CSA, we have optimized an in-house
scoring function which contains energy terms from SCWRL and DFIRE.

1. WangG. andDunbrack R. L., Jr., (2003) Bioinformatics, 19;1589-1591
Notredame C.,HolmelL. and Higgins D.G. ( 1998)Bioinformatics
14(5);407-422

3. Lee J, Scheraga H.A. and Rackovsky S. (1997) J. Comput. Chem.
18;1222-1232

4. ZhangY.and Skolnick J (2005) Nucleic AcidsResearch, 33;2302-2309

5. SaiA. and Blundell T.L. (1993) J. Mol. Biol. 234;779-815

6. Zhang Y. and Skolnick J. (2004) J. Comput. Chem. 25(6);865-871


mailto:jlee@kias.re.kr

7. ZhouH. and Zhou Y. (2002) Protein Science, 11,2714-2726
8. Canutescu A.A., Shelenkov A.A. and Dunbrack R.L., Jr. (2003) Protein
Science, 12;2001-2014

L evitt - 8 modelsfor 8 TR targets
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Several molecular mechanics force fields are compared for their ability to
attract a near-native decoy protein structure towards the native structure. This
problem is closely linked to the techniques of protein homology modeling,
structure prediction, and refinement. A dataset of 75 structuraly diverse
proteins was constructed, and for each of these proteins 729 near-nativedecoys
were generated by perturbing the structure along its 6 lowest frequency non-
orthogonal normal modes. We tested several traditional molecular mechanics
potentials(AMBER99 [1, 2], GROMOS 43B1 [3], OPLS-AA [4], and ENCAD
[5]) using a powerfully convergent energy minimization method and show that,
of the traditional molecular mechanics potentials tested, only one, AMBER99,
showed a modest net improvement in <CRMS> over the set of near native
decoys. A smooth, differentiable knowledge-based pairwise atomic potential
was also generated in the manner of Skolnick [6], and was shown to perform
much better on this test than any of the traditional potential functionstested,
including AMBER99.
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We have developed CIRCLE! since previous CASP because we didn’t have
high-precision scoring function for tertiary structure. CIRCLE has capability of
evaluating tertiary structure with ligand optionally. Ligand-Circle aims for
selecting the best model having high accuracy binding site in server models
(TS+AL). So this team participated in TS category in CASP7.

Collecting server models

Server models were obtained from CASP7 home

(http://www?2.predictioncenter.org/index_serv.html).
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Generating refined model from servers

These models include tertiary structure (TS) and alignment (AL), and therefore
these were refined or changedto tertiary structure by FAMS®. If it was AL
format, a model was built based on this alignment. If it was TS format, a model
is refined by FAMS. We used all the server models as its template because
these models include CA model or having Iackingresidue. M oreover, our
CIRCLE 3D1D method needs side chain coordinates -

Superimposing and evaluating

Experimentally known structures having ligagndwere obtained and
superimposed to a refined server model using CE program®. The list of
superimposed PDBID was gotten from PARENT of server. PDBID not having
ligand was ignored.

Ranking refined models.
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CILCLE score with ligand was calculated for these refined model with ligand ,
and we ranked the order using this score.

Result

server name CHI1 server name chil
ROBETTA_TS1 5039 HHpredl TS1 4163
Pmodeller6_TS1 4995 HHpred3 TS1 4160
Pcons6_TS1 4847 3D-JIGSAW_POPULUS TS14139
FAMSD_TS1 4813 FOLDpro_TS1 4136
FAMS TS1 4755  beautshotbase TS1 4124
Zhang-Server_TS1 4700 BayesHH_TS1 4120
CIRCLE_TS1 4681 shub TSl 4106
Ligand_Circle TS1 4580 MetaTasser_TS1 4044
FUNCTION_TS1 4576 RAPTORESS TS1 4038
CaspltaFOX_TS1 4536 karypis.srv_TS1 4038
SAM_TO06_server TS1 4532 RAPTOR_TS1 4026
Bilab-ENABLE_TS1 4498 Kkeasar-server_TS1 4006
Phyre-1_TS1 4487 SP4 TS1 3992
Phyre-2_TS1 4457 SP3 TS1 3991
PROTINFO_TS1 4360 RAPTOR-ACE_TS1 3981
HHpred2_TS1 4229 SPARKS2 TS1 3960
beautshot_TS1 4188 LOOPP_TS1 3947
3Dpro_TS1 4172 3D-JGSAW_RECOM TS1 3913

(5 targets which Ligand-Circle can’t submit were not included)

This table shows x1 ranking of 76 server models at 2 Oct. 2006. “chil” means
the number of correct x1* We concentrated in the correctness of x1 angle since
the correctness in the binding site will depend upon that of x1 angle of the side
chain. Ligand-Circle is efficient.

1. See“CIRCLE: Full automated homology-modeling server using the 3D1D
scoring functions” item in this book.
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For CASP7 we tried a combination of server prediction and manual evaluation
and adjustment of alignment. First (Phase I), we applied a pipeline of programs
to each target and, second (Phase I1), we analysed the results based on a
database of multiple structural alignments of all pdb protein domains in order to
decide on known or new fold, superfamily and family. We submitted only
targets we think have a known fold and adjusted the computed alignments
based on the flexibility observed in the multiple structure alignments in our
database.

This database [Csaba, 2006] of multiple annotated structural alignments has
been determined based on a new measure of structural similarity, which tries to
account for some structural flexibility in protein structures. In addition to
optimizing structural criteria such as RMSD and TM-score the alignments also
try to conserve important functional and interaction sites of the proteins of the
respective class.

In Phase I, we applied SSEP-Domain [Gewehr et al., 2006] to determine
possiblestructural domains of the target protein and applied the following steps
to each of the detected domains separately. Then we used PsiBlast to identify
clear homologues, our new approach AutoSCOPe [Gewehr et al., 2006b] to
identify known families, superfamilies, or folds based on so caled ‘unique
patterns detected in the target sequence. In addition, we tried afold and family
recognition with several alignment methods: Profile-Profile-Alignment (PPA)
[von Oehsen et al., 2001-2005] of PsiBlast profiles for target and template with
additional secondary structure information, SSE-align [Gewehr et al, 2006] a
method matching predicted and actual secondary structure elements, and the
quite old 123D threading method [Alexandrov et a., 1996] enhanced with
profile information of target and template, or both, as well as secondary



structure information (123D+). For the alignments, we did not exploit
knowledge or parameters from multiple structure alignments.

In Phase 11, we manually analysed the results of PSiBlast, AutoSCOPe, SSE-
align, PPA, and 123D in order to identify a consensus of fold, superfamily, or
family and to select the best template. For this we also analysed the respective
alignments, i.e. we computed alignments for al possible templates with SSE-
aign, PPA and 123D+. The alignments were evaluated with QUASAR [Birzele
et al, 2005] checked with respect to coincidence of predicted and template
secondary structures and most important the fit of features of the target
sequence with features of the template class as derived from the multiple
structure database [Csaba, 2006; Gewehr et al., 2006a]. In a couple of cases we
manually adjusted the alignment to make it compatible with the predicted
functional sites known to be conserved in the multiple alignment ofthe
template. In addition, we used Vorolign [Birzele et al, 2006], a new structural
superposition method for identifying structurally similar proteins based on
Voronoi decompositions of the structures. Vorolign helped to find structurally
similar proteins for a candidate template and to judge conserved and flexible
parts of the template structure. Based on the multiple alignments and Vorolign
we often de-aligned parts of the target sequence in order to account for the
predicted structural flexibility in the target protein.
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LOOPP is a fold recognition program based on the collection of numerous
signals, merging them into a single score, and generating atomic coordinates
based on an alignment into a homologue template structure. The signals we are
using include straightforward sequence alignment, sequence profile, threading,
secondary structure and exposed surface area prediction. (Secondary structure
and exposed surface prediction program (sable) was developed in the group of
our collaborator Professor Jaroslaw Meéeller). These individual signas are
combined locally to create mixed models and globally to provide overall scores.
Computations of scores to those that can be done quickly are performed for al
proteins in our database and expensive scores (such as Z score calculations) are
computed only for those that score highly with the 'cheap' score.Atomic
models are then generated using an alignment produced by the scoring scheme
and the Modeller program of Andregj Sali. The final atomic structure is
evaluated by additional energy scores. The energies used, and the combination
of individual scores are determined by a Mathematical Programming algorithm.
The final models are processed with MESHI program of Chen Keasar
(http://www.cs.bgu.ac.il/~meshi/).
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This is a hybrid method that uses threading metaservers and molecular
modeling with a reduced representation of the protein conformational space.
The results from the servers are subject to 3D-jury (bioinfo.pl) scoring. The top
5-20 templates are selected, depending on the distribution of scores and mutual
structural alignment between the templates. The templates are a source of a
large number of distance restraints, which are subsequently used in the Replica
Exchange sampling optimization with a reduced lattice protein model. We used
essentially the same reduced-space CABS' modeling tool as the one used by
group Kolinski-Bujnicki during the CASP6 experiment, although the force field
of the model has been refined (larger database for statistical potentials) and
carefully optimized. The whole procedure has been automated with the
BioShell? package. In template-free targets contacts predicted by servers were
applied as week constraints. The best scoring structures are subject to the al-
atom rebuilding and a refinement using BBQ® and SYBYL methods. For the
purpose of the scoring of final models we have tested various MQAP methods
and developed a procedure that improves the model by means of all-atom
energy minimization. Extensive tests on substantial sets of decoys showed that
our selection scheme allows for assessment of the model quality. The top
scoring all-atom models were submitted to the CASP7 server.

1. Kolinski A. (2004) Protein modeling and structure prediction with a
reduced representation. Acta Biochimica Polonica 51 349-371

2. Gront D. & Kolinski A. (2006) BioShell - a package of tools for structural
biology computations. Bioinformatics 22, 621-622

3. GrontD., Kmiecik S. & Kolinski A. (2006) BBQ - Backbone Building
from Quadrilaterals. A fast and accurate algorithm for protein backbone
reconstruction from alpha carbon coordinates. submitted to J. Comp. Phys.
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Consensus distance matrices derived from server predictions
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Overview

Consensus distance matrices were derived from selected server predictions and
then used to guide anabinitio folding program. A semi-automated process
using the following five major steps was used: 1. models from the servers were
ranked and a number of top models were selected; 2. a consensus distance
matrix was constructed from these models; 3. the distance matrix was used in
the scoring function for ab initio folding; 4. full atom models were constructed;
5. the full atom models were ranked and the best model was selected for
submission to CASP.

1 Selection of server models:

Only server models that were full length were used. For al full lengthmodels
the Verify3D * scores were computed and from each server the model with the
highest score was selected. The selected models were then clustered based on
their Ca rmsd into groups with rmsd less than 3 between the structures in a
cluster and from each cluster the model with the best Verify3D score was
selected. The 10 best models were visually inspected and confirmed. In some
cases fewer were used in other cases more models from clusters were
reintroduced. The latter was mainly in situations where most models were very
similar. The selected models were used in severa places later on: to build
consensus matrices, as the structural block database for the folding and for the
reconstruction of the all atom models.

2 Construction of consensus distance matrices.

Each model selected in step 1 was converted into a Co distance matrix, the
matrices where then averaged and a consensus matrix was constructed with the
average distance if the standard deviation was less than 3 and O otherwise. If
the number of non zero distances was less than 30 times the number of Ca
atoms, the standard deviation cutoff was increased to 5. In situations where the
number of distances was still less than 30 per Co. atom, the number of models
used was reduced by eliminating the models with the lowest Verify3D scores or
the models with the largest Ca. rmsd from all the other models.



3 Folding:

A simplified structure representation was used for theabinitio folding. The
simplified models are based on a sequence of internal coordinates: the pseudo
torsion angles between four consecutive Co atoms and pseudo angles between
three consecutive Ca atoms. Different structures were generated by randomly
selecting blocks from the models selected in step 1 and substituting them into
thefolding model. To evaluate structures cartesian coordinates for the Ca
atoms were reconstructed using constants for all distances and the angles
needed to reconstruct the Ca positions. These structures were then evaluated
using a potential with a compactness function, a penalty for too close contacts,
and a function summing the deviation of the Ca distances from the consensus
distance matrix constructed in step 2. Structures were optimized using a
simulated annealing protocol to optimize the scoring function and the protocol
was run 10 times to generate 10 models. The 10 structures were then submitted
to a refinement step in which the pseudo angles were modified by small random
changes to further optimize the same folding potential.

4 Final all atom model construction:

First, the coordinates for the Co and Cf atoms were reconstructed using
constants for the bond Iengths. The backbone and sidechain atoms were then
reconstructed by selecting the closest five-residue fragment around each residue
from the initial models selected in step 1. The all atom structure was then
minimized with TINKER? using the steepest descent method and a stepwise
protocol that kept all C-alpha atoms fixed in the first step and allowed all atoms
to move in the last step.

5 Final model selection:

The final models were again ranked by their Verify3D scores and were visually
inspected. The model with the best score was submitted.

Conclusion

The approach presented here was based on using the models from the
automated prediction servers and was an attempt to capture the best structures
or substructures and use them to construct an improved prediction.

1. Luethy R., Bowie JU., and Eisenberg D.(1992) Assessment of protein
models with three-dimensional profiles. Nature. 356(6364): p. 83-5.

2. Ren P. and Ponder JW.(2002) Consistent treatment of inter-and
intramolecular polarization in molecular mechanics calculations. J Comput
Chem. 23(16): p. 1497-506.

73

M a-OPUS-Quality Assessment - 702 models for 99
3D/100 DP/99 QA targets

Model Quality Assessment Based on a Novel Ca-based
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In order to improve the model quality assessment in structural prediction, we
have specifically developed a new C -based empirical potential function. The
fundamental motivation is to cope with the fact that many modelsin prediction
are only in the form of C -traces. We specifically tried to avoid using any
other information, such as native backbone dihedral angles, since not all cases
will have such information readily available.

Thetotal energy consists of six terms:
E E + E

tot — tertiary pairwise + ESR + EHB + ESAS+ E3—bodyl

The first term in the right hand side of the equation, Ete”‘afy, is for the tertiary
packingenergy of two specific tri-peptides with corresponding secondary
structure type. The secondary structure types are -helix, -strand or loop, and
we use four-letter-code to coarse-grain the amino acid sequence. They are polar

(changed and uncharged) and non-polar (small and large) groups. The second

energy term, Epa"fW‘Se, is environment-associated di stance-dependent pair-wise
potential. The environment of a specific C atom is considered as buried or
exposed, depended on the number of neighboring C atoms within certain cutoff

distance. The third term, ESR, is a short-range energy term. The conformation
of each local fragment including five consecutive C atoms is taken into
account. This energy term presents the structural preference of certain loca

fragment. The fourth term, EHB, is an orientation-dependent potential which
considers the spatially anisotropic preference of hydrogen bonds. The fifth

E

term, “—sAs, is related to the solvent accessible surface of each amino acid.

Then, the last term, E?rbody, is athree body energy term in order to include the
multi-body potential to take into account of effect of all three residues that



make spatial contact in long range. All the statistical distribution is obtained
from a structural non-redundant database of non-homologous soluble proteins
1

Using this new potential function, we were able to recognize 21 out of 25
standard decoy sets 2, which includes four groups: 4state Reduced Decoy sets
3, FISA and FISA-casp3 Decoy sets4, LATTICE_SSFIT Decoy sets5, and
LMDS Decoy sets6. To our best knowledge, there is no report in literature of
pure C-based potentia that reaches this level of performance. Thus, our new
potential is a substantial progress in C-coarse-graining level.

In CASP7, we used this scoring function to assess all the server models
submitted within 48-hours after the target releasing. The ranking of each model
is according to the energy calculated by our C-based potential.

1. Wang G. & Dunbrack, R.L., Jr. (2003) PISCES: a protein sequence culling
server. Bioinformatics 19, 1589-91.

2. Tobi D. & Elber R. (2000) Distance-dependent, pair potential for protein
folding: results from linear optimization. Proteins 41, 40-6.

3. Pak B. & Levitt M. (1996) Energy functions that discriminate X-ray and
near native folds from well-constructed decoys. J Mol Biol 258, 367-92.

4, Simons K.T., Kooperberg C., Huang E. & Baker D. (1997) Assembly of
protein tertiary structures from fragments with similar local sequences
using simulated annealing and Bayesian scoring functions. J Mol Biol 268,
209-25.

5. Xia Y., Huang E.S, Levitt M. & Samudrala R. (2000) Ab initio
construction of protein tertiary structures using a hierarchical approach. J
Mol Biol 300, 171-85.

6. Keasar C. & Levitt M. (2003) A novel approach to decoy set generation:
designing a physical energy function having local minima with native
structure characteristics. J Mol Biol 329, 159-74.
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In de novo structure prediction, it is still a monumentally challenging issue to
determine the overall topology of relatively large proteins, especially the B-
sheet-containing proteins. We developed a suite of novel computational

T0201

Native

Fig.1 Topology models for two typical hard targetsin
CASP6. Results are presented together with the native

structure.



agorithms to specifically cope with this problem— OPUS, a radicaly new
protocol that determines protein topology by a multi-scale, multi-layer and top-
down prediction strategy.

Structural candidates for topological screening were first generated in such a
way that the secondary structural elements (SSE) were initially aligned on a
predefined lattice space. By that, al the potential topological connectivity can
be enumerated. We found that such a novel top-down strategy was very
efficient in terms of discrete sampling of protein topology space.

For each topological candidate on lattice, we applied two layers of filter to nail
down the native topology. The first, which is aso the most important filter, is
based on a new -strand-contact predictor:

Strand Contact Predictor

The core module of our top-down folding method is the -strand-contact
predictor. Four types of residues, Val, Ile, Leu, and Phe (VILF), were chosen as
characteristic anchors in coarse-graining and determining the -strand-
contacts. With VILF-signatures, we derived three topological filters and four
statistical scores from the non-redundant protein-database 1. Given a query
sequence, all possible -strand-contact sets were first evaluated by filters.
Then, the survived sets were ranked by the summations of four scores
according to VILF-signatures. We retrospectively tested this -strand-contact
predictor on 25 targets up to size of 284aa (taken from the difficult targetsin
CASP5 and CASP6). There were 16 proteins whose entire set of native -
contacts were within top 15 in ranking. The remaining nine targets on average
had about 85% of their native -contacts within the top 15 in ranking. The top
15 topological candidates constructed on lattice were sent for further filtering in
next step, which was the commonly used 3D-Jury method 2. The -helices,
which in most times pack around  -sheets, were modeled accordingly based on
the beta topology.

In Fig.1, we demonstrate two difficult targets in CASP6 that we got the
topology right, while no other group did. We argue that the ability to establish
topology, in a de novo sense, for larger proteins is extremely important for
pushing structure prediction beyond current level, especially when most of
predictions are still assessed by GDT scores 3, which are not sensitive to the
correctness of overall topology once the scores are below certain level.

1. Wang G. & Dunbrack R.L., Jr. (2003) PISCES: a protein sequence culling
server. Bioinformatics 19, 1589-91.

2. Ginalski K., Elofsson A., Fischer D. & Rychlewski L. (2003) 3D-Jury: a
simple approach to improve protein structure predictions. Bioinformatics
19, 1015-8.

3. Zemla A., Venclovas C., Moult J. & Fidelis K. (1999) Processing and
analysis of CASP3 protein structure predictions. Proteins Suppl 3, 22-9.
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We have developed a novel computational method for predicting domain
boundary. The essence of the method is based on a new coarse-grained de novo
folding algorithm, called SKELEFOLD, which generates an ensemble of low-
resolution structural models by folding the skeletons of protein. Moreover, we
have aso incorporated three sequencebased filters to give consensus
evaluation. By testing the new method on all multi-domain protein targets in
CASP6, we obtained overal sensitivity of 75% and specificity of 67%. The
results are substantially better than the published results in literature?.
Most importantly, our new method predicts the domain boundary in a truly de
novo sense, i.e., it doesnot rely on any help from sequence homology
information. Fig.1 gives atypica example of CASP6 target, T0216, which was
one of the most difficult targets in CASP6 new-fold category. The domain
boundary was correctly defined by
our denovo method. Throughout the
text please use Times New Roman,
10pt. and sinqle_ %pacing. Please use
thefollowing®>' ® citation scheme.
Skip one line between paragraphs. No
indentations. Please skip one line
before the literature block.

SKELEFOLD Method

SKELEFOLD uses coarse-grained
vector representations for secondary
structural  elements (SSEs), i.e, a-
helices, pB-strands and loops. A
geometry-based  scoring  function
describing packing preference of
SSEs in the vector representations
was first extracted from a non-
redundant protein structure database
2. Meanwhile, a motif library was

T0216 (CASP6)

Fig.1 The domain boundary of CASP6
target T0O216 is marked on the native

structure.



constructed by recording the local internal coordinates of al five-adjacent-
secondary-structure fragments from the same database. Then, given the query
sequence, a profile-based dynamic programming method was used to select
fragment candidates from the library. Guided by the geometry-based scoring
function, the initially extended skeleton can be folded into a compact tertiary

structural model. Finally, Ca. trace was constructed from the vector model.
Domain Boundary Deter mination

For each query sequence, once SSEs were assigned by PSIPRED 3, we used
SKELEFOLD to generate 10,000 compact structural models. The domain
boundary for every one of the 10,000 models was analyzed by DOMID
software (http://bicinfol.mbfys.|lu.se/Domid/domid.html). Along the sequence,
a frequency profile was constructed by recording the occurrence of being
identified by DOMID as domain boundary. This profile was then normalized to
Z-scores. All the residue positions with Z-score larger than 1.0 were regarded
as potential candidates for domain boundary.

For the potential domain boundary candidates generated from SKELEFOLD,
three sequence-based filters were applied to give consensus evaluation. 1)
Residue entropy index (REI) filter * was based on the hypothesis that the
domain boundary is conditioned by amino acid residues with a small value of
side chain entropy, which correlates with the side chain size. 2) Domain linker
index (DLI) filter®> was derived from the log ratio of the amino acid
composition of linker regions to compact domains. 3) We developed a new
filter, domain boundary profile library (DBPL). It was to provide the profile
information at domain boundary regions from the learning of the same non
redundant structure dataset 2. The three filters can produce three additional Z-
score profiles aong the sequence with the more negative value of Z-score the
better since the filters are energy-like in nature. Finaly, for the potential
domain boundary candidates from SKELEFOLD, we would confirm the
domain boundary if at least one of the filter indicates a Z-score less than -2.5

within +15 residues of the candidate boundary position.

We'd like to point out that, although our novel method itself does not have to
rely on any homology information and excellent sensitivity and specificity
values have been obtained on the CASP6 targets, we used following strategy in
CASP7 competition purely for the sake of safety and efficiency on easy targets.
Weemployed a hierarchical screening Qrocedure by using BLAST, PSI-
BLAST © and threading method FFASO3’ to eliminate regions in the query
sequence that have obvious domain homologies in known structures, then we
applied our new method for the remaining hard regions or the whole hard
targets.

76

1. Kim D.E., Chivian D., Mamstrom L. & Baker D. (2005) Automated
prediction of domain boundaries in CASP6 targets using Ginzu and
RosettaDOM. Proteins 61 Suppl 7, 193-200.

2. Wang G. & Dunbrack R.L., Jr. (2003) PISCES: a protein sequence culling
server. Bioinformatics 19, 1589-91.

3. Jones D.T. (1999) Protein secondary structure prediction based on
position-specific scoring matrices. J Mol Biol 292, 195-202.

4. Galzitskaya O.V. & Menik B.S. (2003) Prediction of protein domain
boundaries from sequence alone. Protein Sci 12, 696-701.

5. Dumontier M., Yao R., Feldman H.J. & Hogue C.W. (2005) Armadillo:
domain boundary prediction by amino acid composition. J Mol Biol 350,
1061-73.

6. Altschul SF., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W.
& Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res 25, 3389-402.

7. Rychlewski L., Jaroszewski L., Li W. & Godzik A. (2000) Comparison of
sequence profiles. Strategies for structural predictions using sequence
information. Protein Sci 9, 232-41.

Meller - 97 modelsfor 97 PR targets

Contact Prediction Using Artificial Neural Networks
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Packing of secondary structure elements (SSEs) are shown to be an important
aspect in protein folding. Methods predicting contacts between amino acids, in
the interfaces of SSEs, provide valuable information helping predict tertiary
structure of de novo and hard fold recognition targets' . Therefore, a reliable
residue-residue contact prediction method based only on sequence information
would be able to reduce the conformational search space vastly in de novo fold
prediction. We have developed a method where artifical neural networks
(ANNSs) are trained with data extracted from ~1800 proteins from a non
redundant fold database’ (less than 25% sequence identity) to differentiate
between contacts and non-contacts.

The ANNSs require an input of two sequence windows spanning the potentially
interacting SSEs, having the two directly contacting amino acids in the center.
The length of these sequence windows was chosen to be 9 residues for o-
helices and 5 residues for B-strands. In result both SSEs have about the same
length of 12 A for the interaction interface. For each amino acid in these
windows, predicted secondary structure ( JUFO® ), position specific scoring



matrices from PSI-BLAST and a property profile are used as input. Five
separate ANNs were trained for helix-helix, helix-strand, strand-helix, strand-
strand and sheet-sheet interactions.

For an independent set, a fixed threshold has been applied on the probability
outcomes from ANNSs for decision on whether each residue couple is predicted
to be in contact or not. The predictions had an accuracy of 73-79% accuracy
(varying depending on the contact type), while 10% of non-contactswere
falsely identified as contacts. When looked at predictions with receiver
operating characteristic (ROC) curves, the areas under the curves were found to
be 78-83%. The contact predictions were also converted to a scoring function
and were shown to be successful in differentiating between native-like and non-
nativestructures.

It is expected that high-resolution training of ANNs will increase accuracy of
the predictions and result in a further reduction of search space for de novo fold
prediction.

1. GranaO., Baker D., MacCallum R.M., Méiler J., Punta M., Rost B., Tress
M.L. & Vaencia A. ( 2005) CASP6 assessment of contact prediction.
Proteins. 61, Suppl 7:214-224.

2. Wang G. & Dunbrack R.L.(2003) PISCES: a protein sequence culling
server. Bioinformatics, 19, 1589-1591.

3. Meiler J. & Baker D. (2003) Coupled prediction of protein secondary
structure and tertiary structure. Proc Natl Acad Sci. 100, 21: 12105-12110
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1

TheMeta-DP domain prediction meta server provides a simple interface to
predict domains in a given protein sequence using a number of domain
predictionmethods. The MetaDP is a convenient resource because through
accessing a single site, users automatically obtain the results of the various
domain prediction methods along with a consensus prediction. In addition to
the results of individual domain prediction methods, Meta-DP computes and
reports consensus prediction using a "majority vote" or a "weighting scheme” in
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case of atie. The MetaDP is currently coupled to eight domain prediction
servers and can be extended to include any number of methods. In last
CAFASP experiment, Meta-DP was also used to evaluate the performance of
thirteen domain prediction methods in the context of CAFASP4-DP. The Meta-
DP server is freely available at http://meta-dp.cse.buffalo.

1. Saini H. R. and Fischer D. (2005) Meta-DP: Domain Prediction Meta
Server. Bioinformatics 21, 2917-2920.
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MetaTasser: A 3D-jury threading approach with TASSER model
assembly/refinement
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J. Skolnick
Center for the Study of Systems Biology, Georgia Institute of Technology
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MetaTasser employs the 3D-jury® approach to select threading templates from
SPARKS2 2, SP3 ® and PROSPECTOR_3*, which provide aligned fragments
and tertiary restraints as input to TASSER °. In our implementation of the 3D-
jury approach, the ten top-scoring templates from each threading methods are
compared with each other using the structural alignment algorithm TM-align °
and TM-score ’ is used as the similarity measure. The 3D-jury score is sum of
pairwiseTM-score for each template and is used to rank the templates. In
TASSER °, the template derived continuous fragments blocks are kept rigid and
are off-lattice to retain their geometric accuracy; unaligned regions are modeled
on acubic lattice by an ab initio procedure and serve as linkage points for rigid
body fragment rotations. Parallel Hyperbolic Monte Carlo (MC) sampling
(PHS) 8 is used to explore conformational space by rearranging the continuous
fragments excised from the template. Conformations are selected using an
optimized force field, which includes knowledge-based statistical potentials
describing short-range backbone correlations, pairwise interactions, hydrogen-
bonding, secondary structure propensities, and consensus contact restraints.
Multiple TASSER simulations are performed for each target sequence.
Subsequent to TASSER simulations, the structures are clustered using
SPICKER °. The top five cluster centroids are submitted as final models after
building side-chain using PULCHRA.
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As afirst time participant in CASP our goal was to establish a semiautomatic
workflow by combining existing methods for fold recognition with our
refinement algorithms and testing certain heuristics for the selection at each
step.

Template Selection:

Templates were selected manualy from 3D-Jury [1] predictions. Preference
was given to high 3D-Jury-scores and agreement between the secondary
structure of the template and the predicted secondary structure of the target
sequence. For targets which were obviously not CM targets, 3D-Jury
predictions from fold recognition servers were preferred. For the second half of
the CASP targets we preferred to take the 3-4 templates from different SCOP
folds. In few cases where there were no significant 3D-Jury-scores and we
suspected that the secondary structure prediction might be wrong we used
additionally a fragment based search in the PDB to assess which parts of the
PSlIpred prediction might be wrong. We did not perform any domain parsing.
For a few targets we used templates from the server predictions.

Structure Search:

We searched the fold space [2] employing the CABS program from the
Kolinski group [3]. This paralel tempering Monte Carlo program was run using
constraints from the respective 3D-Jury templates and secondary structure
prediction by PSlpred 2.5 [4]. We used 32 replicas for sequences with less than
200 residues and 64 replicas for proteins with longer sequences. Simulations
performed between 15,000 sweeps for long sequences and 100,000 sweeps for
short sequences. For each target we used several different constraints settings.

Clustering:

Clustering was performed using hierarchical clustering with HPCM [5] using a
fixed difference in RMSD of 2.5 A as clustering radius.

Cluster Selection:

Structure clusters were selected based on cluster averages of CABS energy, and
structure similarity (TM-score) to the PDB structure on which the 3D-Jury
template was based [6]. Most often we selected those clusters which were in the
top 20 for both measures. In ambiguous cases secondary structure content and
cluster size was taken into account as well. If too many structures fulfilled the
criteria, up to 50 structures were selected manually.

Regularization and Minimization:

Averaged structures from the selected clusters were subject to regularization by
SMMP [7]. Regularized structures were ranked according to the total and
partial energies of the structures in SMMP, and in particularly ambiguous
cases, the consistency of this ranking with a similar ranking based on energy
terms of PROFASI [8]. 5 to 10 structures ranked best with this procedure were
selected for refinement. For most structures, refinement consisted of a set of
constrained simulated annealing runs with SMMP, starting from very high
temperatures. Most structures dissolved and reformed into local minima of the
potential that were close to the input structures of the refinement procedure.
The final structures from different annealing trajectories were once again
ranked following a similar procedure as above. In a few cases, local minima
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structures obtained from constraint-free parallel tempering runs with PROFASI,
starting from random initial states in an al-atommodel, were evaluated and
ranked based on their partial energies and compactness.

Final Selection:

Final selection and ranking was based on several energy terms, secondary
structure content and visual inspection.
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Loop refinement and geometry optimization: key steps in
protein modeling
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When modeling proteins, all modelers go through usual proceduresi.e.
searching proper template(s), finding the best alignment(s), predicting the most
accurate secondary structure prediction, forecast folding of the protein in super

79

secondary structure and tertiary structure, qualify and assess all gathered data
and finally do protein modeling and assessment. They usualy go back and
improve the models by using different template(s) and alignment(s) and repeat
modeling until the best model fulfills them and meet the reality.! Lots of sites,
servers, computers and software are exploited during a protein modeling project
however some modelers develop their own facilities including software and
algorithms. The challenge appears when trying to resolve a model for the entire
protein including loops.“ Loops are parts of proteins which fold as they want
and can affect the quality and accuracy of a protein.

We report here a deep trial study of loop refinement in improvement of
modeled proteins of 13 CASP7 targets. As mentioned, this study utilized usual
procedures to fined template(s), alignment, secondary structure prediction,
folding prediction, motif prediction, modeling and quality assessment of
CASP7 targets. UCLA, NCBI and EBI sites, ExPasy, PDB, FUGUE and PSSM
servers and many other bioinformatics web sites and servers as well as software
such as MODELLER 8v2, MolMoal, ViewerLite, Autodock, Chem3D, Rasmoal,
etc. applied for modeling the targets. What_Check, ERRAT, and verify3D were
the methods of protein 3D structure assessment to assess stereochemistry, atom
environment and solvent accessibility of models respectively. Tria-error
method was the choice until no more improvement was achieved for models.
Then models were energy minimized as whole and improper loops separately.
Different windows were selected on loops for energy minimization and the
windows were shrunk until a few residues remained unrefined .Problematic
residues in loops were then selected and minimized in third step until changing
the conformation of those residues were not advantageous any more. In the
forth step other residues of neighbor segments of the protein in a 3D
environment which were not necessarily the neighbor residues in the raw
sequence were minimized with the problematic loop residues together in a box
using MODELLER’sloopmodel class. Finally, the whole proteins were energy
minimized by Means of MM+. RMS gradient was decreased in a step wise
approach. It was of surprise to see that energy minimization, whileimproving
model’s performance in tests dramatically, could damage the structure’'s
performance if excessively applied. This approach could magically refine the
problematic loops so that the ERRAT test often raised up to 90-100%. Of
course model improvement was tracked during the model refinement applying
What_Check, ERRAT, and verify3D methods. 17 CASP7 models submitted by
our team looks promising and show high quality compared to the released
structures of the targets.

We think there is still way to set up satisfying method for enhancing the folding
of loops due to the nature of loops, their exposure to the surface of proteins and
their size. But when facing a protein in which loops could play a critical role
like antibodies or proteins interacting other proteins one must always be careful
about the quality of the loops.
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exchange simulation methods for local structure refinement. J Phys Chem
B Condens Matter Mater Surf Interfaces Biophys. Apr, 28;109(16):8220-
30.
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Ab initio protein folding
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Our method for protein structure prediction composed of three parts; "local
structure prediction” which determines the structure of 4 consecutive amino
acids; "global structure prediction” performed by flexible score (Disorder) and
burial score of each amino acid that forms protein; construction of complete
protein structure by "domain-domaindocking" between 2 domains or fragments
(composed of more than 20 amino acids).

In order to predict local structure, we abstracted fragments of 4 consecutive
amino acids from PDB, and then constructed local structure databasethat
classified sequence, structure and environment data. When query sequence is
given, we pull out the local structure with the highest score from local structure
database. We define the local structure as 9 structures; apha-helix, near- alpha-
helix (2), extend (3), and coil (3).

For prediction of location (core or surface) of each amino acid that forms
protein, we used flexibility and burial of amino acid. We placed amino acid
with high flexible score and low burial score on the surface, while amino acid
with low flexible score and high buria score is placed in core.

Since the part with very high flexible score(mostly coil) have various
structurespossibly, no folding process is carried outfor this part. Structure
predictionfor flexiblepart would not only be inaccurate but would also have
negative effects on the structure prediction for the other parts.

For one protein sequence, when severa domains and fragments (composed of
more than 20 aminoacids) are acquired, instead of one entirestructure,
completionof the protein structure is done by "domain-domain docking". The
initial structure is set so that the cores (where amino acids with low flexible
score and high buria score is distributed) of the domains come in contact with
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each other, then we search for the structure which would have the highest
foldingscore. After domain-domain docking carried out, loop modeling is
done.

1. BermanH.M.,Westbrrok J., Feng Z., Gilliland G., Bhat T.N., Weissing H.,
Shindyalov |.N.,Bourne P.E. (2000) The Protein Data Bank. Nucleic
Acids Res. 28, 235-242.
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Sidechain optimization using NanoDesign
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2. Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
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The tertiary structures for CASP7 targets were generated by Nanormics protein
modeling system (NanoModel) which generates protein tertiary structures with
fully automated manner. The structures of sidechains generated by NanoM odel
were then optimized by using Nanormics protein design engine (NanoDesign).
In the optimization procedure, the sidechain conformations were taken from
Dunbrack backbone-dependent rotamer library!. Because the number of
rotamers is very large, the Dead-End Elimination (DEE) agorithm®®was
applied to reduce the number of them. Rotamer/rotamer pair energiesand
rotamer/template energies were calculated using AMBER forcefield. A pair of
atoms was defined as clashing if their van der Waals energy is greater than 3.0
kcal/mol and all rotamers that clash with the template were excluded. Using the
reduced rotamers, the energies of protein were calculated in all possible
mutations of considered residues which were generated by exchanging one
rotamer for another. The energy terms included in the calculations were van der
Waals, electrostatic, and hydrogen bond interactions. A Lennard-Jones12-6
potential were used for van der Waals interactions and the van der Waals radii
of all atoms were scaled by 0.9. A distance dependent dielectric constant was
used for electrostatic interactions. Hydrogen bonds were represented by 12-10
potential which is dependant on distance and angle.

1. Dunbrack R.L. J & Cohen F.E. (1997) Bayesian statistical analysis of
protein sidechain rotamer preferences. Protein Science 6, 1661-1681.

2. Desmet J., De Magyer M., Hazes B. & Lasters I. (1992) The dead-end
elimination theorem and its use in protein side-chain positioning. Nature,
356, 539-542.

3. Goldstein R.F. (1994). Efficient rotamer elimination applied to protein
side-chains and related spin glasses. Biophys. J. 66, 1335-1340.
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NanoModel: Protein structure modeling pipeline
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Protein structure modeling pipeline, NanoModel combines the results of
sequence alignments and fold recognition alignments to find suitable
templates. Model building is carried out using Junctional Fragment Matching
(JFM) method, and created models are evaluated by solvent accessibility and
residue-residue contact scores.

Template structure identification

To identify atemplate structure, we used five iterations of PSI-BLAST! against
protein sequence database. In case that templates are uncertain, we used fold
recognition method which searches sequence structure alignment by dynamic
programming algorithm, using sequence property and secondary structure.

Protein modeling

Insertion/deletions parts in sequence structure alignment are modeled using
similar fragment from Protein Data Bank. Side-chains of conserved residue are
fixed and the others are adjusted by side-chain rotamer library. The energy
minimization was then performed.

Model evaluation

From multiple sequences alignment we get consensus buried and exposed
regions. Residue-residue contact prediction is achieved by neural network.
Then, model structures are evaluated by the criteria set with solvent
accessibility and residue-residue contact scores.

1. Altschul S.F.,Madden T.L., Schaffer A.A.,Zhang J., Zhang Z., Miller W.
& Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
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NFOL D - 500 models for 100 3D targets

Fully automated protein fold recognition using a modified
version of the nFOLD protocol

L.J. McGuffinl
1 — The Bioinformatics and Systems Biology Unit, The BioCentre, The
University of Reading, Whiteknights, Reading RG6 6AS, UK
|.j.mcguffin@reading.ac.uk

Tertiary structure predictions were submitted in the automatic server category
using a modified version of the original nFOLD 2protocol The original version
of NFOLD"? aimed to extend mGenTHREADER?* through the incorporation of
three additional inputs to the underlying neural network. These extra inputs
included; the Secondary Structure Element Alignment (SSEA) score, a model
quality assessment score from MODCHECK* and a functional site detection
score, from a modified version of the MetSite® method, which was used to
evaluate whether or not the functionally important residues were correctly
positioned in the model. The neural network of the original version of nFOLD
was trained on model quality scores using the MaxSub® method, in an attempt
to optimize ranking of models.

The original method worked to some extent in that it showed some
improvement over mGenTHREADER in CASP6, on the harder targets.
Remarkably, the method also prowded one of the best predictionsoverall for
the new fold target T0248 (domain 2)%. However, the improvement on hard
targets appeared to be offset by the performance on easier targets where no real
improvement was shown. It was clear that both the functional site scoring and
thetraining of the method using the MaxSub scores were not optimal, therefore
a few improvements have been made to the new version.

The new version of nFOLD essentially maintains the original idea, in that it
attempts to select the best models built from mGenTHREADER alignments
using a number of different scores. However, the MetSite score has been
removed and replaced by two new scores- ProQ-LG and ProQ-MX -obtained
from the ProQ” method for model quality assessment. In addition the neural
network for the new version of nNFOLD is trained to rank models based on the
TM-scores®.

1. Bryson K.,McGuffin L.J.,,Marsden R.L.,Ward J.J., Sodhi J.S. & Jones
D.T. (2005) Protein Structure Prediction Servers at University College
London. Nucleic Acids Res. 33, W36-8.

2. Jones D.T., Bryson K., Coleman A., McGuffin L.J., Sadowski M.I., Sodhi
JS. & Ward JJ. (2005) Prediction of novel and analogous folds using
fragment assembly and fold recognition. Proteins. 61 (S7), 143-51.



3. McGuffin L.J. & Jones D.T. (2003) Improvement of the GenTHREADER
method for genomic fold recognition. Bioinformatics. 19, 874-881.

4. Pettitt C.S.,McGuffin L.J. & Jones D.T. (2005) Improving sequenced
based fold recognition by use of 3D mode quality assessment.
Bioinformatics. 21, 3509-3515.

5. Sodhi J.S.,Bryson K., McGuffin L.J., Ward J.J., Wernisch L. & JonesD.T.
(2004) Predicting metal binding sites in low resolution structural models. J.
Mol. Biol. 342, 307-320

6. Siew N.,Elofsson A., Rychlewski L. & Fischer D. (2000) MaxSub: an
automated measure for the assessmentof protein structure prediction
quality. Bioinformatics. 16, 776-85.

7. Wallner B. & Elofsson A. (2003) Can correct protein models be identified?
Protein Sci. 12, 1073-1086.

8. Zhang Y. & Skolnick J. (2004) Scoring function for automated assessment
of protein structure template quality. Proteins, 57, 702-710.
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DomAnNS method — the new approach used for predicting
domains boundaries in proteins
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The new method of prediction of proteins domains boundaries called DomAnS
has been proposed. The DomARNS approach predicts protein domains using a
combination of information in the form of templates, fragments patterns and
segments. The templates are chains of length from two to twenty amino acids.
Each template represents, in the middle of the chain, domain boundary (“cut
place”). Taking into consideration all possible combinations of cut places, there
are four main types of templates. The first type, domain-domain template (DD),
contains the domain boundary from both sides of the cut place. The second
type, domain-fragment template (DF), encloses the domain boundary from the
left side of the cut place and a fragment from the right side. The fragment-
domain template (FD) is a reverse of DF template type. The last type of the
template, domain-fragment-domain template (DFD), contains the domains
boundaries at the ends of the template and the fragment between these domains
boundaries. The fragments patterns are chains of amino acids which are not
classified to any protein domain. They have length from one to even several
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hundred amino acids. The segments are the pieces of protein domain. Each
segment contains the templates of start and end of each discontinuous domain.

All these combination of information is stored in database created specially for
the DomANS method. Templates, fragments patterns and segments from this
database are derived from four domain classification databases: Dali Domain
Dictionary (Holm and Sander), CATH (Orengo et al.), SCOP (Murzin et a.)
and Pfam (Sanger Institute). The first three databases contain detailed and
comprehensive description of the structural classification and evolutionary
relationships among all proteins whose structure is known. These proteins
structures can be found in Protein Data Bank (PDB). The Pfam database
contains only a collection of multiple sequence alignments and hidden Markov
theoretical models covering many protein domains whose structure is not
known. These structures can not be found in PDB.

The DomANS approach first tried to adjust al possible templates of length from
eight to twenty amino acids with protein input sequence. After that, fragments
patterns are analyzed. The aim of this part of process is to remove all templates
with cut place which is on the boundary between domain and fragment.
Moreover, any of the fragments patterns can not be aigned to fragment part
from analyzed template. At the end of the DomAnS method existence of
discontinuous domains are checked by using, stored in the database, the
segments.

NN_PUT_L AB - 279 modelsfor 94 3D/ 93 DP targets

3D Judge — meta predictor for 3D protein structure
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3D-Judge is a selector meta-predictor. It produces exactly one model as its
output having N models (from a set of different N servers) as its inputs. The
decision which model should be produced as the output is made based on the
following information:

1. The similarity matrix (similarity of pairs of models produced by individual
Servers).

2. Historical data (models and its evaluations).



3D-Judge uses an artificial neuron network (ANN) in order to choose the best
model among models produced by predictors. Each of NxN input neuron of
ANN is assigned to one similarity matrix coefficients. ANN has N otput
neurons. As historical data (on which ANN was taught) we have used CASP6
publicly available models. We have used GDT (Globa Distance Test) as
similarity measure between two models. As ANN we have used FANN (Fast
Artificial Neural Network Library).

3D-Judge uses the following servers: mGenThreader, GenThreader, nFOLD,
FUGUE2, LOOPP, ZHOUSPARKS?2, zhousp3, PROTINFO, ESyPred3D.

1. Zemla A. (2003) LGA - a Method for finding 3D similarities in protein
structures. Nucleic Acids Research. 31,3370-3374.

2. Nissen S. (2003) Implementation of a fast artificial neural network library
(FANN), Department of Computer Science University of Copenhagen, The
university report.

Oka - 206 modelsfor 4 3D/100 DP/99 DR targets

Entropy capacity determines protein folding rate
0O.V. Galzitskayaand S.O. Garbuzynskiy

Institute of Protein Research, Russian Academy of Sciences
ogalzit@vega.protres.ru

Search and study of the general principles that govern kinetics and
thermodynamicsof protein folding generate a new insight into the factors
controlling this process. Here, based on the known experimental data and using
theoretical modeling of protein folding®, we demonstrate that there exists an
optimal relationship between the averageconformational entropy and the
average energy of contacts per residue, that is an entropy capacity?, for fast
protein folding. Statistical analysis of conformational entropy and number of
contacts per residue for 5818 protein structures from four general gructural
classes® (all-a, all-B, a/B, a+B) demonstrates that each class of proteins has its
own class-specific average number of contacts (class o/f has the largest number
of contacts) and average conformational entropy per residue (class all-a has the
largest number of rotatable angles @, § and X per residue). These class-specific
features determine the folding rates: al-a proteins are the fastest folding
proteins, then follow al-f and a+B proteins, and finally o/f proteins are the
slowest ones. Our result isin agreement with the experimental folding rates for
60 proteins®. This suggests that structural and sequence properties are important
determinants of protein folding rates.
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averageside-chain entropy for fast protein folding, Protein Sci. 9, 580-586.

3. Murzin A.G.,Brenner S.E.,Hubbard T. & Chothia C. (1995) SCOP: a
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seguences and structures, J. Mal. Biol. 247, 536-540.
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‘Threading’ with structural profile
Y.H€&, X.M. Pan™ 2"

-Department of B|olog|cal sciences and biotechnology, Tsinghua University,
Beijing, China, 2-National Laboratory of Biomacromolecules Institute of
Biophysics, Chinese Academy of Sciences, Beijing, China
pan-xm@mail.tsinghua.edu.cn

Sincehomology modeling isdtill the most effective method for building
structures, we have focused on the issues of template searching and alignment
as well as evaluation.

In this CASP, our strategy i s straightforward. First, to investigate whether the
target is a multi-domain protein or whether it has conserved domains, two
different methods are used — searching NCBI CDD* database by RPS-BLAST
and searching PFAM? database by HMMPFAM in HMMER?® package. If there
is no significant evidence to confirm the target has conserved domains, then it
may be a protein with new fold. Or if the target has multiple domains, it will be
split into single domains. Second, the target or domain sequence is searched
against NR sequence database by PSI-BLAST* in multiple iterations to
generate PSSM profile, and then the profile is used in searching against
PDBAA sequence database to find available templates in structure Ilbrary The
HSPs found in PSI-BLAST result are amended according to the S2C° database
and then sorted in the order of sequence identity and coverage. If there are
suitable templates found, they are used in the modeling proceduredirectly. Or,
if not, ‘threading’ launches. In our ‘2D-threading’ method, structura profileof
the target is predicted by our prediction program, and then this profile is
searched against a pre-compiled database of structural profiles of representative
PDB® or SCOP’ by our alignment program. Suitable templates with highly-



conservedstructural information may be filtered out, and the alignments are
used for mode! building by MODELLER®,

The structural profile is the most important part in the‘threading’ method. In
order to improve the selectivity of ‘threading’, much more useful information
including PSSM, secondary structure and relative solvent accessibility is taken
intoconsideration. Our previous study indicates that there is a normal
distributionof psi angles, so we can assign different torsion status for each
residue, and this status is aso combined into the profile. Thestructural
information for each residue in the target is predicted by our prediction program
with themultiple-linear-regression (MLR) algorithm which has been reported
previously®.

Both global and local algorithms are implemented in the alignment routine. We
think global algorithm may be better in thedomain-domain aligning, since the
local algorithm usually fallsinto a small fragment when there islarge diversity
in domains. For the targets which have templates detectable by PSI-BLAST but
with very low identity, structural profile based ‘threading’ can improve the
alignments between the targets and templates, and make them more reasonable.

The profile contains several types of information, and it is very headachy in the
evaluation of the alignments. A simple score system has been applied for the
multi-factor evaluation, it can distinguish good from bad, but is difficult to
distinguish which is better or worse, so human-intervention is very necessary.

1. Marchler-Bauer A., Anderson JB.,Cherukuri P.F., DeWeese-Scott C.,
Geer L.Y., Gwadz M., He S., Hurwitz D.l., Jackson J.D., Ke Z.,Lanczycki
C.,Liebert CA.,Liu C, Lu F,Marchler G.H.,Mullokandov M.,
Shoemaker B.A., Simonyan V., Song J.S, Thiessen P.A., YamashitaR.A.,
Yin JJ., Zhang D. & Bryant SH. (2005) CDD: a Conserved Domain
Database for protein classification. Nucleic Acids Res. 33(Databasel ssue),
D192-6.

2. Finn R.D.,Mistry J, Schuster-Bockler B., Griffiths-Jones S.,Hollich V.,
Lassmann T., Moxon S, Marshall M., Khanna A., Durbin R., Eddy SR.,
Sonnhammer E.L. & Bateman A. (2006) Pfam:clans, web tools and
services. Nucleic Acids Res. 34(Database Issue), D247-51.

3. http://hmmer.wustl.edu/

4. Altschul SF.,Madden T.L., Schaffer A.A.,Zhang J.,Zhang Z., Miller W.
& Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

5. http://dunbrack.fccec.edu/Guoli/s2c/index.php

6. Noguchi T., & Akiyama Y. (2003) PDB-REPRDB: a database of
representative protein chains from the Protein Data Bank (PDB) in 2003.
Nucleic Acids Res. 31(1), 492-3.

7. Andreeva A.,Howorth D.,Brenner S.E.,Hubbard T.JP.,Chothia C. &
Murzin A.G. (2004) SCOP database in 2004: refinements integrate

structure and sequence family data. Nucl. Acid Res. 32(Databaselssue),
D226-9.

8. Sdi A. & Blundell T.L. (1993) Comparative protein modelling by
satisfaction of spatial restraints. J Mol Biol. 234, 779-815.

9. Qin S.B., He Y. & Pan X.M. (2005) Predicting protein secondary structure
and solvent accessibility with an improved multiple linear regression
method. Proteins. 61(3), 473-80.
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Alignment and Regularization in Modeling
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Analysis of our results in previous CASP experiments showed severa areas
where improvement was necessary. These included: sequence alignment, error
conditioning and stability in model building algorithms, and the molecular
force fields. Improvements in these areas were studied during the interval since
CASP-6.

Sequence alignment was done with a novel profile-profile algorithm that
combined a correlation measure? with a sharpening kernel to enhance the signal
to noise ratio in the scoring matrix. Tests done using alignments derived from
the FATCAT server® showed that this combination of measures was able to
handle low identity homologies withoutexplicit gap penalties.  The
improvement in signal to noise is clearly visible when the cost matrices are
displayed as images. Profiles were precomputed using Psi-blast' for the
unique chainsin the PDB. These profiles were searched with arapid FASTA-
like algorithm which searched for short continuous alignments. These short
alignments were logged and full dynamic programming was used to find the
final alignments. Alignments were scored with a Z-score that was derived from
the score along the alignment vs. al other possible alignments. Z-scores > 2
were indicative of a good alignment, but manual inspection of the cost matrix
as an image would occasionally reveal aignments that were meaningful at
lower quality (targets 348,363,372). Generally speaking, if any homologies
were detected, then many homologies were detected and the difficulty became
which homolog to choose.

Any physicaly realistic molecular mechanics force field must show ill-
conditioning because it must have translational and rotational invariance.
Therefore an error in a small number of atomic positions can propagate into
shiftsin position for a large number of atoms. This effect can causerelatively



large and somewhat random distortions in the atomic coordinates when
building a homology model. Several different regularization agorithms were
developed, tested and applied. The simplest regularization algorithm is to
apply harmonic restraints to the coordinates of atoms with approximately
known positions from the starting structure. Unfortunately, this approach does
not at adapt well to internal collisions and large gaps due to deletions. A more
sophisticated regularization algorithm usesunrestrained minimization, in our
case conjugate gradients with an inexact step size, and then block superimposes
the minimized coordinates on the starting coordinates. This algorithm allows
the structure to relax, but is more sensitive than using harmonic restraints.

Simulated annealing algorithms in the internal coordinates of a molecule are
also better conditioned. A simulated annealing algorithm based on local
dominatingsets* was implemented in AMMP. In this algorithm, a side chain
was chosen at random and then the local dominating set surrounding based on
residuecontacts was derived from the structure. The torsion for this side chain
and all the members of its local dominating set were given a random variation
followed by block stabilized conjugate gradients for each step of the simulated
annealing algorithm. In CASP-7 the initial model was built by combination of
an analytic structure builder with a harmonically restrained conjugate gradients
energy minimization. Simulated annealing on local dominating sets was used
to refine side chain positions, and finally block stabilized conjugate gradients
was used to build the final refined model. This procedure is much more stable
the pure conjugate gradients, and about 1/3 of the time resulted in small
improvements in quality.

It is aso necessary to improve the molecular potentials in addition to improving
the model building algorithms. A set of 20 very high resolution crysta
structureswere selected and used as targets for genetic algorithm optimization
of the AMMP potential. This resulted in small but measurable improvements
in model quality.

1. Altschul S.F.,Madden T.L., Schaffer A.A.,Zhang J., Zhang Z., Miller W.
& Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a hew generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

2. Rychlewski L., Jaroszewski L., Li W. & Godzik A. (2000) Comparison of
sequence profiles. Strategies for structural predictions using segquence
information. Protein Sci.;9:232-241..

3. Ye Y.Y. & Godzik A.(2003) Flexible structure alignment by chaining
aligned fragment pairs allowing twists.. Bioinformatics 119 suppl. 2. ii246-
ii255.

4. Wu W., DuH.,, JaX., LiY.& Huang, S.C-H (2006) Minimum connected
dominating sets and maximal independent sets in unit disk graphs,
Theoretical Computer Science (TCS), 352(1-3):1-7.
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PC2CA: a pseudocovalent model for protein structures
with two centers of interaction per amino acid.

F. Fogolaril
1- Dipartimento di Scienze e TecnologieBiomediche
Universita' di Udine, Piazzale Kolbe, 4, 33100 Udine - Italy
ffogolari @mail.dstb.uniud.it

The quality of models submitted by servers for al CASP7 targets has been
evaluated using a discrete empirical forcefield for a reduced protein model
termed here PC2CA, because it employs a PseudoCovaent structurel — with
only 2 Centers of interactions per Amino acid.

This model refines a previous empirical potential developed by us? by adding
specific terms for local backbone and sidechain conformations.

All protein structures in the set top500H3 have been converted in reduced form.
The distribution of pseudobonds, pseudoangle, pseudodihedrals and distances
between centers of interactions have been converted into potentials of mean
force. A suitable reference distribution has been defined for non-bond
interactions which takes into account excluded volume effects and protein finite
size.

The correlation between adjacent main chain pseudodihedrals has been
converted in an additiona energetic term which is able to account for
cooperative effects in secondary structure element formation.

Local energy surface exploration is performed in order to increase the
robustness of the energy function.

The model and the energy definition proposed have been tested on al the
multiple decoys' sets in the Decoysr'us database. The energetic model is able to
recognize, for amost all sets, native-like structures (RMSD less than 2.0 A).

The heterogeneity of the models submitted in CASP7 (e.g. in number of
residuesmodeled, in detail of residue modeling) forced us to adopt additional
criteria for ranking the models. For roughly the first half of the targets the
ranking was based on the energy per residue, with a weight taking into account
global energy.

For the second half of the targets the ranking was strictly based on the global
energy.

1. Fogolari F., Cattarinussi S., Esposito G. & Viglino P. (1996) Modeling of
polypeptide chains as C apha chains, C alpha chains with C beta, and C



alpha chains with ellipsoidal lateral chains.Biophys. J. 70, 1183-1197.

2. Berera M., Molinari H. & Fogolari F. (2003) Amino acid empirical
contact energy definition for fold recognition in the space of contact maps.
BMC Bioinformatics. 4, 8.

3. Lovel S, Davis I., Arendall W., de Bakker P., Word J., Prisant M.,
RichardsonJ. & Richardson D. (2003) Structure validation by calpha
geometry:phi, psi and cbeta deviation. Proteins 50:437-450.
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Associative Memory Hamiltonian Protocol for CASP7
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We initially selected sequences for ab-initio prediction if there were no obvious
scaffolds found by the automated comparative modeling servers for
threading/comparative modeling. For the selected sequences, we used an
Associative Memory Hamiltonian and Water mediated potential (AMW),

with parameters chosen previously by optimization. The optimization aims to
produce an energy landscape of the AMW that is as close to an ideal funnel as
our reduced model allows without using homology information. The AMH has
been optimized separately for all-alpha and aphabeta proteins. Information
from secondary structure prediction was included via a potential that biases the
phi-psi angles to the appropriate region of a Ramachandran plot. A sequence
dependent hydrogen bond term was used to improve beta sheet formation.
Molecular dynamics simulations using this potential were used to select low
energy candidate structures. Subsequently, the annealed structures are clustered
and a smaller subset of structures was selected for submission using several
filters.

The structure prediction protocol we have developed is based on the
Associative Memory Hamiltonian (AMH)[1,2,3,4,5,6,7]. Water mediated
potentials have been recently developed for alpha proteins [5] and alpha/beta
proteins[7].

As a summary, the AMH is intrinsicaly a coarse-grained model, where each
residue is represented C_alpha, C_beta, and O atoms. The Hamiltonian contains
three major components. i) sequence-independent polymer physics terms to
describe the backbone interactions, ii) sequence-dependent knowledge-based

86

potentials for pairwise residues within short sequence distance, iii) water-
mediated potentials for residues in the long sequence distance.

H=H_{Backbone} + H_ {AM} + H_{Water}

The backbone interactions include chain-connectivity,excluded-volume,
Ramachandran and chirality potentials. H_{Backbone} = H_{chain} + H_{ev}
+ H_{rama} + H_{chira}

The sequence-dependent interactions involve C_aphaC_alpha, C_alpha-
C beta, and C_betaC_beta pairs. These interactions are grouped into two
proximity classes according to the sequence distance between the interacting
residues: short range (3<|i-j|<5) and medium range (5<[i-j|< 8).

A pairwise interaction in the target protein is then associated with the aligned
pairwise interactions in memory proteins as follows. Water mediated potentials
are designed for interactions between residues with sequence distance: |i-j|>8.

For alpha/beta proteins, beta sheet formation are treated with extra components
in Hamiltonian described as H_{Beta} = H_{lc} + H_{hb}. $H_{Ic}$
describes loose and weak packing between segments with parallel or
antiparallel tendency. $H_{hb}$ describes specific geometry for hydrogen
bonds in paralel, antiparallel and hairpin formation.

The above Hamiltonian is optimized for selected sequences respectively for
apha proteins and alpha/beta proteins. Once the energy function is optimized,
the minima of the energy function are probed via simulated annealing with
molecular dynamics simulations. Our simulated annealing protocol gradually
reduces the temperature over a large range as in the tempering of steel in
metallurgy. This technique allows for local searches in phase space, hopefully
avoiding becoming trapped in a metastable state. We collect all annealed
structures and cluster them based on pairwise Q score. The annealed structures
are scored by a threading Hamiltonian optimized using an energy landscape
strategy [8]. The final selection is primarily based on the threading score, but
also incorporated the input from examination of the hydrophobic core,
secondary structure packing as well as any available biochemical information.
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Structure Recognition by Means of Associative Memory Hamiltonians,
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2. Hardin C., Eastwood M. P., Luthey-Schulten Z., and Wolynes P. G. (2000)
Associative memory Hamiltonians for structure prediction without
homology: Alpha-helical proteins, Proc. Natl. Acad. Sci.USA 97, 14235-
14240.
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Wolynes P.G. (2003) Associative memory Hamiltonians for structure


mailto:czong@ucsd.edu

prediction without homology: ur./ﬂproteins, Proc. Natl. Acad. Sci. USA
100, 1679-1684.

4. Eastwood M.P., Hardin C., Luthey-Schulten Z., and Wolynes P.G.(2001)
IBM J. Res. & Dev. 45, 475.

5. Papoian G.A.,Ulander J.,Eastwood M.P., and P.G. Wolynes (2004) From
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USA 101, 3352.

6. PrentissM.P.,Hardin C.,Eastwood M .P.,Zong C., and WolynesP.G.,
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Chem. Soc. 128, 5168.

8. Koretke K. K., Luthey-Schulten Z., and Wolynes P.G.(1996) Self-
consistently optimized statistical mechanical energy functions for sequence
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PFP_HAWKINS - 36 modelsfor 36 FN targets

Fully automated GO term prediction with PFP

T. Hawkins' and D. Kihara®?
! _ Dept. of Biological Sciences, Purdue University, 2— Dept. of Computer
Science, Purdue University, West Lafayette, IN, USA
thawkins@purdue.edu

The PFP_HAWKINS automated server for function prediction in CASP7
[http://dragon.bio.purdue.edu/casp_fn/] isadlight variation of the PFP (Protein
Function Prediction) server! maintained by our group, with output modified to
fit CASP7 formatting guidelines. PFP is an automated function prediction
server that provides the most probable annotations for a query sequence in each
of the three branches of the Gene Ontology (GO). Rather than utilizing precise
pattern matching to identify functional motifs in the sequences and structures of
these proteins, we designed PFP to increase the coverage of function annotation
by lowering resolution of predictions when a detailed function is not
predictable. Thisisideal for many of the CASP targets.

To annotate a query sequence, PFP extends the functionality of a typical PSI-
BLAST search? in three distinct ways: first, we extract and score GO
annotations based on the frequency of their occurrence in highly similar
sequences®. The GO is a curated, hierarchica vocabulary describing the
function of proteins in three categories: molecular function, biological process,
and cellular component®. Second, we utilize relatively weak hits produced by a
PSI-BLAST query, which are not conventionally used for transfer of function
annotation. Weakly similar, lower scoring sequences output by PSI-BLAST are
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not recognized as orthologs to the query sequence, but often represent proteins
sharing a common functional domain. Third, we additionally consider those
functions that are strongly associated with the highest scoring annotations as
describedpreviously. To score these annotations, we designed a novel data
mining tool, the Function Association Matrix (FAM), which quantifiestheco-
occurrence of GO annotations in proteins whose sequences are included in
UniProt. Thus, we can assign function using the FAM that cannot be retrieved
directly from PSI-BLAST hits.

The output of the server is the top three highest scoring terms in each of the GO
categories, ranked in order of raw score.

1. Hawkins T., Luban S. & Kihara D. (2006) Enhanced automated function
prediction using distantly related sequences and contextual association by
PFP. Protein Sci. 15, 1550-1556. [http://dragon.bio.purdue.edu/pfp/]
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of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
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4. Martin D.M.A., Barriman M. & Barton G.J. (2004) GOtcha A new
method for prediction of protein function assessed by the annotation of
severa genomes. BMC Bioinformatics 5, 178.
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POEM-REFINE - 135 modelsfor 27 3D targets

De novo protein structure prediction by all-atom

free-energy refinement with PFF0O1

SM. Gopall, A. Vermd, K. Klenin® and W. Wenzel!
1 — Institute for Nanotechnology, 2 — Institute for Scientific Computing
Wenzel @int.fzk.de

We have recently developed al-atomfree-energy forcefields (PFF01/02)1'2for
de-novo all-atom protein folding. With the combination of efficient
optimization methods we are able to predictively fold various proteins from 20-

60 amino acids>*>6 from completely extended structures to 3-4 A RMSD of
the native conformation. Even though this approach is much faster than all-



atom molecular dynamics, its computational cost rises steeply with the size of
the protein.

To contribute to protein structure prediction we have therefore investigated a
low-cost protocol for free-energy refinement that combines a heuristic method
for model generation with all-atom scoring in PFF01/02. Conformations
generated from different methods are not trivially transferable from one
theoretical model to another. In order to obtain a meaningful energy estimate
each of conformations must be relaxed in new forcefield to a nearby local
minimum. We have pursued a low-cost simulated annealing (50,000 steps,
Ttart =200K Tging=2K) for each of the decoy. We cluster the top 50 decoys

(lowest in energy) and report the average structure of largest cluster as the

prediction. This protocol was tested on the Rosetta decoy set’ consiti ng of 32
monomeric proteins. We were able to select the near-native conformations with

an average RMSD of 3 A8,

Encouraged by theses result we decided to participate in CASP7 for proteins
with less than 150 amino acids (because of CPU costs) with a similar protocol
comprising three stages:

1) Generation of the decoy set: We have generated the decoy set using the
Rosettat++ suite. The method consists of two stages. a) fragment generation
using the consensus of secondary structure predictors, b) fragment assembly

using ROSETTAY algorithm. We generated 5000-10000 decoys for each target
(excluding homology).

2) Choosing a decoy-subset for refinement: Since refinement of 10000 decoys
exceeded our computational resources in the time-frame of CASP, we clustered
the decoys and choose about 1000 decoys from the most populated clusters.

3) Refinement and clustering: We have used the same refinement protocol as
described above. The 50 lowest energy decoys were clustered using a
hierarchical clustering algorithm. The predictions were chosen from the largest
clusters. In absence of a dominant cluster, we chose the predictions from larger
clusters and visua inspection.

We were able to generate predictions for 27 targets ranging between 68-146
amino acids. More than half of our targets had no homologs detectable with
strong confidence by 3D-JURY. We have quantified our predictions as-high-
confidence models (score>=0.4) and low confidence models (score<=0.2),
depending on the cluster size.

1. Herges T. and Wenzel W. (2004) An All-atom Force field for Tertiary
Structure Prediction of Helical Proteins. Biophysical Journal 87, 3100-
3109.
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8. Verma A. and Wenzel W. (2006) Protein Structure Prediction by All-
Atom Free-Energy Refinement. Submitted.
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PROFcon-Rost - 77 modelsfor 77RR targets

Prediction of protein residue internal contact through Neural
Networks

Marco Punta®? & Burkhard Rost 1'#3
L cuBIC, Columbia University Bioinformatics Center, Department of
Biochemistry and Molecular Biophysics, Columbia University, New York, NY
10032, USA; 2 C2B2, Columbia University Center for Computational Biology
and Bioinformatics, New York, NY, USA; 3 Northeast Structural Genomics
Consortium, New York, NY, USA
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Our contact prediction method, PROFcon (Punta and Rost, 2005), combines
information from aignments, from onedimensional predictions, from the
region between two contacting residues, and from the average properties of the
entire protein chain. The method is based on a simple feed-forward back-
propagation neural network (NN). We train the NN on a large number of
proteins (748) and validate the method's performance on sets that differin
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protein length, number of aligned homologous sequences, and structural class.
While PROFcon performance appears to be rather robust as a function of
protein length, it suffers greatly in the absence of a proper number of aligned
homologous sequences (sparse evolutionary profiles). The best accuracy is
achieved for proteins belonging to the alpha/beta SCOP (Murzin, Brenner et al.
1995) (Andreeva, Howorth et a. 2004) structural class. In the following we
give a more detailed description of dataset selection and of the features used as
input to the neural network. Note that PROFcon was not retrained after CASPG;
hence, the present version is exactly the same used to predict targets at CASP6.

Data sets and cross-validation. The EVA server evaluating structure prediction
methods (Koh, Eyrich et al. 2003) maintains a continuously updated subset of
sequence-unique PDB chains (no pair of proteins in this set has HSSP-value
above 0 (Rost 1999), (Sander and Schneider 1991)). In particular, we use the
December EVA release, a set of 3201 protein chains of known structure. From
this initial list we remove all non-X-ray structures, all membrane and coiled-
coil proteins and proteins with physical chain breaks (Gorodkin, Lund et al.
1999). Then, we divide the X-ray-solved protein list into three sets. For
training, we select structures with resolution <=2.0 A, for validation (i.e.
optimization of all NN parameters), structures with resolution in the interval
25-3.0 A and for test, structures in the interval 2.0-2.5 A. Finaly, due to
computational limitations, we reduce the test set to include only proteins of
length less than 400 aa. Training, validation and test set contain 748, 466 and
633 proteins, respectively.

Definition of contact. Two aa are considered two be in contact if their Cb atoms
- Cafor glycines A— are closer than 8 A.

NN architecture overview. We train standard feed-forward NN with back-
propagation and momentum term (Rost and Sander 1993). We address the
extremely unequal distribution of true (contact) and false (non-contact) by
balanced training (Rost and Sander 1993). Since the NN ‘sees’ the symmetric
pairsij and ji astwo different samples, the actual PROFcon output value for the
ij pair is obtained as the average over the ij and ji NN output (Pollastri and
Baldi 2002). The NN uses 738 input, 100 hidden, and 2 output nodes (contact,
non-contact).

Detailed specification of input. The input features encoded into the NN vectors
correspond to three different levels of description of the aapair. The pair is
characterized through: 1) local information, 2) connecting segment information,
3) protein information. 1) Local level: ij centered windows and pair-specific
features. For each residue pair ij in a protein, the network incorporates
information from aa comprised in two windows of size 9 centered around i and
j (corresponding to intervals [i-4;i+4] and [j-4;j+4]). Each sequence position
within the two windows is characterized by 29 nodes: 20 for the evolutionary
profile (i.e. frequency of occurrence of the 20 aa types at that position, as
obtained from MSA (Przybylski and Rost 2002), (Rost 1996))), one additional
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node to account for the N and C terminal residues (Rost and Sander 1993), 4 for
the predicted SS (three values per residue for helix-strand-other + one value for
prediction reliability), 3 for the predicted SA (two values for buried-exposed +
one value for prediction reliability) and, finally, 1 for the conservation weight
(Rost 1996). Alignments are obtained through PSI-BLAST (Altschul, Madden
et a. 1997) filtering the aligned sequences at 80% sequence identity (i.e. any
two sequences in the MSA have <80% sequence identity). SS and SA are
predicted by PROFphd (Rost 2004)). Note that we train and test on predicted
rather than observed 1D values. As the two windows together account for 18
positions, we need a total of 522 nodes for their description. Two more features
are introduced to better characterize the central residuesi and j. These are: pair
type (hydrophobic-hydrophobic, polar-polar, charged-polar, opposite charges,
same charges, aromatic-aromatic, other) (Creighton 1992) (7 nodes) and pair
complexity (whether or not the two residues are in a low-complexity region,
according to SEG (Wootton and Federhen 1996) (2 nodes). 2) Conrecting
segment level: central window, length and average properties. The segment’s
central positions have been shown to be the most informative for contacts
(Gorodkin, Lund et al. 1999)). So, we introduce a window of size 5 spanning
the interval [int(]i-j[/2)-2; int(]i-j|/2)+2]. Sequence positions within this window
are characterized in the same exact way as positions in the ij-centered windows
(i.e. 29 nodes each). Further, we use 11 nodes for segment length description,
corresponding to sequence separations 6, 7, 8, 9 and to intervals 10-14, 15-19,
20-24, 25-29, 30-39, 40-49, >49 (values chosen by intuition not by
optimization). Note that the encoding of segment length was necessary in order
to qualitatively reproduce the observed distribution of contact probability
versus sequence separation (the shorter the sequence separation, the higher the
probability of being in contact) (Fariselli and Casadio 1999). Finally, we add in
nodes encoding for segment’s average properties. 20 nodes for aa composition,
3 nodes for SS composition and one node for the fraction of aa in the segment
in a LCR. Overal, we use 180 nodes for the description of the segment. 3)
Protein level: length and average properties. We use 20+3 nodes for the average
aa and SS composition of the entire protein, plus 4 nodes to describe the protein
length (intervals 1-61, 61-120, 121-240, >241; again, values are chosen by
intuition).
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search programs.” Nucleic Acids Res 25(17): 3389-402. Andreeva, A., D.
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3. "SCOP database in 2004: refinements integrate structure and sequence
family data.
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Protein Structure Prediction Using ProteinShop
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We describe a novel method to predict the 3D structure of new folds via
minimizations of a physics-based energy function. It posits that although fold-
recognition servers provide incomplete folding information for targets in the
new folds category, this information is valuable for guiding the global
optimization process to find the solution.

The method has two phases. Phase | creates a set of initial conformations that
have alpha-helices and betastrands according to secondary structure
predictions™. All alpha-helical proteins are partially folded according to
templates obtained from fold recognition meta-servers*®. Proteins that have
beta-strands are additionally processed with BuildBeta, a ProteinShop® function
that automatically creates a collection of betasheet conformations. The starti ng
conformations are locally minimized and ranked using an al-atomAMBER
force field with modified parameters®, designed to improve its discriminatory
ability. Phase Il improves these conformations through global minimizations in
subspaces of the dihedral angles of amino acids predicted to be coil® followed
by full-dimensional local optimizations™®.
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Method Description: Phase |

Here we construct partially or fully folded initial conformations using
secondary structurepredictions’™. First, we generate a number of extended
conformations featuring aphahelices and betastrands according to those
predictions. ProteinShop generates the three-dimensiona coordinates of an
extended protein structure containing alpha-helices and betastrandsusing
sequence and predicted secondary structure information only. These extended
conformationsare folded using model templates and ProteinShop, which lets
users interactively move betastrands and alpha-helices relative to each other
without breaking the protein structure. ProteinShop performs those motions
using inverse kinematics techniques on the flexible coil regions. Second, we
obtain the templates from the BiolnfoBank metaserver”, which collects
structural models from servers and assesses them using the 3D-Jury consensus”.
The model templates are those hits with the highest3D-Juryscores.
Additionally, we may include “welded” model templates, built by combining
structural information from two templates. Next we build a set of initial
conformation as follows:

Constructing Partially- Folded Sructures Using Templates We use
ProteinShop to build an initial partialy folded structure for every model
template and each extended structure by superimposing the latter to the
template. This structure superimposition is performed by aligning each rigid-
body portion in the extended structure —i.e., each apha-helix or beta-strand-- to
the corresponding portion on the template. The correspondence between the
superimposedri Pid-body portions is determined by the alignment generated by
themeta-server”. Often the model templates provide only partial information
due to alignment gaps. The protein fragments that correspond to alignment gaps
are left extended. Occasionally, we may create additiond initia structures
containing alignments of the extended parts that seem likely to us. Next, we use
BuildBeta to build fully folded models from each partially-folded model. We
call the folded fragments coreregions.

Constructing Fully-Folded Structures Using BuildBeta: BuildBeta generates a
collection of potential betasheet conformations using statistical scoring
functions derived from both protein-foldtopology™ and sequence matching
specificity’?. BuildBeta operates in two possible modes. 1) with sequence of
amino acids and secondary structure prediction information: it selects the
strands to be zipped together into betasheets to form different topologies, and
then calls zipping routines to automatically create those structures. If there are
alphahelices in the sequence BuildBeta moves them away from the beta-sheet
to minimize collisions. 2) with additional information about core regions
BuildBeta attempts to align those beta-strands outside the core(s) to the sheets
that may be present in the core region(s).

Usually, structures created in this phase present steric overlaps that are resolved
after local energy minimizations. To obtain a variety of beta conformations, we



let BuildBeta generate most or all of the possible conformations and then we
rank them according to their energy value.

Phase 11

This phase improves the initial structures by iteratively performing small-
dimensiona global minimizations in various subspaces of the space of dihedral
angles in the coil regions. The method selects a number of low-energy
conformations from the list of initial structures and selects small subsets for
improvement by global minimizations. A stochastic global optimization
procedure finds the best new positions for the chosen dihedral angles while
holding the remaining dihedral angles fixed. The global minimizations are
followed by local minimizations in the full-dimensional space. The new full-
dimensional local minimizers are then merged with those found previously, and
the process repeats until a convergence criterion is met®.

ProteinShop enables the synergistic integration of human knowledge and
computer power. We believe this human-in-the-loop approach is necessary to
develop a better understanding of the search mechanism being used and to
accelerate time to solution.
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Protein Folding Simulations through low and high resolution
models
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Via N. Sauro 85, 85100, Potenza.
villani @unibas.it.

The Rescaled Protein Folding (RPF) method has been performed developed by
meansof an efficient HP self-avoidingwalk model on a periodic lattice,
followed by careful simulations at atomic level.>* On the simplified models the
global optimization through Monte Carlo Simulated Annealing calculations is
performed. The macromolecule is gradually built, while the temperature is
slowly lowered. The hydrophobic and disulphide bonds are taken into account.
Then, after the scale change and the solvation, the structures are refined through
local optimization and molecular dynamics. Lastly, the matching between the
simulated and the experimental structure is performed. The methodwas
applied to a number of protein, as BPTI (Bovine Pancreatic Trypsine Inhibitor,
57 residues), Ribonuclease (124 residues) and Tyrosin-Kinasedomains (about
160 residues). Theglobular-micellar structure and the gyration radius are
obtained. The predictive comparison techniques based on neural networks > will
be considered to take into accountthe disulphide bridgesand secondary
structure patterns.

1. Dill, K. A., Bromberg S. (2002) Molecular Driving Forces, Garland, New
York.

2. ChanH. S, Dill K. A. Physics Today (1993), February, 24-32.
3. Villani V., Cascone A. (2004) Recent Res. Devel. Polym. Sci. 8, 21-50.
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Combining sequence alignment tools with threading approach
to improve the quality of protein structure prediction
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At the first step we launched 10 iterations of standard PSI-BLAST" search.
From obtained list of proteins, up to evaue of 1000, we selected 120
seguences with the lowest e-values, obtained anywhere during the 10 iterations.

To divide the target by domains we used our program? (see abstract of group
“Oka’) and alignments obtained by PSI-BLAST".

Final aignment and selection was done by our homemadeprogram
SCF_THREADER?® with scoring function that takes into account the following
factors:

(1) similarity of sequences calculated by similarity matrices GON250 and
BLOSUM®62;

(2) similarity of secondary structures®, where target secondary structure
was predicted by PSIPRED® and template secondary structure was
calculated using DSSP?;

(3) specific energy of short aligned regions that takes into account the type
of target amino acids and the conformation of template in this short
region;

(4) specific energy of each aligned amino acid pair that takes into account
the template residues interacting with the template residue of
considered aligned pair;

(5) specific energy of unaigned regions that depends on the
conformationsof the ends of these unaligned regions and the type of
secondary structure of neighbor aligned regions.

1. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W.,
Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25 (17), 3389-3402.
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3. Rykunov D.S., Lobanov M.Y ., Finkelstein A.V. (2000) Search for the most
stable folds of protein chains: Il improvement in fold recognition by
averaging over homologous sequences and 3D structures. Proteins 40 (3),
494-501.

4. Litvinov 1.l., LobanovM., Yu.,Mironov A.A., Finkelstein A.V. (2006)
Information about the protein secondary structure improves quality of an
alignment of protein sequences. Mol. Biol. (Moscow) 40 (3), 533-540.

5. Jones D.T. (1999) Protein secondary structure prediction based on
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QA-ModFOLD - 100 modelsfor 100 QA targets

ModFOLD: aconsensus of model quality assessment
programs using an artificial neural network

L.J. McGuffinl
1 — The Bioinformatics and Systems Biology Unit, The BioCentre, The
University of Reading, Whiteknights, Reading RG6 6AS, UK
|.j.mcguffin@reading.ac.uk

Predictions in the model quality assessment (QMODE 1) category were
generated using the newly developed ModFOLD method. The method, which is
based on the nFOLD protocol*, combines the output from a number of model
quality assessment programs (MQAPS) using an artificial neural network.

The output scores from MODCHECK?, ProQ-LG?, ProQ-MX® and ModSSEA
are used as inputs to a feed forward back propagation network. The neural
network is trained to discriminate between models based on the TM-score®.

MOodSSEA is a new model quality assessment program based on secondary
structure element alignments (SSEA). The ModSSEA score is essentiadly the
same as the SSEA score used in the nFOLD protocol, however the PSIPRED?
predicted secondary structure of the target is aligned against the DSSP
assigned secondary structure of the model. ModSSEA was found to be an
effective model quality assessment program in its own right, however further
accuracy could be gained by using the consensus approach of ModFOLD.

Although the quality assessment category is a manual prediction category the
ModFOLD J:Jredictions were carried out entirely automatically for al targets. A
webserver’ has been implemented for the ModFOLD method, which accepts



gzipped tar files of models and returns predictions in the QA (QMODEL)
format via email.

The ModFOLD method is a true MQAP — one model can be assessed at atime
and the output score is based on that model alone. The scores and rankings do
not depend on the clustering of many different models relating to the same
sequence. Thus, each quality score is predicted for each model independently of
any other model.

1. Jones D.T.,Bryson K., Coleman A.,McGuffin L.J., Sadowski M.I., Sodhi
JS. & Ward JJ. (2005) Prediction of novel and analogous folds using
fragment assembly and fold recognition. Proteins. 61 (S7), 143-51.

2. Pettitt C.S., McGuffin L.J. & Jones D.T. (2005) Improving sequenced based
fold recognition by use of 3D model quality assessment. Bioinformatics. 21,
3509-3515.

3. Wallner B. & Elofsson A. (2003) Can correct protein models be identified?
Protein Sci. 12, 1073-1086.

4. Zhang Y. & Skolnick J. (2004) Scoring function for automated assessment
of protein structure template quality. Proteins. 57, 702-710.

5. Jones D.T. (1999) Protein secondary structure prediction based on position-
specific scoring matrices. J Mol Biol. 292, 195-202.

6. Kabsch W. & Sander C. (1983) Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers. 22, 2577-637.

7. http://www.biocentre.rdg.ac.uk/bioinformaticsModFOLD
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RAGHAVA-GPS-mango - 285 models for 95 FN targets

MANGO: prediction of Genome Ontology (GO) class of a protein
from its amino acid and dipeptide composition using nearest
neighbor approach

G. P. S. Raghava
Institute of Microbial Technology
Sector-39A, Chandigarh, INDIA
raghava@imtech.res.in

One of the major challenges in era of genomics is to predict the function of
proteins. As number of proteins whose sequence is known is growing with
exponential rate due to advancement in DNA seguence techniques. This has
pose a mgjor challenge to the boinformatician to develop strategy to predict the
function of protein. Fortunately, function of alarge number proteins have been
deduced using experimental techniques, one may obtained the information
about manually annotated proteins from SWISSPROT database. Recently
initiatives were taken to provide the uniform definition of class of protein.
Genome ontology is one of the maor source of information from where one
can obtained the information of class of protein. In GO database the annotation
of proteins are at three level i) Biological functions; ii) Biologica Process and
iii) cell. However, a large number of method aready developed in past to
predict the class of proteins are limited to predict few classes of proteins. In this
study we create the dataset of proteins for each class of GO. These proteins
were obtained from UNIPROT database where function of these proteins is
manually annotated as per GO classification. For each class of GO we create
the average composition of proteins belongs to that class. Lets a given GO class
have 200 proteins than we compute overall composition of each of 20 the
natural residues. This residue composition represents the class. In order to
predict the functional class of a query sequence (CASP6 targets), first
composition of query sequence is calculated then we compute the Euclidian
distance between composition of query sequence and each class of GO. The
class having minimum Euclidian distance were assigned as class of query
proteins.

It has been shown in past that dipeptide composition have more information
than simple composition because order of neighbor is also considered. Thus we
implement our approach using dipeptide composition, where dipeptide
composition of proteins were used to calculate Euclidian distance between
query protein and GO class of proteins instead of residue composition. We also
compute the overal difference (residue composition and dipeptide
composition) in query and GO class of proteins.In summary we used
composition, dipeptide composition and comination of both for predictiog GO
class of target proteins.



RAPTOR-ACE - 500 modelsfor 100 3D targets

An integer linear programming based

consensus fold recognition method

Libo Yu>* Dongbo Bu*?, Shuaicheng Li*, Xin Gao', Jinbo Xu**
and Ming Li*

L_David R. Cheriton School of Computer Science University of Waterloo
Waterloo Ontario, Canada N2L 3G1, ? Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China, *~Toyota Technological Institute
at Chicage, Chicage, IL 60637, “— Bioinformatics Solutions Inc. ON, Canada.
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Protein structure prediction is one of the fundamental problems in the
bicinformatics. Frequently, the consensus prediction methods outperform
others in recent CASPs by combining the strength of individual prediction
methods. However, the consensus prediction methods suffer from the “sever
correlation” drawback, that is, some servers may be correlated, and the simple
“majority vote” rule fails to select the native structure from a template database.

In this paper, a novel consensus method is proposed to reduce the negative
effects caused by the correlation among prediction servers. Briefly, the
correlation occurs from the fact that some servers tend to generate similar
results since they adopt similar techniques, including sequence alignment tools,
secondary structure prediction methods, and scoring functions, etc. Suppose,
behind the explicit prediction servers, there are some independent hidden
servers, each representing a common feature shared by a set of predction
severs, and for a candidate structure, each explicit prediction server assigns it a
score based on the scores given by these hidden servers. Therefore, identifying
the hidden independent servers is essentia to reduce the negative effects of
server correlation, and subsequently to design a more accurate scoring function
to select a better model.

In our method, we first employ the maximum likelihood technique to estimate
the server correlation; then adopt the factor analysis technique to uncover the
hidden servers; and finally design an integer linear programming method to
derive the optimal weight for each hidden server. Details of each step are
described in the following subsections.

1. Maximum Likelihood Estimation of Server Correlation
Let S (1<i<n)denote a prediction server, h; (L< j<m) denote a
hidden server, and M ={M, [1< K <|M [} denote the model database. For
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atarget T, (1<1<|T[), ech server S yields a set of models M, ,
(a=1..n,,) (here, N, is the number of models produced by server S, for
target T, .) as candidate structures.

Since some servers adopt similar alignment techniques and scoring functions,
they always produce similar results. Let [J; ; denote the probability that for a

target, S; returnsamodel similar to server S; . Here, two models are defined to

be similar if the distance between them is above athreshold, say, GDT score is
greater than 0.5. Under a reasonable assumption that that targets

T, <1 <|T]) are mutualy independent, the likelihood that servers
S (L<i <n) generate predictions M;, . (q=1.n;,) is

L(p,,;) =H|rr—|1[

, whereov(i, |, 1) is the number of M, , that same to a mode! returned by S;

n, ov(i,jl) ny—ov(i, i)

o (L—p )
OV(l, j,|)jp"1 ( p|,])
for agiven target T, .
Therefore, the maximum likelihood estimation of [; ; can be calculated as
> Lov(i b

zITI n

=1

In the rest of this paper, we use P to denote the matrix P = (p; ;)

follows: P =

nxn *
2. Uncovering the Hidden Servers

Typically, a prediction server measures each model M, in atemplate database

M , assigns it with a score based on a scoring function, and then reports the top
ones as candidate structures. For a given target T, let S, and H;, be the

probability that model M, is chosen as one of a prediction results by server
S and h;, respectively. Since the hidden serversh; are mutualy
independent, it is reasonable to assume that S , is a linear combination of

H, (@< j<m), thatis,
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S =&, H,+4

where S, =< S§,,S,,....Sy;>and H; =< H ,,H ,,..,H ,, >-

Here, a higher coefficient Xi' ; Means that server S; tends to adopt models

reported by h j than others hidden servers.

factor analysis technique is

nxn ?

From the correlation matrix P = (p; J.)
- -
employed to derive A; ; and H , that is, H; can be represented to be a

N
linear combination of S (1<1 < n)asfollows:

5
H =0,;,S+0

i S, + ...

i

,where< © ,,,® ,,...,0; , > isan eigenvector of matrix PT xP.

I jn

3. ILP Modd to Weigh Hidden Servers
Having derived the hidden servers h; (1< j <m), we can design a new

predictionserver S, the optima linear combination of the hidden servers.
S assigns each model with a score as follows:

S = A H 4 Ay H b oo b Ay Hoyy oo (*)

To determine a reasonable setting of coefficient 7»'] , a training process is

conducted on a training dataset p - <1, )M, M, >1<1<|T | » Where

T, isatarget, M;" € M denotes its native models, and M, € M the set of
false models. The training process attempts to maximize the gap between scores
of the native models and false models. In more details, for each target T, inthe
training dataset, both its native models and false models will be assigned a

scoreby S ; and a reasonable setting of coefficient should assign a native
model a score higher than that for the false ones. The larger the gap between
scores, the more robust the prediction ability is. In practice, ““soft margin" idea
is adopted to take outliers into account; that is, we try to maximize the gap
while allowing errors on some samples. Formally, the learning techniques can
be formulated into an integer linear programming problem as follows:
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max Z:Tzllzl
stY " A =" ah 2 X, ~1+8, for each T eT,M eM/ M, eM/
> KXo * Ypu SIM{ |11 <m
>, -y, )=z l<sl<m
> T

A; 20,

=1

~0/1y,, =0/1,7 =0/1.

p.q
Here, X,, and Y, are0/1integer variables. The first restriction force X, to
be 1

if the score of M, is greater than that of M, i.e.,

Zm x h _zm % h. g (here, the constant O represents the lower bound
=" =i e =
of gap.). The second and the third restrictions will set Z if there exists at least

anative model M ; that has score greater than all the false modelsin M. The

objective function aims to maximize the number of targets that are correctly
classified.

To predict models for a given target T,, S (M, )is calculated using formula

(*), al the models in database are sorted accordingto S (M, ), and the top
ones will be selected as the consensus results.
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The biennial CASP"?3experiments have provided an in-depth and objective
assessment of the performance of computational protein structure prediction
methods. CASPs have greatly accelerated the development of both human
expert and automated prediction methods. By analyzing the results published
by CASP6*>57  we observed that top ranking automated servers can generate
reasonably good predictions or at least good regions for most targets; for
example, the server RAPTOR?%'° generated models for several targets in
CASP6 which had a region with accurately predicted o-helices and a region
with accurately predicted B -sheets. However, the whole models were ranked
lowly because the relative orientations of these two regions were far away from
the native structures. Furthermore, RAPTOR aso lost marks on unaligned
regions of models because the quality of threading based methods closely
depends on the alignments. Thus, a refinement method is urgently needed to
improve the accuracy for such models.

RAPTORESS, our preliminary experiment on an atomlevel refinement
approach, aims to adjust reasonably good models, which have the whole
backbone not too far away from native structures or have some well predicted
regions, to get final high-resolution models.

The first refinement stage of RAPTORESS is making al the input models to be
protein-like. Some models with well predicted regions rank lowly because they
are not protein-like due to the long poorly predicted regions. This step can
eliminate the effect of these bad regions. RAPTORESS examines the unaligned
regions of models, and uses new regions generated by a comparative modeling
based approach to replace those bad regions. The comparative modeling
approach searches the region database for a region with the highest score. Then,
the bad region in the model is replaced by this good one by translating and
rotating the parts at the ends of this region to connect them together. The
trandation and rotation is directed by an atom-level energy function. The
possible rotation angle space is discretized by 10°x10°x10°. The conformations
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with the first two lowest energy scores for each input model are considered to
be candidates of final prediction.

The second refinement stage is to adjust all candidate models step by step. This
is done on an atom-level on-lattice model. For each iteration, we allow atomsto
move within a certain distance. We formulate an integer linear programming
(ILP) formulation to restrict the biological and statistical features of models to
satisfy constraints of proteins. The conformation determined by ILP is selected
to replace the original model in the candidate database. After each iteration, bad
models are discarded if the energy is higher than a certain threshold. Then we
iteratively repeat this step to explore larger conformational speace. The
procedure stops either if there is only one model Ieft with energy lower than the
threshold, or if we have repeated the step for ten iterations.

After constructing the model set, the models with the first five lowest energy
are selected to be the final predictions.

According to preliminary assessment by different websites, such as CAFASP5
assessment, Zhang assessment, and Robetta assessment, RAPTORESS did well
in CASP7, especialy on some targets, RAPTORESS ranked number one
among all the automated servers on the prediction of whole targets or domains.
Following is T0289, on which RAPTOESS is ranked number one on whole
target by Zhang assessment, and ranked number one on domain two by Robetta
assessment. Figl(a) is the native structure of T0289, which has the PDB code
2GU2. Figl(b) is the top one model generated by RAPTORESS. Figl(c) isthe
top one model generated by RAPTOR, which is an input prediction of the
RAPTORESS on this target. For this target, the whole structure is refined to be
3%better on GDT score. The first domain is refined to be 4% better, while the
second domain is refined to be 5% better.

Fig 1 T0289 native structure, Topl model by RAPTORESS, and Topl model
by RAPTOR



To sum up, RAPTORESS can refine reasonably good models or models with
well predicted regions to be more accurate models. The future work will be on
more accurate and vehement refinement methods.
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Robetta De Novo and Homology Modeling in CASP7
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The Robetta server?® (http://robettaorg) combines the Rosetta homology
modeling® and de novo® tertiary structure prediction protocols with the Ginzu™®
homologidentification and domain parsing protocol to provide predictions for
the full length of each target. As a new approach, we modified the Robetta
homology modeling protocol from that used in previous CASPs to combine a
consensus score with energetic selection from a model ensemble®. Our model
ensembles are parametrically generated for up to 5 parents by the K*Sync*
alignment method for the template regions and with Rosetta loop modeling’ for
unaligned regions. Additionally, we modified the Robettadenovo protocol to
allow for longer trajectories in the generation of each decoy. Blind
benchmarking of servers is crucial as it allows us to measure the abilities of
automated prediction, vital for the purpose of large-scale prediction efforts.

Robetta homology modeling protocol

Robetta uses up to 5 of the highest confidence detections from BLAST/PSI-
BLAST® or 3DJury-A1° to select the parent for homology modeling. Important
to note is that Robetta does not use the alignment from the detection
method except to determine the domain(s) of the parent to model against.

Rather it parametrically generates its own alignment ensemble using the
K*Sync aignment method® by varying the sequence profile comparison
method, the source of the secondary structure prediction, the stringency of the
sequence profile, the stringency of the StrAD-Stack® multiple structural
alignment used to define obligate elements, and the weights on the termsin the
dynamic programming scoring function. The alignment ensemble is turned into
a decoy ensemble by placing the sequence of the query onto the backbone of
the parent based on the alignment. Unaligned loop regions are assembled from
fragments and optimized to fit the aligned template structure”°. The template
region is kept fixed, and models are selected from the ensemble using a
combination of the Rosetta energy function with a consensus score derived
from the alignment ensemble®.

Robetta de novo protocol

Robetta denovo modeling generates 4000 query decoys and 2000 decoys each
for up to 2 homologous sequences (filtered down to 2000, 1000, 1000 to
ameliorate known pathologies such as low contact-order structures) using the
Rosettafragment-assembly methodology®. Earlier versions of the protocol



generated a greater number of decoys, but had shorter trgjectories. We took
advantage of the increased resources generously made available to us by the
NCSA for the experiment to investigate whether longer trajectories would
produce superior decoys. The filtered ensemble is structurally clustered, and the
top 5 cluster centers by population are returned in order as the fina predictions.
Side-chains are added using a backbone-dependent rotamer library’! with a
Monte Carlo conformational search procedure®?.
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Ginzu homolog identification and domain parsing in CASP7
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Protein chains often contain more than one domain. In order to predict the
domain organization of a protein, we have developed the Ginzu*?homolog
identification and domain parsing method. The method is available to the public
as part of the Robetta server™>* (http://robetta.org).

Ginzu attempts to determine the locations of putative domains in the query
sequence and the identification of any likely homologs with experimentally
characterized structures. These steps are not decoupled, since the ability to
assign a region of the target to a known protein structure greatly increases the
likelihood that it is at least one protein domain. The approach consists of
scanning the target sequence with successively less confident methods to assign
regions that are likely to be domains. Once those regions are identified, cut
points in the putative linkers are determined, and if possible a single
homologous PDB chain is associated with each putative domain. The initial
scan attempts to identify the closest relatives with experimental structures to
regions of the query sequence. A straightforward BLAST/PSI-BLAST® search
against the PDB sequence database detects such relatives. All PDB ids that are
detected at this stage are stored. Non-overlapping regions that possess the best
combination of detection confidence and length of coverage are assigned as
domains. The associated PDB id and region of the chain matched is retained.

One may then employ more remote foldrecognition methods to detect
homologous PDB structures. We used 3D-Jury-A1° in this step for the parsing
of the CASP7 targets. Agan, as with the PSI-BLAST detections, the
associated PDB and region of the target chain covered is retained.

Any remaining long regions of the query that do not have structural homologs
may require further division into domains. One may search unassigned regions
against Pfam’. Subsequent steps of Ginzu utilize the program "msa2domains’”,
which examines the PSI-BLAST multiple sequence alignment (MSA) to find
clusters of segquences in the PSI-BLAST multiple sequence alignment (MSA)
and assigns these as regions of increased likelihood of possessing a domain.
This is done in an order based on the number of unique observations in the
cluster (essentialy a non-redundant depth), with overlaps not permitted.
Lastly, msa2domains determines where to place the exact cut points in the
linker regions, or any remaining long unassigned regions, via a heuristic that
again considers clusters of sequences in the PSI-BLAST MSA, the least



occupied positions in the MSA, strongly predicted loop regions by PSIPRED?,
and distance from the nearest region of increased domain confidence. A fourth
term boosts the likelihood of a domain boundary in regions of the MSA where
the sequences frequently begin or end.

The fina step consists of parsing regions that have been assigned structural
homologs based on the model generated by that assignment. We have
developed a consensus variant of Taylor's structurebased domain parsing
method® that is applied to the target's final Robetta model, as well as PSI-
BLAST detectable structural homologs, to complete the domain parsing.
Alternate domain predictions based on the model from the default K* Sync
alignment to the parent are also returned, as are MSA-based predictions for
weak confidence 3D-Jury detected regions.
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ROKKO - 476 modelsfor 98 3D targets

Template-free Prediction by Fragment Assembly with SimFold
Energy Function at CASP7
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1. Faculty of Sci, Kobe Univ, ?- Grad School, Sci & Tech Kobe Univ
stakada@kobe-u.ac.jp

Team ROKKO primarily focused on predicting structures that need template-
free modeling and could have previously unseen folds. Prediction method,
statistics, and short description for each targetareavailable at
http://www.proteinsilico.org/ROKK O/casp7/rokko_casp7_strategy.html.

(1) General Workflow: All targets automatically stream to the general sequence
analysisprocedure. BLAST1 package first searches homologous templates
through NRDB, and then mainly PSI-PRED2 predicts secondary structure
elements (SSES) using filtered NRDB. Some of DBs used are weekly updated.
If significant templates for a target are found, all available information on the
templates is gathered for selecting high-resolution structural templates(See
(2)). When templates do not exist, 3D-Jury3 templates and alignments are
gathered. When we did not get reliable templates, we performed fragment
assembly simulations either by MCFA and/or GAFA (See (5) and (6)).

(2) Template-based Prediction: If we are satisfied with the quality of atemplate
BLAST found, we sample template-target sequence alignments using the
stochastic backtracking procedured4 (over 100 sub-optimal alignments). When
several templates are covering distinct target regions, we randomly pick
alignments from each ensemble of the sub-optimal alignments, and input them
as initia alignments of the progressive multiple sequence alignment
(approximately 1000-3000alignments). We also use templatetarget profile
alignments when PSI-BLAST found templates with relatively higher E-value
(>0.001). We convert the aignments to 3D structures by running
MODELLER5, and evaluate them using both of Verify3D6 and Prosa7to
check the initial alignment quality. We iteratively run MODELLER with
seemly good alignments, and repeatedly checked SSEs and the quality of
local/global structures. After ending this iterative procedure, we select final
models from the 2D score distribution generated by Verify3D and Prosa.

(3) Fragment Library Construction: For template-free prediction, we first build
a set of 10-residue segments by comparing the feature vector of a target
seguence with them of library containing 2598 known-structure proteins that
share <25% sequence identity. The vector contains PSSM of PSI-BLAST,
grouped chemical property of a residue, and a SSE. Two types of fragment
libraries are generated. Type |; a correlation coefficient scores top 200
segments for each overlapping 10-residue fragment of a target. Type Il; five
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scoring functions including the correlation coefficient pick over 200 segments
by considering the degree of dominated level (often called “Pareto Frontier” in
multi-objective optimization field).

(4) SimFold Energy Function: For fragment assembly simulations, we solely
used acoarse-grained model, SimFold8,9, in which side chain atoms are
replaced with a center of mass. SimFold contains van der Waals interaction,
secondary structure propensity, hydrogen bond interaction, hydrophobic
interaction, and pairwise interaction. The latter three terms depend on the
degree of buria of interacting atoms. No protein specific potential such as
secondary structure prediction based potential is used in the energy function.
Parametersin SimFold are optimized by Z-score optimization method.

(5) Multi-Canonical Ensemble Fragment Assembly (MCFA): Using Type |
fragment library, we performed the reversible MCFA10 that fulfills detailed
balance condition. The predictive accuracy of our MCFA in de novo prediction
has been proved in CASP6. On the other hand, to define a reasonable weight
function of MCFA is very time-consuming and human-dependant. We applied,
therefore, Wang-Landaualgorithm11 to the MCFA with a slight modification.
We arranged the reducing schedule of the Wang-Landau factor by using our
empirical data, and defined a weight function through approximately 2-3billion
Monte Carlo steps in a MCFA. Independent MCFA for a target sampled
conformations as many as possible by the given time limit.

(6) Genetic Algorithm Fragment Assembly (GAFA): Using Type Il fragment
library, we test a Genetic Algorithm newly developed (its basic code came from
the earlier study12). With 100 initial random coils, the GA randomly selectsa
residue as a crossover point. Based on this point, GA shuffles the two parents
randomly selected from the current population, and replaces a segment (4-10
residues long) to a fragment coming from the library. After generating 200
offspring, GA updates the parents with the lowest-energy child and random
one. Thus, theinitial coils hopefully evolve to the lowest-energy conformations
through 5000 update steps. The final conformations of independent GAFA runs
are gathered as many as possible, and are analyzed.

(7)How We did in CASP7: We performed the template-based procedure for
predicting targets that have
significant PSI-BLAST E-
value (< 0.001) or 3D-jury
jscore (>50.0). For 4l
remaining  targets, we
conducted MCFA and/or
GAFA with the different
typesof fragment libraries.
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unseen domains (e.g. TO311, T0347, etc.), we first predicted a full-length
model with a template and ran FA to predict these broken regions. For a target
that is likely to have multiple domains, we parsed it into monomers based on
domain DBs, and combined them into a single chain by FA. 13 targets were
predicted by the consensus of MCFA and GAFA; by using cluster analysis and
visual inspection, we selected five models from independently sampled models
by each FA method.

Interestingly, we often found that some of models FA predicted have high
structural similarity to known proteins. In such cases, we added a template-
based model to the final models if we were confident. For example, inT0363
case, we first selected five models from MCFA samples. MAMMOTH13said
that all five models are considerably similar to a Beta Grasp Fold. Particularly,
model_5 was highly similar to IMG4_A (z_score=4.92) that is akin to 3D-Jury
templates. We believed, consequently, that 1VJK_A (jscore=46.88) is the best
template for T0363. Such conspicuous structural similarity with remote
homology was found from FA models of severa targets (e.g. TO304, T0349,
T0353, T0361, TO382, etc.). Surprisingly, a model of SimFold FA for T0383
culled 1QYN_A (jscore=6.25) that is 3.66 Angstroms over 70 residues of the
T0383 native.

It is deemed again that SimFold FA is feasible to capture the nativelike
interactions from high quality fragment library. Therefore, the reliability of
structural templates fold recognition servers detected can be confirmed to
increase the predictive accuracy. This will be a steppingstone to better
prediction of new folds.
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ROKKY - 444 modelsfor 98 3D targets

De novo Structure Prediction Server by Fragment Assembly
with SimFold Energy Function

W. Jin', S.J. Park®, and S. Takada'®
! _ Faculty of Sci, Kobe Univ, % Grad School, Sci & Tech Kobe Univ
stakada@kobe-u.ac.jp

ROKKY is a fully automated server that predicts protein structures from a
given amino acid sequences with/without templates. It primary emphasizes the
template-free targets bX using Simulated Annealing Fragment Assembly
(SAFA) with SimFold'*, a coarse-grained physico-chemical energy function.
Although the predictive accuracy of ROKKY in template-free predictions was
highly evaluated at CASP6, we dlightly modified its job flow for CASP7
targets.

Here, we briefly describe (1) job flow, (2) generation of fragment candidates,
and (3) SAFA with SimFold and model selection.

1) Job flow: For all targets, ROKKY first performs PSI-BLAST® using NR and
PDB, respectively. When templates with e-value smaller than 0.001 is found,
ROKKY uses its aignment and makes model structures by running
MODELLER®. Otherwise, ROKKY submits the target sequence to 3D-Jury
meta-server’ and obtains the results. When templates (3D-Jury score > 50.0) are
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found, ROKKY uses 3D-Jury’s templates and alignments. MODELLER also
constructs variable loops if exist as alignment gaps. For the rest, ROKKY
performs SAFA with SimFold energy function for parts of theunaligned
sequence that is longer than 30 residues and choose 5 models in the sampled
structures based on clustering analysis. For multi-domain targets, individually
modeled domains are docked to have amodel of the whole sequence by SAFA.

2) Generation of fragment candidates: For every 10-residue in the query
sequence, the correlation coefficient of 20x10 dimensional fragment vectors
made of the PSSM from PSI-BLAST retrieves fragment candidates from 2600
template proteins that have known structures. Thecollection of 50 fragment
candidates for each site of the target overlapping is filtered by Ramachandran
plot if PSI-PRED® predicted the site is helix with high confidence.

3) Fragment assembly (FA) with SimFold and model selection: ROKKY
performs SAFA with SimFold using fragment candidates generated by (2) for
the targets or domains that has no apparent templates. SA algorithm replaces a
randomly chosen fragment (4-9 residues) with another fragment randomly
chosen from the candidates by following Metropolis judgment. Selection
temperature is gradually decreased to obtain low-energy structures. This SAFA
runs are repeated as many samples as possible till a few hours to the time
deadline. The samples that have secondary structure more than a certain cutoff
are treated by the cluster analysis with the group average method, in which the
centers of the five largest clusters are chosen as final models.

Computational resources of ROKKY are partially provided by Human Genome
Center of University of Tokyo.
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SAM-TO06: Full 3D predictions from UCSC
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TheSAM-T06 hand predictions use methods similar to SAM-T04 in CASP6
and the SAM-T02 method in CASP5.

We start with a fully automated method, implemented as the SAM_TO06 server.
The server runs the SAM-T2K and SAM-TO04 iterative methods for finding
homologs of the target and aligningthem. (The hand method also uses the
experimental new SAM-T06 alignment method, which we hope is both more
sensitive and less prone to contamination by unrelated sequences.) We use the
resulting alignments to make local structure predictions with our neural nets.
Currently we use 10 loca-structurealphabets: DSSP, STRIDE, STR2 (an
extended version of DSSP that splits the beta strands into multiple classes:
parallel / antiparallel / mixed, edge / center), ALPHA (a discretization of the
apha torsion angle between CA(i-1), CA(i), CA(i+1) and CA(i+2)), BYS (a
discretizationof Ramachandran plots due to Bystroff), CB_burial_14 7 (a 7-
state discretization of the number of C_beta atoms in a 14A radius sphere
around the C_beta), near-backbone-11 (an 11-statediscretization of thenumber
of residues in a 9.65A radius sphere around a residue), DSSP_EHL 2(CASP's
collapse of the DSSP alphabet; computed as a weighted average of the other
backbone alphabet predictions), O_NOTOR2 (an alphabet for predicting
characteristics of hydrogen bonds from the carbonyl oxygen) and N_NOTOR2
(an aphabet for predicting characteristics of hydrogen bonds from the amide
nitrogen).

The server makes two-track HMMs with each aphabet (a weight of 1.0 forthe
amino-acid track and 0.3 for local structure) and uses them to score a library of
about 8000 (t06), 10000 (t04), or 15000 (t2k) templates. The template libraries
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are expanded weekly, but old template HMMs are not rebuilt. We aso used a
single-track HMM to score not just the template library, but a non-redundant
copy of theentire PDB.

One-track HMMs built from the template library multiple alignments were used
to score the target sequence. All the logs of evalues were combined in a
weighted average (with rather arbitrary weights, since we still have not taken
the time to optimize them), and the best templates ranked.

Alignments of the target to the top templates were made using several different
alignment methods (mainly using the SAM hmmscore program, but a few
aignments were made with Bob Edgar's MUSCLE profile-profile aligner).
Generate fragments (short 9-residue alignments for each position) using SAM's
"fragfinder" program and the 3-track HMM which tested best for alignment.

Residue-residue contact predictions are made using mutual information,
pairwise contact potentials, joint entropy, and other signals combined by a
neural net.

Then the "undertaker" program (named because it optimizes burial) is used to
try to combine the alignments and the fragments into a consistent 3D model.
No single alignment or parent template was used as a frozen core, though in
many cases one had much more influence than the others. The alignment
scores were not passed to undertaker, but were used only to pick the set of
alignments and fragmentsthat undertaker would see. Helix and strand
constraints generated from the secondary-structure predictions are passed to
undertaker to use in the cost function, as are the residue-residuecontact
prediction.

One important change in this server over previous methods is that sheet
constraints are extracted from the top few alignments and passed to undertaker.

After the automatic prediction is done, we examine it by hand and try to fix any
flaws that we see. This generally involves rerunning undertaker with new cost
functions, increasing the weights for features we want to see and decreasing the
weights where we think the optimization has gone overboard. Sometimes we
will add new templates or remove ones that we think are misleading the
optimization process.

New this year, we are aso occasionaly using ProteinShop to manipulate
proteins by hand, to produce starting points for undertaker optimization. We
expect this to be most useful in new-fold al-alpha proteins, where undertaker
often gets trapped in poor local minima by extending helices too far.

Another new trick is to optimize models with gromacs to knock them out of a
local minimum. The gromacs optimization does terrible things to themodel
(messing up sidechains and peptide planes), but is good at removing clashes.
The resulting models are only a small distance from the pre-optimization
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models, but score much worse with the undertaker cost functions, so undertaker
can move them more freely than models it has optimized itself.

SAM-TO06 - 682 modelsfor 100 3D/93 RR/ 7 TR targets

Residue-Residue Contact Prediction Using Selected Correlation
Statistics

George Shackelford® and Kevin Karplus®
L. University of California, Santa Cruz
ggshack@soe.ucsc.edu

Wepresent a neural network based residue-residue predictor using selected
statistics. When we were developing the CASP6 predictor, we used every input
we thought might be useful even when they may be redundant. Neural networks
can still learn when there are redundant inputs but the learning is usually not as
effective with respect to predictions. For our new network, we conduct a series
of experiments to determine a more effective set of inputs.

The primary source of data is a multiple sequence aignment provided by SAM-
T04. We assume correlated mutations as a significant indication of contact,
therefore we consider a variety of correlation statistics over the i and j columns
as possible inputs. The two we finally found the most effective are one: an e
valuebased on mutual information and two: a propensity statistic using the sum
of log propensities of residue pairs between the two columns.

Besides those two inputs we use local structure predictions and residue
distributions aso provided by SAM-T04. The inputs for the correlation
statistics are based on columns from thinning the MSA to 50 precent, i.e.,
seguences are removed from the MSA until no two sequences have more than
the 50 percent sequence identity. We use residue distributions for columns
adjusted by Derlich mixtures. Windows around i and j are frequently used, e.g.,
awindow of five around i and j are the columnsini-2toi+2 andinj-2toj+2.

The 449 inputs we finally use are:

- The two corrrelation statistics mentioned above.

- log(sequence length) , log(separation),

- window of five of the distributions and their respective entropy,

- window of five for two local structure predictions; one predicts secondary
structure using a superset of DSSP and the other predicts how deeply buried the
residue is from the surface of the protein.
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Other correlation statistics tested but not used in the predictor included raw
mutual information, mutual information over entropy, BASC, OMES
(Observed Minus Expect, Squared). In training the neural network we find that
Improved Resilient Backpropagation helps in convergence.

The resulting predictor shows improvements over the CASP6 predictor.

PROTINFO - 500 modelsfor 100 3D targets
SAMUDRALA - 611 modelsfor 99 3D /5 FN /99 QA/
4 TR targets

Comparative model refinement using graph-theoretic and
consensus-based restrained molecular dynamics approaches
(PROTINFO/SAMUDRALA)

T. Liu, L-H Hung, S-C. Ngan and R. Samudrala
University of Washington
ram@compbio.washington.edu

We developed and evaluated two novel methods for refining template-based

predictions at CASP7. Initial models were generated based on alignments
provided by the 3D-Jury server (http://bioinfo.pl/meta) [1] using our protein
structure modeling server, PROTINFO
(http://protinfo.compbio.washington.edu) [2, 3]. Additional initial modelswere
obtained from the CAFASP5 server after scrutinizing the alignments to gain

extra variability in sequence alignments and templates. We then refined initial

models using two methods: A graph-theoretic clique finding (CF) approach and

a restrained molecular dynamics simulations using consensus-based constraints.

The latter is recently developed to address the refinement problem in CASPR
and in CASP7. The models generated using both approaches were minimised

using ENCAD [4] to produce good geometry and packing, and the five best

scoring models were submitted as our CASP7 predictions.

The CF approach has been developed to handle the large conformational space
of main chain and side chain possihilities resulting from the interconnected
nature of interactions in protein structures [5]. Our enhanced refinement
method employed the CF approach in a fully automated manner to mix and
match regions between different initial models for a given target protein.
Sampling of side chain and main chain conformations was accomplished by
exhaustively enumerating all possible choices from a population of initial
models. The best combinations of these possibilities were selected through a
graph-theoretic clique finding approach aided by our al-atomconditional
probability discriminatory function (RAPDF) [6]. This process typically
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generates an optimized conformation ensemble representing the best
combination of secondary structures, resulting in the refined models of higher
quality.

For the second refinement method, consensus distance constraints and dihedral
angles were compiled from the initial models and structures were generated by
restrained molecular dynamics simulations using the software CYANA
(Combined Assignment and Dynamics Algorithm for NMR Applications, © by
Peter Guntert) [7]. Distances between two non-local atoms (separated by more
than four residues) were measured and binned in 0.5 A increments. Atom pairs
within a distance bin observed in al the best scoring initial models were
considered consensus distance restraints. The values of upper and lower limits
for each such restraint were determined by the observed distances in the
models. Each consensus distance restraint was ranked based on its RAPDF
score for individual atom pairs [6]. The highest ranked consensusrestraints
were considered to be more accurate and were used for the restrained molecular
dynamics accuracy. For the calculation of dihedral angle restraints, W/® angles
of consensus residues from the 3D-Jury alignment were used. The distance and
angle restraints were then directly input to CYANA which generated a set of
conformations satisfying the input restraints using torsion angle dynamics.
Although this method is till in its early stage of development, it represents our
first attempt to move a template-based model closer to its native fold.
Preliminary analyses of targets for which the experimental structures have been
released, and of targets in the CASPR experiment, indicate that in some cases
our protocol is able to produce significant (> 1A) refinements relative to the
starting model.
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PROTINFO-AB/SAMUDRALA-AB are free modeling methodologies that do
not use template coordinates. The two methods differ mainly in the amount of
computation time used, the starting models used for refinement, and some
minor changes in implementation that occurred as CASP7 progressed. Initial
starting models are obtained from 3D-Jury ( http:/bioinfo.pl/meta)* when there
is a significant match and/or from CASP server models. These models are then
ranked using SAMUDRALA-MQAP. The highest ranking models are used to
derive constraints using a consensus approach and CY ANA? is used to generate
models satisfying those constraints, in a procedure similar to that used for
PROTINFO/SAMUDRALA. Models are then ranked on the basis of our al
atom energy function (RAPDF) 3, hydrogen bonding and iterative clustering®.

The variable regions of the best models are then rebuilt denovo using a Monte
Carlo simulated annealing search procedure. The move sets used are continuous
phi/psi distributions derived from experimentally determined structures. The
target that is minimised is a combination of our all-atom energy function
(RAPDF), a hydrophobic compactness function (HCF), and a function that
penalises bad contacts*’. In the absence of good starting models, the entire
protein is simulated denovo using this procedure. The best scoring models are
then used to obtain a second set of constraints which are used by CYANA to
generate a new set of models. The final set of models is then scored again and
the five best are submitted.

Preliminary analysis of CASP7 targets for which the experimental structure has
been released indicates that our approach complements
PROTINFO/SAMUDRALA (i.e, there are severa targets for which one
approach produces excellent models and the other does not, and vice versa). In
some cases, particularly for harder targets, the models produced are of higher
accuracy than any available template.
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For CASP7 we have applied a number of automated methods to predict the
structure, quality and function of the CASP targets. The predictions are based
on published and freely available methods developed during the last years in
our group. Below follows a short description of our automatic prediction
methods as well as references to the papers and websites containing more

detailed information. All prediction information is available at:

http://www.pdc.kth.se/~bjornw/casp7/targets/
Structure Prediction

We have submitted three structure prediction methods, Pcons6, Pmodeller6 and
SBC. The two first ones were submitted as server prediction while SBC was

submitted as a manual prediction, but no manual interference was used. The
Pcons6 method is a "consensus’ methods identical to Pcons51, wherethe
similarity of models collected by an inhouse developed metaserve,
http://www.cbr.su.se/pcons/, is compared. The meta-server tried to use the
following methods: samt02, blast, robetta, bas b, bas c, ffas03,orfeus,
pdbblast, mgenthreader, blast, mbam, forte, sp3, orfbc, fugsa and inbgu.
Pmodeller6 is simple an approach to from all methods that have a Pconst score
within 30% from the best score choose the model that have the highest ProQ
score2. The SBC methods is identical to the Pmodeller6 method but uses all
server predictionsubmitted to CASP as an input.

Quality assessment methods.

Four quality assessment methods were applied in CASP7, ProQ , Pcons,
ProQprof and ProQlocal. All these method predicts the quality for each residue
as well as for the entire model3. The ProQ QA method is based on a neural
network trained on structural features, ProQprof uses sequence similarity and
ProQlocal is a combination of these two methods. The Pcons QA method is
based on the local structural similarity between all models submitted to CASP7.
ProQ is available as a webserver at
http://www.sbc.su.se/~hjornw/ProQ/ProQ.cgi and the local quality predictor is
available at http://sbecweb.pdc.kth.se/cgi-bin/bjornw/ProQres.cgi

Function prediction methods.

We have developed two simple function prediction methods, SBCdomfun,
SBCseqfun. SBCdomfun, http://sbcweb.pdc.kth.se/cgi-
bin/diaek/domsearch.cgi, is based on mutual information between GO terms
and Pfam domains. The Pfam domains were detected using profileprofile
searches a the http://bicinfo.pl m et a-server. SBCseqfun,
http://sbcweb.pdc.kth.se/cgi-bin/diaek/segfunction.cgi , is based on searches
against a sequence database with annotated sequence. The most frequent GO-
terms among the top-hits were used.

Automated analysis of structure prediction methods

As of Sept 28 we have performed an automated analysis of all server
predictions as well as some manual predictions for the 81 CASP targets solved
at this date. These results show that Pmodeller6 is the second best server overall
athough it does not perform very well on the "easy" targets while SBC is
second only to the clearly method, Zhang-server. Here follows alist of selected
results for the best

methods available at http://www.pdc.kth.se/~bjornw/casp7/targets/results/

Score and (rank of automatic methods):
Method All EASY HARD
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Zhang-Server  50.52 (1) 3484 (1) 15.68 (1)
SBC 48.66 33.50 15.15
Pmodeller6 47.31 (2) 32.59(24) 14.72 (2)
HHpred2 47.11 (3) 32.94 (15) 14.17 (4)
Robetta 47.06 (4) 32,62 (23) 14.44 (3)
CIRCLE 47.03 (5) 33.41 (4) 13.62 (7)
Pcons6 46.86 (6) 32.84 (18) 14.03 (6)
UNI-EID_expm 46.61 (7) 33,50 (2) 13.10 (14)
beautshot 46.56 (8) 33.40 (5) 13.16 (13)
FAMSD 46.55 (9) 33.26 (6) 13.29 (12)
MetaT asser 46.41 (11) 32.31 (27) 14.10 (5)
shub 45.71 (18) 3341 (3) 12.30 (23)

1. WallnerB. and Elofsson A. (2003) Can correct protein models be
identified Protein Science 12(5):1073-86

2. WallnerB. and Elofsson A. (2005) Pconsb5: combining consensus,
structural  evaluation and fold recognition scores Bioinformatics
21(23):4248-54

3. Walner B. and Elofsson A.(2006) Can correct regionsin protein models
be identified. Protein Science 15(4):900-13.
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SCFBIio-I1TD - 20 modelsfor 3 3D targets

Bhageerath: An Energy Based Protein Tertiary Structure
Prediction Server for Small Globular Proteins.
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The tertiary structure prediction of a protein using the amino acid sequence
information aone is one of the fundamental unsolved problems in
computational biology®. Significant progress has been made in recent years in
generating computational solutionsbased on laws of physics. This approach,
commonly referred to as ab initio®* is based on the thermodynamic hypothesis
formulated by Anfinsen, according to which the native structure of a protein
corresponds to the global minimum of its free energy under given conditions’.
Protein structure prediction using de novo method is accomplished by a search
for a conformation corresponding to the global-minimum of an appropriate
potential energy function without the use of secondary structure prediction,
homology modeling, threading etc.®.

We describe here an energy based computer software suite for narrowing down
the search space of tertiary structures of small globular proteins. The protocol
comprises eight different computational modules that form anautomated
pipeline. It combines physics based potentials with biophysical filters to arrive
at 10 plausible candidate structures starting from sequence andsecondary
structure information. The methodology has been validated here on 50 small
globular proteins consisting of 2-3 helices and strands with known tertiary
structures. For each of these proteins, a structure within 36 A RMSD(root
mean square deviation) of the native has been obtained in the 10 lowest energy
structures. The protocol has been web enabled and is accessible at
http://www.scfbio-iitd.res.in/bhageerath.

The first module involves the formation of a three-dimensional structure from
the amino acid sequence with the secondary structural elements as input from
the user. For CASP7 targets, the secondary structure information was taken
from online server GORV’® and an in-housedevel oped programnamed
PROSECSC. The second module involves generation of a large number (~10°
t010°) of trial structures with a systematic sampling of the conformational
space of loop dihedrals. Thetrail structures thus generated are screened in the


http://www.scfbio-iitd.res.in/bhageerath
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third module through the persistence length and radius of gyration filters’,
developed for the purpose of reducing the number of improbable candidates.
The resultant structures are refined in the fourth module by a Monte Carlo
method to remove steric clashes and overlaps involving atoms of main chain
and side chains. In module five, the structures are energy minimized to further
optimize the side chains. Module six involves ranking of structures using an all
atom energy based empirical scoring function'® followed by a selection of the
100 lowest energy structures. Module seven reduces the probable candidates
based on an index developed using the regularity observed in protein loop
dihedrals. Module eight further reduces the structures selected in the previous
module to 10 using topological equivalence criterion and accessible surface
areas. The above eight modules are configured to work in conduit in an
automated mode. Further refinement of structures was carried out by Molecular
dynamics studies and subsequent energy scans for CASP7 to reduce the final
number to five.

Thewebserver (Bhageerath; www.scfbio-iitd.res.in/bhageerath) and the
automated computational protocol developed and embedded in the software for
aprediction of the three dimensional structures of small proteins is described.

1. Liwo A.,Khalili M. and Scheraga H.A. (2005) Ab initio simulation of
protein-folding pathways by molecular dynamics with united residue
model of polypeptide chains. Proc. Natl. Acad. Sci. USA, 102, 2362-2367.

2. Scheraga H.A. (1992) Some approaches to the multiple-minima problem in
the calculation of polypeptide and protein structures. Int. J. Quant. Chem.,
42, 1529-1536.

3. Scheraga H.A. (1996) Recent developments in the theory of protein
folding: searching for the global energy minimum. Biophys. Chem., 59,
329-339.

4. Vasquez M.,Nemethy G. and Scheraga H.A. (1994) Conformational
energy calculations on polypeptides and proteins. Chem. Rev., 94, 2183.

5. Anfinsen C.B. (1973) Principles that govern the folding of protein chains.
Science, 181, 223.

6. Pillardy J. (2001) Recent improvements in prediction of protein structure
by globa optimization of a potential energy function. Proc. Natl. Acad.
Sci. USA, 98, 2329-2333.

7. Kloczkowski A., Ting K.-L, Jernigan R.L.,Garnier J. (2002) Combining
the GOR V agorithm with evolutionary information for protein secondary
structure prediction from amino acid sequence. Proteins, 49, 154-166.

8. SenT.Z., Jernigan R.L., Garnier J., Kloczkowski A. (2005) GOR V server
for protein secondary structure prediction, Bioinformatics, 21(11), 2787-
2788.

9. Narang P.,Bhushan K., Bose S. and Jayaram B. (2005) A computational
pathway for bracketing nativelike structures for small alpha helical
globular proteins. Phys. Chem. Chem. Phys.,, 7, 2364-2375.

107

10. Narang P., Bhushan K., Bose S. and Jayaram B. (2006) Protein structure
evauation using an all-atom energy based empirical scoring function. J.
Biomol. Str. Dyn. 23 (4), 385-406.
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Physics-based protein-structure prediction using mesoscopic
dynamics and the Conformational Space Annealing (CSA)
method with the UNRES force field - test on CASP7 targets
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The structures of the target proteins were predicted using our hierarchical
approach® in which a polypeptide chain is initialy treated at a united-residue
level using our UNRES force field, and the coarse-grained structures thus found
are subsequently converted to all-atomstructures.

In the UNRES model, the atoms of the peptide group and side chain of each
amino-acid residue are replaced with two centers of interactions: the united
peptidegroup (p) located in the middle between two consecutive a-carbon
atoms and the united side chain (SC). The lengths of the virtual C*...C* and
C”...SC bonds are held fixed, but the virtual-bond angles, the virtual-bond
dihedral angles, and the orientations of the C*...SC virtual bonds are variable.
The interactions of this simplified model are described by the UNRES potential
derived from the generalized cumulant expansion of a restricted free energy
(RFE) function of polypeptide chains'. The cumulant expansion enabled us to
determine the functional forms of the multibody terms in UNRES. The
potential was optimized by applying our novel hierarchical optimization
method targeted at decreasing the energy while increasing the native-likeness of
structures of the training proteins?.



We used our two techniques to search the conformational space: the
conformational space annealing (CSA) method and molecular dynamics which
was recently introduced to UNRES® enhanced with multi plexing replica
exchange (abbreviated MREMD);* this MD approach is still under development
and was used only for smaller a-helical proteins. The second technique enabled
us to select models based on thermodynamic stability of the calculated
ensembles. To speed up the search for larger proteins, information from
secondary structure prediction by PSIPRED® was used in the generation of the
initial structures; however, the search was carried out in an unrestricted manner
with the UNRES energy function. For very large a-helical proteins, a search
with our simplified approach® in which a-helices are represented as cylinders
wascarried out and, for the lowest-energy structures thus obtained, the
conformational search was completed with the UNRES force field.

To select final models, the conformations from CSA calculations were
clustered and the families ranked according to UNRES energies. The models
were selected as the lowest-energy representatives of the five lowest-energy
families. The MREMD ensembles were processed by histogram reweighting to
calculate the probabilities of conformations and clustered at the folding
temperature (located by inspection of the calculated heat-capacity curves), and
the free energy of each cluster was evaluated. The five models were chosen as
average conformations from the five clusters with the lowest free energies.

1. Scheraga H.A. et a. (2004) Theprotein folding problem: global
optimization of force fields. Frontiers in Bioscience 9, 3296-3323.

2. Ofdziej S. et al. (2004) Optimization of the UNRES force field by
hierarchical design of the potential-energy landscape. 3. Use of many
proteins in optimization. J. Phys. Chem. B 108, 16950-16959.

3. Khalili M. et a. (2005) Molecular dynamics with the united-residue model
of polypeptide chains. |. Lagrange equations of motion and tests of
numerical stability in the microcanonical mode. J. Phys. Chem. B 109,
13785-13797.

4. Nanias M. et al. (2006) Replica exchange and multicanonical algorithms
with the coarse-grained united-residue (UNRES) force field. J. Chem.
Theory and Comput. 2, 513-528.

5. McGuffin L.J. et a. (2000) The PSIPRED protein structure prediction
server. Bioinformatics 16, 404-405.

6. Nanias M. et al. (2003) Packing helices in proteins by global optimization
of a potential energy function. Proc. Natl. Acad. Sci. USA. 100, 1706-
1710.
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Schombur g-group - 133 models for 18 3D/65 QA targets

A comparative modeling pipeline combined with
a statistical potential scoring function

P. Benkert! and D. Schomburg?!
1 - Cologne University Biol nformatics Center
pbenkert@uni-koeln.de, D.Schomburg@uni-koeln.de

Our comparative modeling pipeline consists of a PDB-BLAST-like protocol for
parent detectionl, a profile-profile alignment step, manual model building
including a semi-automatic loop modeling procedure and a statistical potential
for fina model selection.

Parent detection is performed by thefollowing PDB-BLAST protocol: 4 PSI-
BLAST2 iterations on NCBI’s non-redundant sequence database (clustered at
90% sequence identity) with E-valuecut-off 0.001 followed by 1 iteration on
pdbaa. One or severa templates are selected manually based on the observed
sequence identity to the target and the quality of the template (i.e. resolution,
target coverage).

Several dternative target-template alignments are generated using a modified
version of the profile-profile alignment functionality included in the Align-
package, a C++ library provided by the Tosatto group3. Profiles are generated
by PSI-BLAST (5 iterations on nr clustered at 90%, E<0.001). Alternative
alignments are generated by applying different (sub-)optimal gap open and gap
extensionpenalties.

Based on the template structures and the alignments, raw models are generated
automatically which are then subjected to the knowledge-based loop prediction
procedure. Boundaries of loop regions are determined manually using a
consensus of PROFphd4, PSIPREDS and SSpro6. Loops are retrieved from a
fragment database storing fragments of the length 3-20 residues based on a
PISCES7 selections (95% sequence identity, resolution < 2.5A). Loops are
ranked according to the energy function described below. Since loop prediction
is not fully automated yet, loops are selected manually from the top ranking
loops.

Loop ranking and model quality assessment is done by a statistical potential
consisting of a solvation term, a torsion potential over 3 adjacent residues and
pairwise Cbh-Cb potential combined with a term accounting for the agreement
between predicted and observed secondary structure of the target and the model
respectively. Side-chains are predicted by SCWRLS8.

1. Rychlewski L., Jaroszewski L., Li W. & Godzik A. (2000) Comparison of
sequence profiles. Strategies for structural predictions using sequence
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information. Protein Science 9(2):232-241.

2. Altschul S.F.,Madden T.L., Schaffer A.A.,Zhang J., Zhang Z., Miller W.
& Lipman D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

3. http://protein.cribi.unipd.it/align/downl oad.shtml

4. Rost B. (2005). How to use protein 1D structure predicted by PROFphd.
In Walker, J.E. (Ed.). The Proteomics Protocols Handbook, , Totowa, NJ
Humana, pp. 875-901.

5. Jones D.T. (1999) Protein secondary structure prediction based on
position-specific scoring matrices. J. Mol. Biol. 292, 195-202.

6. Cheng J.,Randall A.,Sweredoski M.,Baldi P. (2005) SCRATCH: a
Protein Structure and Structural Feature Prediction Server, Nucleic Acids
Research,Web Server Issue, val. 33, 72-76.

7. Wang G. and Dunbrack R.L.Jr. (2003) PISCES: a protein sequence culling
server. Bioinformatics, 19:1589-1591.

8. Canutescu A.A., Shelenkov A.A. and Dunbrack R.L.Jr.(2003) A graph
theory algorithm for protein side-chain prediction. Protein Science 12,
2001-2014.

SHORTLE - 401 modelsfor 91 3D/5 TR targets

Homology modeling with Atom-Based Statistical Potentials and
a Simple Genetic Algorithm
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Our method of homology modeling in CASP7 was based on a distance
dependent atom-pair potential developed and optimized for modeling the
energetic of atomic interactions in native proteins'. Previous work has shown
that conformational search using a genetic algorithm (GA) method and a
scoring function consisting of this atom-pair potential plus an orientation-
dependent backbone hydrogen bonding potential used by ROSETTA? and a
statistical solvation potential based on the solvent exclusion model of Lazaridis
andKarplus® is able to efficiently refold small proteins that have been unfolded
by changing every phi and psi angle by either +/- 3, 5, 7 degrees'. In that study,
a strong correlation was found between the correctness of the structure,
measured by Ca Distance Matrix Error (Ca-DME) to the native state, and the
radius of gyration for low energy structures.

For targets established to be homology modeling challenges, templates were
identified by PSI-BLAST and 3D-Jury of BiolnfoBank Meta Server

109

(http://bicinfo.pl/metal). The optima sequence alignment was inferred by
comparing both PSI-BLAST and 3D-Jury outputs, and in some cases, more
than one alignment or more than one template was used. Overlapping segments
of the target sequence containing a single turn/loop plus the two flanking
helices/strands were constructed de novo by recombination of overlapping 5- to
8- residue oligomers obtained from hi?h resolution crystal structures on the
basis of low loca interaction energies’. Approximately 2000 structures that
could be reasonably superposed on the helices/strands of the template were
saved for each segment. Starting with the template, each turn/loop was
replaced with arandomly selected fragment using the cyclic coordinate descent
(CCD)algorithm® at randomly selected sites within the helix/strand of the
template. To avoid significant changes in backbone structure within the
turn/loop, a limit of 10 steps and a maximum of 5 degrees’ change in each
phi/psi angle were imposed on the CCD insertion. Up to 1000 structures were
generated for each target, with each turn/loop fragment being alowed to
contribute to no more than three accepted structures.

In the second step, an initial population of 300 full-length structures was
selected for the genetic agorithm using a scoring function consisting of the sum
of z-scores of the atom-based statistical potentials, hydrogen bonding energy
and solvation energy. Conformational search proceeded by selection of two
structures at random and recombination across a randomly chosen peptide
bond. Side-chain minimization was carried out by two passages through a grid
search of side-chain rotamers, using the penultimate library of Lovell et al®.
When a recombinant had a score lower than the mean value from the previous
generation, it was saved until 300 additional recombinant structures were
generated. The same scoring function was used to select which 300 structures
out of the 600 would survive in the next generation. The genetic algorithm was
run for 20 generations, and 6 independent runs were conducted for each target,
yielding atotal of 1800 models.

In the final step, the 600 structures with the lowest atom-pair potentials were
first selected, followed by a selection for the smallest radius of gyration. For
most targets, the structure submitted as model 1 had the smallest RG (highest
atom density), whereas the other models were chosen based on other energy
terms.

At the completion of CASP7, we realized that for all targets predicted, much of
the aligned template structure had been inadvertently retained, with most of the
structural variation being confined to loops having fixed points of attachment to
the template. Subsequent work has shown that when the aligned segments of
secondary structure are allowed to move significantly, the genetic algorithm
runs much more slowly and, for several templates, can only occasionaly re-
position the secondary structure to the same accuracy (CA-DME) as that of the
template. Future success with this approach will probably require greater levels
of global structural similarity in the initial population.
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Softberry tools for protein structure analysis and modeling
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We have developed a suite of programs that were applied to analyze CASP7
targets. These programs can be used within window based Molquest computer
packageor run on the web server atwww.softberry.com. Identification of
disordered regions in proteins was computed by the Pdisorder program that
uses a combination of neural network (NN), linear discriminant function (LDF)
and a smoothing procedure. At the first stage, we compute featuresin adliding
window of 31 residues for neural network and for the linear discriminant
function At the second stage, we apply a smoothing procedure that computes
chances for the positions of query sequence to be in ordered regions. The
accuracy of our disorder regions predictor Pdisorder on several test sets is
higher (~75-80%) than that for the other disorder fragments identification
programs such as PONDR and GlobPlot.

110

Initial step in 3D modeling is selection of a template structure for a query
sequence, or selection of a set of most similar fragments if we study a new fold,
and obtaining template-query sequence alignment. This step is performed by
Ffold program. Ffold alignment is made taking into account sequence
similarity, secondary structures of both query and template protein, and solvent
accessihility of a template protein. Secondary structure of a query protein is
predicted by PSSFinder program. Secondary structure and accessibility for a
template is calculated by SSENVID program. As a result, a set of aligned
template-query sequence pairs is obtained. Each alignment generates a model
structure, and usualy up to 2-4template-query pairs are selected for further
modeling.

Building side chain and loop coordinates for a query protein based on a
template structure and sequence alignment is performed by Getatoms program.
To generate a set of side chain conformations for side chain structure
prediction, the program uses backbone-independent rotamer library. Rotamers
for each residue are ranked according to their frequency of occurrence
(statistical potential) and energy of interaction with backbone (VDW scoring
potential). Unfavorable conformations are then filtered out using several single-
residue criteria, pairwise VDW interaction energy, and Goldstein DEE
agorithm [1]. For remaining rotamers, an optimization procedure is performed
to obtain a conformation with minimal VDW energy. The loop modeling
procedurein Getatoms program is as follows. A large set of loop main chain
conformations satisfying geometrical loop closure criteria is generated and
ranked according their sterical energy of interaction with other parts of protein
molecule. Top set of the conformations is subjected to the sidechain
optimization procedure as described above. A conformation with minimal
energy is selected as loop model. This procedure is applied consequently for al
the loops modeled.

Models built by Getatoms program are further refined by Hmod3dMM
program, which performs energy minimization using AMBER force field (2).
Hmod3dMM consists of two modules. The first module prepares a molecule
topology file, which is then used as an input for molecular mechanical
minimization module. Energy minimization is first performed in vacuum, and
afterwards the resultant structure is further minimized in water. To handle
water-water solvent interactions, Hmod3dMM employs special routines that are
considerably faster than the standard ones (TIP3P/TIP4P).

In the absence of significant homology with known protein structures the
structure of query protein is modeled using the Cover3D. Cover3D uses Ffold
results to cover a query sequence with short similar protein fragments with
known 3D structure. It outputs severa variants of such coverage, which are
used for manua building or computing by Abini3D a putative 3D model of
target sequence. Abini3D finds optimal conformation of a set of 3D-fragments
representing a target sequence. First, it generates a set of distinctive partialy
compact conformations, which are then optimized by genetic algorithm using
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simplified model of amino acid residues. Then, the algorithm optimizes the
energy function derived from statistics on known tertiary structures. Finally,
Abini3D restores loop structures and outputs the atomic coordinates of optimal
conformation. Resulting models are subjected for further refinement using
Hmod3dMM program.

1. Goldstein R.F. (1994) Efficient rotamer elimination applied to protein side-
chains and related spin glasses. Biophys J. 66, 1335-1340.

2. Weiner SJ.,KollmanP.A.,Nguyen D.T., Case D.A. (1986) An All Atom
Force Field for Simulations of Proteins and Nucleic Acids J. Comput.
Chem., 7, 230-252.
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Template-based Protein Structure Prediction by SP*
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University School of Informatics, Indiana University-Purdue University and
Center for Computational Biology and Bioinformatics, Indiana University
School of Medicine, Walker Plaza Building, Suite 319, 719 Indiana Ave.,
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Recognizing the structural similarity without significant sequence identity
(called fold recognition) is the key for bridging the gap between the number of
known protein sequences and the number of structures solved. Previously, we
developed afol d-recognition method, called SP°, which combines sequence-
derived sequence profiles, secondary-structure profiles and residue-depth
dependent, structure-derived sequence profiles'. The use of residue-depth-
dependent profiles makes SP® one of the best automatic predictors in CASP 6.
Because residue depth and solvent accessible surface area (solvent
accessibility) are complementary in describing the exposure of a residue to
solvent, we test whether or not incorporation of solvent-accessibility profiles
into SP® could further increase the accuracy of fold recognition.

In this work, we address this question by developing a fold recognition method,
called SP*. SP* integrates sequence-derived profiles, secondary structure
profiles, residue depth-dependent structure-based profiles and solvent
accessibility (SA) profiles to recognize structural homologs. Here, the solvent
accessibility of query sequence with a two-state classification (buried and
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exposed based on a 25% SA threshold) is predicted by SABLE?. The residue
SAs of templates are obtained by the ACCESS algorithm®.

Table 1 shows the result of SP* on the Lindahl benchmark®.

Table 1: Lindahl Benchmark (976 proteins): the summed MaxSub score for the
first ranked models.

Method?® sPt P S P S
Total 328.6 340.8 3434 349.2 352.5
Family 286.8 292.8 292.7 2935 295.6
Superfamily 87.5 943 99.9 100.8 108.9
Fold 21.7 27.8 30.2 345 37.1

3gp!: Sequence profiles only; SP%: Sequence profiles and secondary-structure
profiles. SP**: Sequence profiles, secondary-structure profiles, and solvent-
accessibility profiles. SP*: sequence-derived sequence profiles, secondary-
structure profiles and residue-depth dependent, structure-derived sequence
profiles. : sequence-derived sequence profiles, secondary-structureprofiles,
and solvent-accessibility profiles, and residue-depth dependent, structure-
derived sequence profiles.

1. Zhou H, Zhou Y. (2005) Fold recognition by combining sequence profiles
derived from evolution and from depth-dependent structural alignment of
fragments. Proteins 58, 321--328.

2. AdamczakR., Porollo A., Méeller J. (2004) Accurate prediction of solvent
accessibility using neural networks-based regression. Proteins, 56, 753—
767

3. LeeB., Richards F. (1971) The interpretation of protein structures:
estimation of static accessibility. J. Mal. Biol. 55, 379--400.

4. Lindahl E., Elofsson A. (2000) Identification of related proteins on family,
superfamily and fold level. J. Mol. Biol. 295, 613-625.
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Protein tertiary structure prediction using ECEPP/SM potential
energy function and Monte Carlo with minimization
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L. Computer-Aided Molecular Design Research Center, Soongsil University,
Seoul 156-743, Korea, 2- School of General Education, ChungJu National
University, Chungju 380-702, Korea, 3- Department of Bioinformatics and Life
Science, Soongsil University, Seoul 156-743, Korea,
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For blind prediction of tertiary structures of potentialy ‘new fold CASP7
targets, we have performed folding simulations based on ECEPP/SM* potential
energy function and Monte Carlo with minimization®. As initial conformations
of our folding simulations, we have used conformations collected from CASP7
server predictions. After folding simulations, we have obtained final
conformations quite different from the initial conformations. Then we have
sorted the final conformations according to their ECEPP/SM energies, and we
have chosen the top-ranking conformations as our models.

ECEPP/SM potential energy functionis a hybrid model based on ECEPP/3°.
For backbone atoms except Cq, it has al atom representation, wheresas, the rest
of the atoms including the side chain has a reduced representation. The G,
atoms and the side chain atoms are reduced up to three pseudo atoms. C, and
the hydrogens attached to the C, are reduced into one pseudo atoms at G,
position. Cg and the hydrogens attached to the C; are reduced into one pseudo
atoms at Cg position. For the side chain atoms beyond B position are reduced to
one pseudo atoms for each amino acid. As a consequence, the model has only
one X angles for the amino acids which have more than C, carbons. The
Hydrogen attached to C, is contributed to only nonbonding interaction with
backbone atoms within the residue in order to represent backbone torsions. The
hydrogen attached to C, and Cp carbons are contributed to only nonbonding
interaction with backbone atoms within the residue in order to represent
backbonetorsions. The potential energy function and parameters for the
backbone atoms which have all-atom representation are taken from ECEPP/3
potential energy function. The parameters for pseudo atoms were newly
derived.

1. ChoK.-H.,Lee B. A Simplified Potential Energy Function for ab initio
Protein Folding, In preparation
2. LiZ. and ScheragaH.A. (1987) Proc. Natl. Acad. Sci., 84, 6611-6615

112

3.  Nemethy G.,Gibson K.D., PAmer K.A.,Yoon C.N., Paterlini G.,Zagari
A., Rumsy S, and Scheraga H. A. (1992) J. Phys. Chem., 96,6472-6434

Sternberg - 190 models for 99 3D targets

Integrating ab initio folding, domain boundary prediction and in-
house ensemble fold recognition in Phyre

L.A. Keley!, A. Herbert!, R.M. Bennett-Lovsey1 and

M.J.E. Sternberg®
— Structural Bioinformatics Group, Division of Molecular Biosciences,
Imperial College London, SW7 2AY, United Kingdom
|.a.kelley@imperial.ac.uk

Our automated system is an integration of three techniques: an ensemble fold
recognition system, recursive domain boundary identification, and an ab initio
folding simulator.

Fold recognition in Phyre

Our ensemble fold recognition system uses 10 profile-profile and sequence-
profile matching methods. 3D models from these systems are clustered using a
novel strategy which combines measures of structural similarity between
models (an ‘entropic’ measure) and fold recognition confidencescores(an
‘enthalpic’ measure), which is an adaptation of the colony-energy approach
used in loop modelling™.

Domain boundary prediction, loops and sidechains

Confident fold recognition predictions are used to define domain boundaries
which are then usedto split the sequence for subsequent iterations of the
system. Insertions and deletions are modelled using a loop library. Loops are
refined using cyclic-coordinate descent. Large loops are modelled by fragment
insertion techniques. Finally, sidechains are added using the R3 algorithm?in
conjunction with a backbone-dependent rotamer library®.

Abinitio foldingin NOVA

In cases where fold recognition fails to identify a confident match and the
protein sequence is <120 amino acids in length, our abinitio foldingsystem
(NOVA) is applied. We use fragment insertion techniques in the context of
various statistical potentials. We use two evolutionary potentials where, instead
of the target sequence, a profile of the sequence is used in assessing pair terms
and solvation terms. A novel scheme to explore the register of betasheet
structures is employed. A strand in a sheet is approximated to lie on the surface
of a large circle (in order to include twisting in the sheet). The strand is



permitted to move aong this circle permitting it to sample different registers on
the sheet. Strand-strand packing potentials and torsion potentials are also
applied. The final resulting models are clustered using a 3D-Jury approach®.

Human predictions and automatic predictions

We have registered 2 automatic groups: Phyre-1 and Phyre-2. Phyre-1 uses a
singleprofile-profile matching algorithm and loop modeling. Phyre2 is the
fully integrated system described above. For our manua predictions as the
Sternberggroup, the above Phyre-2 techniques were augmented by correcting
obvious programming problems, clustering automatic predictions from other
servers, and building 10,000 abinitio models as opposed to the 500 produced
by our automatic system.

1. Xiang Z.,SotoC.S. & Honig B.(2002) Evaluating conformationa free
energies. The colony energy and its application to the problem of loop
prediction. Proc. Natl Acad Sci USA, 99(11):7432-7.

2. XieW. & Sahinidis N.V. (2006) Residue-rotamer-reduction agorithm for
the protein side-chainconformation problem, Bioinformatics, 22(2), 188-
194.

3. Dunbrack J, RL. & Karplus M. (1993) Backbone-dependent Rotamer
Library for Proteins. Application to Side-chain prediction. J. Mol. Biol.
230, 543-574.

4. Gindski K.,Elofsson A.,Fischer D. & Rychlewski L.(2003) 3D-Jury:a
simple approach to improve protein structure predictions. Bioinformatics.
19(8):1015-8.

TASSER - 1027 models for 100 3D/100 QA/8 TR targets

TASSER for protein structure prediction in CASP7

H. Zhou, S.Y. Lee, S. Pandit, H. Chen, J. Borreguero, and

J. Skolnick
Center for the Sudy of Systems Biology, School of Biology,
Georgia Institute of Technology, Atlanta, USA
hzhou3@gatech.edu

TheTASSER (Threading/ASSEmbly/Refinement) method (1) was further
developed by using additional threading methods of SPARKS (2) and SP3 (3)
aswell asour previously used PROSPECTOR (4) , ab initio folded chunks for
hard targets, and a new model ranking method to select models from multiple
runs. The 3D-jury agorithm (5) was used for ranking the unrefined models
from the three threading methods. Targets were classified as hard if the first
models ( ranked by Z-score from individual threading method ) from all  three
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methods have a TM-score< 0.4 with respect each other (6). In this case, we
use fragment assembly method (7) to fold chunks of the target selected using an
extension  of the SP3 method to select significant fragment matches. Each
chunk contains three consecutive segments of regular secondary (helix, strand )
structure. Chunk models were ranked by comparing each position's 9 residue
fragment with the corresponding fragments in the fragment library. The
average RMSD  was used as the ranking score. Ten models were selected for
each chunk and they were used to extract consensus sequence specific contact
potentials and distance restraints for TASSER to build full length models.

Unlike TASSER in CASP6 which selected the top five clusters by SPICKER
(8) for submission, in CASP7 we used different protocols to run TASSER
multiple times and used the same fragment comparison method in the above
chunk model selection for ranking all the top five full length models by
SPICKER from these multiple runs. The side-chains  are rebuilt using
PULCHAR (9). The top five ranked models were submitted. The ranking
procedure is fully automated and was aso used for quality assessment
prediction for all server modelsin CASP7.

1. ZhangY. and Skolnick J.
weakly homologous proteins on genomic scale.
(USA) 101, 7594-7599.

2. Zhou H. and Zhou Y. ( 2004) Single-body residue-level knowledge-based
energy score combined with sequence-profile  and secondary structure
information for fold recognition. Proteins 55, 1005-1013.

3. ZhouH. and Zhou Y. (2005) Fold recognition by combining sequence
profiles derived from evolution and from depth-dependent structural
alignment of fragments. Proteins 58, 321-328.

4. Skolnick J, Kihara D. and Zhang Y. (2004) Development and large scale
benchmark testing of the PROSPECTOR 3.0 threading algorithm. Proteins
56, 502-518.

5. Ginaski K. and Elofsson A. and Fischer D. and Rychlewski L. ( 2003)
3D-jury: a simple approach to improve protein structure predictions.
Bioinformatics 19, 1015-1018

6. ZhangY. and Skolnick J. (2004) A scoring function for the automated
assessment of protein structure template quality. Proteins 57, 702-710.

7. Simons K. and Kooperberg C. and Huang E. and Baker D. ( 1997 )
Assembly of protein tertiary structures from fragments with similar local
sequences using  simulated annealing and Bayesian scoring functions. J
Mol Biol 268, 209-225.

8. Zhang Y. and Skolnick J. ( 2004 ) SPICKER: a clustering approach to
identify near-native protein folds. J. Comput. Chem. 25, 865-871.

9. Rotkiewicz P. and Skolnick J. Protein Chain Restoration Algorithm, in
preparation.

(2004) Automated structure prediction of
Proc. Natl. Acad. Sci.
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TENETA - HMM-oriented Structure Prediction Method
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In TENETA, structure prediction is obtained in severa steps. During the first
step, we performed BLAST-like search using primary sequences proteins,
which are members of PBD. Furthermore, we used hmmpfam program from
HMM package [1] for search on HMM-library. The library is built (hmmbuild
—fast —gapmax 0.5) based on SCOP classification [2] and obtained alignments
using Threader 3.51 program [3], a source for pairwise alignments. In the case
of a considerable score (E-value < 5), the search is finished and building of
pdb-file occurs using MODELLER program (version 7.7 and 8.1) [4]. Input
adignment aways is built using TDB-files library [5], which alows
disregarding of the alignment’s length in resulting hmmpfam-file.

In a case of unsubstantial score, we mark the first 100 proteins from thelist,
which are sorted by score, with unrepeated SCOP-id (like a4.5.x). These
templates are sufficient for proper structure prediction for 95 percent of the
target cases. Then, package structure building occurs [4] and we assess the
derived models using evaluation program, similar to verify3D [6]. If al models
are scored low, we launch an additional target search in nr (non-redundant)
protein DB [7]. From the high-score protein sequences, an alignment is build,
using program ClustalW [8]. Furthermore, we pair like compress obtained
target-alignment, as well as, each alignment from library, used for preparing
HMM. For compression, we use a variation of popular algorithm Ziv-Lempel
[9]. In each case, the results for compressed target-alignment sizes and
compressed alignment from the library (two compressed files sizes) are
summed up. Then, two alignments are combined; the final file is compressed as
well. The difference between the sizes of compressed file and the sum of the
separate file's sizes is used as a “score” (where the bigger the difference, the
better).

In such matter, the best aignment is predicted from the protein alignment
library with known structures; therefore, from predicted alignment, title and
dominant proteins are used to build models[10]. The best model is taken as a
result.

1. Eddy S.R. (1998) Profile hidden Markov models. Bioinformatics 14, 755-
763

2. http://scop.berkeley.edu/

3. http://bioinf.cs.ucl.ac.uk/threader/
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4. http://www.salilab.org/modeller/

5. http://bioinf.cs.ucl.ac.uk/threader/maketdbform.html

6. http://nihserver.mbi.ucla.edu/Verify_3D/

7. http://www.nchi.nlm.nih.gov/BLAST/blastcgihel p.shtml#protein_database
S

8. http://www.ebi.ac.uk/clustalw/

9. Jacob Ziv and Abraham Lempel. (1978) Compression of Individua
Sequences Via Variable-RateCoding, IEEE Transactions on Information
Theory, Sep.

10. Tsigelny 1., Sharikov Y. a al. (2002) HMM-based system

(HMMSPECTR) for detecting structura homologies on the basis of
sequential information. Protein Eng. 15, 347-352
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Combining homology recognition and knowledge based
modelling with ensembl generation.
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Here we combine the use of the FUGUEL homology recognition program with
two homology modelling procedures, ORCHESTRAR2 and RAPPERS.

First, fold recognition is performed using FUGUE which searches profiles
derived from the HOMSTRADA4 database to produce a sequence structure
alignment. Following manual inspection and adjustments, conserved structural
cores of templates are defined by CHORALS5. CHORAL uses environment
specific substitution tables (ESSTs) combined with differential geometry and
pattern recognition algorithms to identify structurally conserved sections of
superposed parent structures.

Structurally variable regions are then predicted by cobAS  and
SEARCHSLOOP’. CODA is a consensus approach for predicting structurally
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variable regions of protein models consisting of two algorithms, FREAD and
PETRA. FREAD is a knowledge-based approach that uses a fragment database
consisting of all continuous thirty residue backbone segments contained in
structures found in the HOMSTRAD database. PETRA is an ab initio algorithm
that constructs fragments using eight phi-psi pairs, derived from the partitioning
of six larger regions the Ramachandran plot. SEARCHSL OOP allows the user
to search the Sloop fragment database for loop conformations connecting
elements of protein secondary structure. The database consists of 80000 loops
from 9000 structures from HOMSTRAD (May 2004) clustered into 3800
classes. Environmental specific sequence profiles have been calculated for
every class. Each class also contains information detailing the local secondary
structure environment and the angle and distances between secondary structure
vectors.

Predictions of the conformations of sidechains are made by Andante. It utilizes
ESST information based on observed side chain chi angle conservation from a
large number of families in the HOM STRAD database. Andante automatically
restricts rotamer library solutions based upon analogous sidechains found in the
parent structures.

Finally, RAPPER is used to build ensembles of models based upon the
knowledge based predictions.

1. Shi J, Blundell T. L. & Mizuguchi K. (2001) FUGUE: sequencestructure
homology recognition using environment-specific substitution tables and
structure-dependent gap penalties. J Mol Biol 310, 243-57.

2. Williams M.G., Shirai H., Shi J., Nagendra H.G., Mueller J., Mizuguchi
K., Miguel R.N., Lovell S.C., Innis C.A., Deane C.M., Chen L., Campillo
N., Burke D.F., Blundell T.L., de Bakker P.I. (2001) Seguence-structure
homology recognition by iterative alignment refinement and comparative
modeling. Proteins. Suppl 5:92-7.

3. Furnham N., de Bakker P.I.W, DePristo M.A., Burke D.F., Blundell T.L.
Application of RAPPER to Comparative Modelling unpublished

4. Stebbings L.A. & Mizuguchi K. (2004) HOMSTRAD: recent
developments of the Homologous Protein Structure Alignment Database.
Nucleic Acids Res 32, D203-7.2.

5. Montavao RW., Smith RE., Lovell S.C. & Blundell T.L. (2005).
CHORAL.: a differential geometry approach to the prediction of the cores
of protein structures. Bioinformatics 21, 3719-25.3.

6. Deane C.M. & Blundell T.L. (2001) CODA: a combined algorithm for
predicting the structurally variable regions of protein models. Protein Sci
10, 599-612.4.

7. Burke D.F., Deane C.M. & Blundell T.L. (2000) Browsing the SLoop
database of structurally classified loops connecting elements of protein
secondary structure. Bioinformatics 16, 513-9.5.
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Introduction.

ORCHESTRAR (commercialized by Tripos Inc.) comprises a suite of tools
following the iterative process for the homology modeling of proteins, with the
underlying theme of a knowledge-based approach using the information in
HOMSTRAD®. The major components of the package include the programs;
CHORAL?, CODA?, SEARCHSLOOF*, ANDANTE and HARMONY 3. These
packages were used in conjunction with the FUGUE® homology recognition
program. The user is provided with an ensemble of structurally conserved
regions extracted from superposed parent structures. Structuraly variable
regions are then modeled by any one of three programs that access different
loop solutions. Side-chain placement is aided by the use of parent information.
Sequence-structure alignment evaluation and model validation is then
performed. Poorly modeled regions are then reassessed.

Methodol ogy.

1. Homology Recognition
Performed by the program FUGUE.
2. Core construction

CHORAL uses a knowledge-based method consisting of differential geometry
and pattern recognition algorithms to identify structurally conserved sections of
superposed parent structures. Environment specific substitution tables (ESSTS)
are used to classify and filter which patterns likely to represent the core target.
The environments for the substitution tables are defined for the backbone
geometry of the parents.

3. Loop building

CODA is a consensus approach for predicting structurally variable regions of
protein models. The two algorithms, FREAD and PETRA, are used to predict
loop solutions. FREAD is a knowledge-based approach that uses a fragment
database consisting of al continuous thirty residue backbone segments
contained in structures found in the HOMSTRAD! database. Selection filters
include; Co. separation of anchor residues, anchor residue rmsd, energy term for
thesuperposed fragment and an environmentally constrained substitution score.



Six phi-psi regions of the Ramachandran plot define the environments
considered. PETRA is an agorithm that constructs loop solutions ab initio.
Loop solutions consist of fragments constructed from eight phi-psi pairs, giving
a maximum of (n+4)® possible loops for any gap of n residues (+ 4 anchor
residues). The determination of these phi-psi pairs resulted from the calculation
of individual amino acid propensities for partitions of six larger regions the
Ramachandran plot. The CODA method then does a pair wise comparison of
al FREAD and PETRA predictions. For consensus results a loop pair must
pass a number of filters including difference of backbone torsion angles and
sum of energy in superposed position.

SEARCHSLOORP allows the user to search the Sloop fragments database for
loop conformations connecting elements of protein secondary structure. The
database consists of ~80000 loops from ~9000 structures from HOMSTRAD
(May 2004) clustered into ~3800 classes. Each class contains information about
its member loops, such as local secondary structure environment and the angle
and distance between secondary structure vectors. Scoring is based on anchor
rmsd and environment specific substitution scores.

4. Side Chain Placement

This is performed by the program ANDANTE. It utilizes ESST information
based on observed side chain chi angle conservation of a large humber of
families in the HOMSTRAD database. Depending on the parent-target residue
substitution, this information allows Andante to borrow entire high probability
side-chain conformations or to restrict rotamer library solutions to specific chi
bins. Side chain placement for non-borrowed positions is done by an interacting
cluster/simulated annealing approach.

5. Model validation (Error detection in sequence-structure alignment)

HARMONY 3 is used to locate errors that may have occurred in the sequence-
structure alignment that have been carried through the model building process.
The Harmony3 score for each modelled residue is calculated and consists of
five components, the amino acid propensity score for the observed
environment, observed amino acid distribution for that residue obtained from a
PSI-BLAST search, a propensity score for a residue based on observed ESST
scores. A composite substitution score from merged ESSTs. Finally, aterm for
local alignment flexibility is calculated. This takes into account the number of
gaps in a window around a position in the sequence-structure alignment and
aso the number of identical residue pairs in the window is incorporated into the
score. Low scoring regions are then re-examined for errors in the sequence-
structure alignment or modeling errors.

1. Stebbings L.A. & Mizuguchi K. (2004)HOMSTRAD: recent
developments of the Homologous Protein Structure Alignment Database.
Nucleic Acids Res 32, D203-7.
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3. Deane C.M. & Blundell T.L. (2001) CODA: a combined algorithm for
predicting the structurally variable regions of protein models. Protein Sci
10, 599-612.

4. Burke D.F., Deane C.M. & Blundell T.L. (2000) Browsing the SLoop
database of structurally classified loops connecting elements of protein
secondary structure. Bioinformatics 16, 513-9.
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Tsailab - 245 modelsfor 42 3D/7 TR targets

Measuring 3D information from protein structure: “3D-bits”, an
intuitive yet quantitative assessment of comparative modeling
predictions

Rosemarie Swanson®, Jerry Tsai

L. Texas A& M University
rosmar @tamu.edu
Comparative modeling is an attempt to predict an unknown 3-dstructure
associated with an amino acid sequence by adjusting a known 3-d structure of a
protein with a similar amino acid sequence. However, it has not been clear that
such an adjusted structure improves on the unadjusted known structure. In this
work we present a method of measuring theinformation that one 3d protein
structure supplies about another structure and show that by this measure,
comparative modeling predictions show a statistically significant improvement
from CASP4 to CASP6. By this new measure, for the targets we examined, in
CASP6 about 80% of the assessor-top-scored models described the
experimentally determined target structure better than the best unadjusted
parent structure did, while in CASP4 only half the best models were better than
the best parent.

A characteristic of 3-d superpositions of molecules is that generally the more
atoms that are superimposed the less precise the match becomes. There is a
trade-off. The trade-off problem has been addressed by GDT_TS, which
reports the average of the percentages of atoms superimposed within four
different cutoff distances. A small protein has a built-in advantage over a large
one by this measure simply because fewer atoms have to be made to match.

Starting from a different point of view, we arrived at a structure comparison
measure that is complementary to GDT_TS, but is finer-grained, and reflects
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(1) the greater difficulty of predicting a larger structure, and (2) the greater
difficulty of improving on an aready good match.

The basic idea is that the probability of apredicted atom falling close to its
target atom by chance is related to the volume around the target atom within
which it falls (so that one should use the cube of atom mismatch distance
(rmsd) instead of the linear rmsd to measure how good the match between
atoms is). We used the ratio of the mismatch volume to the total protein
volume as the probability of a chance match, and summed the logarithms of
these probabilities over the predicted atoms to obtain a 3D-bit score for the
goodness of match between two structures. The mismatch volume for each pair
of atoms was determined by finding the best superposition between the two
structures,(withA Zemla's LGA program), then using the distance between
each pair of atoms as the radius of a sphere that measures the mis-match
volume for that pair.

The “3D-hit” approach is similar to the GDT_TS approach in that each gives a
higher weight to contributions from closer matches, and each score is improved
by having more matching atoms.

The 3D-hit measure differs from the GDT_TS measure in two significant ways.
First, smaller mismatches contribute relatively more to the 3D-bit score than
they do to the GDT_TS score. Cutting a mismatch distance in half reduces its
mismatch volume by a factor of 2 to the third power, whereas the GDT_TS
score improves a most linearly. Furthermore, for matches closer than 1
Angstrom (for example), further reducing the mismatch distance contributes no
improvement to the GDT_TS score because the GDT_TS score is threshold-
based. So the 3D-bit score is more sensitive to small improvements in
matching.  Furthermore, the 3D-bit score acknowledges that the quarter-
Angstrom improvement in rmsd from 0.75 A to 0.50 A represents a greater
improvement in prediction skill than the quarter-Angstrom improvement from
1.0 A to 0.75 A. Secondly, the 3D-hit score reflects the absolute number of
atoms matched, and it increases for alarger number of predicted atoms, so that
it reflects the intrinsic difficulty of the prediction problem and can be used to
compare the amount of information provided by predictions even for different
targets. Since GDT_TS is expressed as a percent, it doesn’t express the greater
difficulty of predicting larger targets.

We describe “3D-bits” and the results of applying it to a collection of pairs of
structures, which included a motley collection of 27 globin chains, and all
possible comparisons between the experimentally-determined target structure,
thetop-scoring model, and the parent structures for 33 singledomain
comparative modelingtargets -- 7 from CASP4 and 26 from CASP6.
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In this years CASP 7 experiment, our group (the Tsailab #1273-7338-1989)
focused on comparative modeling and made submissions for 43 targets. Unlike
backbone directed methods, our approach considers the variation in side-chain
packing, and uses this variation to direct the moves in the refinement of protein
structure’. Using a Voronoi polyhedra approach®®, we identify interacting
residues within a protein. By treating each residue as a node and an interaction
as an edge, we generalize the protein core into a graph and thereby can group
residues into cliques, where aclique is a set of that al interact with each other.
This clique approach alows us to characterize the minimal packing unit as
residues that all contact each other. Comparing these cliques between protein
structures defines a relative packing group. These relative packing groups were
found for two sets of structures: 1) within homologous structures to the target
sequence and 2) across the PDB®. The relative packing groups from
homologous set were selected only if they existed in 50% or more structures.
The relative packing groups from the PDB were clustered based on secondary
structure of the residues and a Ca RMSD cutoff of 0.5 A. From these relative
packing groups, we calculated non-local distance constraints as inputs into a
distance geometry algorithm to create target structures. We used relative
packing groups from homologous structures exclusively except in cases where
the non-local constraints are underdetermined (fewer than 5 homologous
structures). In such cases, matching relative packing groups from the PDB data
set were selected to help augment the homologous data set. We implemented
thesenon-local constraints in a structure refinement algorithm in the following
procedure. The MUSTANG agorithm aligned structures®, and FASTA digned
the target sequence to the sequences® from the homologous structures. These
alignments mapped the non-local constraints generated from the relative
packing group as well as a set of local and torsion constraints analysis onto the
target structure. An initial structure was generated using MODELLER’. The
starting structure and constraints were used as inputs to the distance
geometry/simulated annealing routine in XPLOR-NIH® and on average ~250
structures were generated. Candidate structures are clustered based on
CaRMSD similarity to each other and the largest five clusters are chosen for
further scoring. Within each of these five clusters, two scores are used to
evaluate the candidate structures. Based on molecular dynamics simulations of



a protein fold set (100 ns total simulation of 125 protein folds), we compiled
probability distributions of side-chain volume based on backbone torsion angles
and the propensity of aresidue’s y; angle also based on backbone torsion angle.
The structures with the top 15-20 best scores were then viewed by eye and 5
structures were chosen for submission.

1. Holmes JB. & Tsa J. (2005) Characterizing Conserved Structural
Contacts by Pair-wise Relative Contacts and Relative Packing Groups. J
Mol Biol 354, 706-21.

2. Harpaz Y., Gerstein M. & Chothia C. (1994) Volume changes on protein
folding. Structure 2, 641-9.

3. Voronoi G.F. (1908) Nouveles applications des paramétres continus a la
théorie des formes quadratiques. J. Reine Angew. Math. 134, 198-287.

4. Berman H.M. et a. (2000) The Protein Data Bank. Nucleic Acids Res 28,
235-42.

5. Konagurthu A.S., Whisstock J.C., Stuckey P.J. & Lesk A.M. (2006)
MUSTANG: a multiple structural alignment algorithm. Proteins 64, 559-
74.

6. Pearson W.R. (2000) Flexible sequence similarity searching with the
FASTA3 program package. Methods Mol Biol 132, 185-219.

7. Fiser A. & Sai A. (2003) Modeller: generation and refinement of
homol ogy-based protein structure models. Methods Enzymol 374, 461-91.

8. Schwieters C.D., Kuszewski J.J., Tjandra N. & Clore G.M. (2003) The
Xplor-NIH NMR molecular structure determination package. J Magn
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UCB-SHI - 885 models for 96 3D/98 QA targets

Modeling and Quality Assessment using HARMONY3 and QUAD

Jiye Shit
LucBInc.
jiye.shi@gmail.com

Homology Modeling — FUGUE and other fold recognition tools were used to
identify potential templates and to generate initial alignments. MODELLER
was used for model building. HARMONY3 (unpublished), an algorithm
designed to detect problematic alignment regions, was used to select the best
template and the best alignment. QUAD (unpublished; see Quality Assessment
below) was then used to evaluate the models and to select the most promising
models. Human intervention was limited to no more than 2 hours per target,
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which was mainly directed to improving the fina alignment chosen by
HARMONY 3.

New Fold — Potential structural fragments were identified using multiple
algorithms such as fold recognition and ab initio modeling. The fragments were
then manually assembled and the resulting models were evaluated by QUAD
(unpublished; see Quality Assessment below). Models with highest QUAD
scores were selected and submitted. Human intervention was limited to no more
than 2 hours per target.

Quality Assessment — QUAD propensity-based score describes the "fitness" of
each residue to its structural environment, which is defined by secondary
structure element, H-bond to backbone NH, H-bond to backbone CO and
solvent accessibility. This procedure is fully automated; human intervention
was limited to corrections of formatting errors and results submission.
Limitations. this method works best on models with complete backbone and
side chains; Large number of missing residues in AL based 3D models will
result in an inaccurate quality score; CA-only models cannot be evaluated using
this method.

UNI-EID_bnmx - 462 modelsfor 100 3D targets
UNI-EID_expm - 100 models for 100 3D targets
UNI-EID_sfst — 454 modelsfor 100 3D targets

A probabilistic approach to remote homology detection and 3D
protein structure modeling

A. Poleksict, J.F. Danzer?, B. Pmer?, M.Fienup! and D.A. Debe?
! _ Department of Computer Science, University of Northern lowa
Z _ Eidogen-Sertanty, Inc., San Diego, California
poleksic@cs.uni.edu

UNI-EID algorithms are profile-profilemethods that utilize information
contained in multiple sequence alignments corresponding to the query and
template's protein family. An internally modified version of PSI-BLAST is
used to construct sequential profiles corresponding to query sequence and each
of the template sequences”. Each pair of profiles is then scored and aligned
using a novel dynamic programming and a probabilistic scoring scheme that
has an analogy in an experiment of throwing an irregular 20-sided die. Our new
probabilisticalignment scoring function, tested in CASP7, also takes into
account template structural information as well as predicted local structure of
the query protein. The gap penalties are position specific and reflect the
similarity of profiles being aligned, the aligned residues secondary structure
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states, and the distribution of gaps in PSI-BLAST multiple aignments.
Statistical significance of alignment scores is computed independently for each
pair of sequences using Convergent Island Statistics (CIS)°. The CIS method
estimates score statistics “on the fly” and can be readily applied to any
alignment agorithm whose background scores follow an extreme value
distribution. The method contains no parameters to optimize and there is no
need for fitting the data of any kind.

UNI-EID_sfst reports the best five local alignments to PDB templates. UNI-
EID_bnmx uses different background probabilities when scoring pairs of
profiles. This change to the background model results in dlightly longer models
compared to those generated by UNI-EID_sfst. In CASP7, UNI-EID_bnmx
reports backbone atom coordinates derived from the single template
corresponding to the highest scoring aignment. UNI-EID_expmbuilds
unrefined protein structures from multiple PDB templates corresponding to the
top scoringUNI-EID_sfst’s models. The remaining backbone atoms are
reconstructed from the a-carboncoordinates®.

1. Altschul S.F.,Madden T.L., Schéffer A.A.,Zhang J., Zhang Z., Miller W.
andLipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res., 25,
3389-3.

2. Debe D.A.,Danzer J.F.,Goddard W.A.,Poleksic A.(2006)
STRUCTFAST: Protein sequence remote homology detection and
alignment using novel dynamic programming and profile-profilescoring,
Proteins, 64, 960-967.

3. Poleksic A., Danzer J.F.,Hambly K., Debe D.A. (2005) Convergent Island
Statistics: a fast method for determining local alignment score significance.
Bioinformatics, 21, 2827-2831.

4. Rey A., Skolnick J. (1992) Eficient algorithm for the reconstruction of a
protein backbone from the a-carbon Coordinates. J. Comput. Chem. 13,
443-456.
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UWscor e - 97 models for 97 QA targets

Protein Structure Quality Prediction with Support Vector
Regression

Jian Qiut, Will Sheffler!, David Baker?,
William Stafford Noble*?

! _Department of Genome Sciences, *— Department of Biochemistry,
®_Department of Computer Science and Engineering, University of Washington
jiang@u.washington.edu, wsheffle@u.washington.edu,
dabaker @u.washington.edu, noble@gs.washington.edu

We applied the support vector regression (SVR) machinery to the problem of
protein structure quality prediction based on 34 features generated by Rosetta
and T32S3, a distance-dependent atomically detailed potential®>. The Rosetta
featuresinclude measures that describe the overall shape and burial, packing,
solvation effects, hydrogen bonding patterns, attractive and repulsive Van der
Waals forces, and so on.

We developed the training set from CASP5 and CASP6 predictions and a non-

redundant data set of native PDB structures. A pre-compiled CulledPDB list

from PISCES® was downloaded from
http://dunbrack.fccc.edu/Guoli/pisces_download.php.

A filtered subset of native structures in this list was combined with CASP5 and
CASP6 structures to come up with the training set. Rosetta energy local
minimization was first performed on each structure to remove clashes and
optimize the rotamers of side chains. The Rosetta features and T32S3 were then
computed based on these minimized structures. A structure was included in the
training set only if the minimized structure shares significant structural
similarity with the original structure. We trained the SVR to predict RMSD
from the features of a structure. The RMSDs for the predicted structures were
extracted from the CASP5 and CASP6 evaluation results. All the native
structures were assigned an RMSD of 0.

We used the epsilon SVR in LIBSVM* as the SVR implementation, with a
radial basis function (RBF) kernel of the form K(x,y)=exp{-ylx-y|} . Before
predicting the quality of a structure, the structure was first subjected to Rosetta
energy local minimization. Features were computed from the minimized
structures. The SVR model learned from the training set was then used to

predict the quality of the structure from the features based on its minimized
structure.

1. RohlICA., Strauss C.E., Misura K.M. and Baker D. (2004) Protein
structure prediction using Rosetta. Methods Enzymol. 383, 66-93.
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2. Qiu J. and Elber R. (2005) Atomically detailed potentials to recognize
native and approximate protein structures. Proteins. 61, 44-55.

3. Wang, G. and Dunbrack R.L. Jr. (2005) PISCES: recent improvementsto a
PDB sequence culling server. Nucleic Acids Research. 33, W94-98.

4. ChangC.C. and Lin C.J. (2001) LIBSVM: a library for support vector
machines, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Wymor e- 104 modelsfor 37 3D targets

Comparative modeling using a stochastic alignment algorithm
and statistical potentials

Adam C. Marko , Adam Kraut, Troy Wymore
Pittsburgh Supercomputing Center
wymor e@psc.edu

From our past experience in the CASP6 experiment, we learned that profile-
sequence bioinformatics search methods (MEME/MAST) failed to identify
several template structures and that our alignment sampling (200-1000) was not
extensive enough. In addition, we overemphasized the ability of molecular
mechanics force fields to identify the most native structure in an ensemble.
During CASP7, templates were selected from various fold-recognition servers
though we did not use their alignments or structures in any manner. We then
constructed 5000 pairwise alignments per target/tempate pair considering up to
4 different templates per target. The alignments were created by stochastic
backtracking based on match probabilities using the program probA®. Three-
dimensional models were then created with the program MODELLER?. The
resultant structures were then scored with the statistical potentials DFIRE® and
DOPE (available in the MODELLER program). The top twenty models ranked
by DFIRE and DOPE from each template were then visually examined. The
lowest energy models that did not have any obvious structural errors (knots,
etc) were then selected for submission. In addition, the lowest 1000 energy
structures as ranked by DFIRE from the most favorable template were analyzed
by Prosa2003®. The lowest energy model as ranked by Prosa was then
submitted as well.

1. Muckstein U., Hofacker I.L., Stadler P.F. (2002) Stochastic pairwise
aignments. Bioinformatics, 18, S153-S160.

2. Sdi A., Blundell T.L. (1993) Comparative Protein Modeling by
Satisfaction of Spatia Restraints. J. Mol. Biol., 234,779-815.

3. Sippl M.J. (1993) Recognition of Errors in Three-Dimensional Structures
of Proteins. PROTEINS: Struct. Func. Gen. 17,355-362.
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4. Feig M., Karanicolas J., Brooks Ill, C.L.B. (2004) MMTSB Tool Set:
enhanced sampling and multiscale modeling methods for applications in
structural biology. J. Mol. Graph. Model. 22, 377-395.

5. Skolnick J.,, Kolinski A., Ortiz A.R. (1997) MONSSTER: a method for
folding globular proteins with a small number of distance restraints. J. Mol.
Biol. 265, 217-241.

6. Zhang C., Liu S., Zhu Q., Zhou Y. (2005) A knowledge-based energy
function for protein-ligand, protein-protein, and protein-DNA complexes.
J. Med. Chem. 48(7):2325-35.

YASARA - 68 modelsfor 21 3D/21 QA/5 TR targets

High resolution refinement with YASARA
Elmar Krieger

CMBI, Center for Molecular and Biomolecular Informatics,
Radboud University Nijmegen, the Netherlands
Elmar Krieger @yasara.org, www.YASARA.org

The last mile of the protein folding problem has been approached with a
number of new developments during CASP7, implemented in the framework of
the molecular modeling programwww.YASARA.org. The entire procedure
was fully automatic but too time consuming to participate as a server.

First the server predictions were downloaded from the CASP site, missing
loops where added with YASARA, missing side-chains rebuilt with SCWRL™.
Then the models were ranked using the newly developed Twinset Score, a
combination of force field and solvation energies as well as knowledge based
potential energies assigned by YASARA??, and the classic WHAT_CHECK*
scores reported by WHAT IF°. This ranking was submitted as a quality
prediction, where 1.0 corresponded to a perfect protein and 0.0 to garbage.

Then the top-scoring model was picked and subjected to thousands of parallel
molecular dynamics simulations using the Models@Home distributed
computingsystem® and the newly developed YASARA force field, athird-
generation self-parameterizing energy function? obtained in crystal space’ from
the YAMBER force field®. To speed up the sampling of conformational space,
some of the simulations were accelerated with CONCOORD®., Those models
that were likely to have moved closer to the native structure during the
simulation were identified with the Twinset Cluster Score, which employs
clustering methods to remove false positives. The best model was subjected to
another round of refinement until the procedure converged.



Many thanks to all supporting users of the YASARA molecular modeling
program for financing this work.
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YU-BA - 72 models for 72 FN targets

Yuba (Yet Unnamed Binding site Assessment) aiming at the
binding site prediction in protein function category of CASP7

Daisuke Takaya, Genki Terashi, Mayuko Takeda- Shitaka,
Kazuhiko Kanou, Mitsuo Iwadate, Akio Hosoi, Kazuhiro Ohta
and Hideaki Umeyama

Department of Biomolecular Design, School of Pharmacy,Kitasato University
p99150@st.pharm.kitasato-u.ac.jp

In the area of binding siteprediction, we want to know how useful of using
known protein structure having ligand. So in protein function (FN) prediction
category of CASP7, Yubateam aims at the prediction of the bindingsite of the
target protein using known structure in PDB.

Step 1: selecting “base model ”
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First, select “base model”. All the server models were obtained from CASP7
home page (http://www2.predictioncenter.org/index_serv.html) for this
purpose. These models include tertiary structure (TS) and alignment (AL).
These were refined or changed to tertiary structureby FAMS!. If it was AL
format, a model was built based on this alignment. If it was TS format, a model
was refined by FAMS. We used al the server models as its template because
these models include CA model or lackingresidues. These refined server
models were evaluated using specialized CIRCLE? 3D1D Score for CM, the
category of which is determined from the SVM program andselect the highest
score model as “base model”.

Step 2: superimposing

Second, obtain known PDB structure having ligand and superimpose to “base
model” using CE program®. The list of superimposed PDB is gotten from
PARENT of server. PDB not having ligand is ignored.

Step 3: clustering

After ligand atoms were extracted from superimposed structures, clustering
ligandatoms by nearest neighbor method and choosing largest clusterwere
excuted. Atom typeisignored.

Step 4: evaluating

Inthis selected cluster, count the number of atoms in collision with “base
model” on the condition that distance regarded as collision are 4, 6, 8 and 104,
respectively. And rank it by the number of collision atoms in ascending sort.
The size of ligand was not considered, and we chose 10 residues in listed amino
acid residues of the “based model”.

A part of result

Experimental determined structure list that Y uba method could submit is shown
as follows. T0283, T0284, T0286, T0288, T0290, T0291, T0292, T0293,
T0295, TO301, TO303, T0304, TO305,T0306,T0307,T0O308, T0310, TO311,
T0312, T0313, TO315, TO317, TO318, TO319, T0320, TO322, TO323, T0324,
T0325, T0326, TO327, T0329, TO330, TO331, TO332, TO334, TO335, TO338,
T0339, T0340, T0341, T0343, T0344, T0346, T0347, TO350, TO351, T0352,
T0353, TO355, TO356, TO357, TO358, TO359, TO360, TO362, TO364, TO365,
T0366, TO367, TO368, TO370, TO371, TO374, TO375, TO376, TO378, TO380,
T0382, T0384, T0385 and TO386 (total 72). In target T0292, our prediction of
binding site is 12, 13, 15, 16, 20, 90, 91, 143, 144, and 146. In the
experimentally determined structures (PDBID: 2CL 1), residues of binding site
are assumed if residue is within 5.0A of the ligand (5-[(2)-(5-chloro-2-oxo-1,2-
dihydro-3h-indol-3-ylidene)methyl]-n-(diethylamino)ethyl)-2,4-Dimethyl- 1h-
pyrrole-3-carboxamide in 2CL1). In this condition, residues of binding site are
12, 20, 33, 35, 66, 84, 85, 86, 87, 88, 90, 91, 94, 146, 160 and 164. The residue
number of correct prediction is 12, 20, 90, 91 and 146.



Discussion

Unfortunately, there are some incorrect predictions of residue in target T0292.
This method is mostly depending on how to choose “base model”. So the
method may be not useful for FR, NF category which is difficult to predict
reliable model.

1. Ogata K. and Umeyama H. (2000) Anautomatic homology modeling
method consisting of database searches and simulated annealing. J. Mal.
Graphics Mod. 18 258-272.

2. See "CIRCLE: Full automated homology-modeling server using the 3D1D
scoring functions” item in this book

3. ShindyalovI.N., Bourne P.E. (1998) Protein structure alignment by
incremental combinatorial extension (CE) of the optimal path. Protein
Engineering 11(9) 739-747.

Zhang - 500 models for 100 3D targets

Protein structure prediction by iterative TASSER simulations
Y ang Zhang

Center for Bioinformatics and Department of Molecular Bioscience,
University of Kansas, 2030 Becker Dr, Lawrence, KS 66047
yzhang@ku.edu

The human-expert prediction of our group has used a similar iterative TASSER
(called I-TASSER?) approach as what we used in the Server Section. The main
gains of the human prediction in comparison with our server prediction are: (1)
We have a better domain assignment which is based on our visual view of the
threading alignments combined with the domain predictions of CASP7 servers,
(2) we can make use of threading results from CASP7 servers which give
TASSER amore diverse set of starting conformations in comparison with only
using our in-house PPA threading templates, (3) we can run TASSER
simulations in alonger CPU time which allows a more extensive conformation
search. The I-TASSER protocol consists of three consecutive steps.

Collection of threading templates. The collection of threading templatesis the
first step of I-TASSER protocol, which provide basic building blocks
(continuous structure fragments) for TASSER structure reassembly as well as
resources to extract spatial restraints to guide TASSER simulations.? Threading
templatesin our human prediction come from two resources: (1) Four in-house
profile-profile alignment methods which have their confidence parameters pre-
trained in benchmarks; (2) threading results from CASP7 servers including
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FUGUE,® HHpred,* mGenThreader,® and SP3.° A set of 20/30/50 templates are
taken from the top hits of theservers for Easy/Medium/Hard targets. The target
category is assigned based ontheZ-scoreof four in-house PPA threading
methods.

TASSER structure assembly. Based on the threading alignments, target
sequences are divided into aligned and unaligned regions. The models of
aligned regions are directly excised from the template proteins and allowed to
rotate and translate in an off-lattice system. The unaligned regions are modeled
by the TASSER ab initio component,” which serve as linkage points of the
rigid-body rotations. The potential is similar as original TASSER>which
consists of predicted secondary structure from a combination of PSIPRED & and
SAM,® backbone hydrogen bonds,*° a verity of statistical short- and long-range
correlations,” and consensus contact/distance restraints extracted from the
threading alignments. The major new potentia added in I-TASSER is the
incorporation of predicted accessible surface area through neural network.** All
weighting parameters of I-TASSER force field have been separately tuned in
Easy/Medium/Hard categories on the basis of structural decoys.” The Monte
Carlo trajectories generated in low temperature replicas are clustered by
SPICKER. *? The cluster centroids of the highest structural density are returned
for the further I-TASSERrefinement.

TASSERiteration. Following the SPICKER clustering, we run TASSER
Monte Carlo simulations again, starting from the selected cluster centroids. The
distance and contact restraints in the second round TASSER are pooled from
the initial high-confident restraints from threading, and the restraints taken from
the cluster centroid structures and the PDB structures searched by the structural
aignment progran TM-align ' based on the cluster centroids. The
conformations with the lowest energy in the second round are selected. Finaly,
Pulchra ** is used to add backbone atoms (N, C, O) and Scwrl_3.0 " to build
side-chain rotamers.

For multiple domain proteins, we assign the domain borders mainly based on
our visual view of consensus threading alignments, which may be further
adjusted by the comparison with domain server predictions by Robetta-Ginzu
and Ma-OPUS-DOM. |-TASSER simulations will be done for the full chain
and the separate domains. The fina full-length models are generated by
docking the domain models together under the guide of the full-chain model of
I-TASSER. The domain docking is performed by a quick MetropolisMonte
Carlo simulation where the energy is defined as the RMSD of domain models
fromthe full-chainmodel plus the reciprocal of the number of steric clashes
between domains.

1. WuS T. & Zhang Y. (2006) Ab initio modeling of small proteins by
iterative TASSER simulations. Submitted.
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Zhang-Server - 500 modelsfor 100 3D targets

Server prediction by iterative TASSER simulations in CASP7

Y ang Zhang
Center for Bioinformatics and Department of Molecular Bioscience,
University of Kansas, 2030 Becker Dr, Lawrence, KS 66047
yzhang@ku.edu

All CASP7 targets are modeled by an automated tool of iterative TASSER
simulation, called I-TASSER,* which includes three consecutive steps.

Threading. The target sequences are threaded through a non-redundant PDB
structure library with the purpose of identifying appropriate global-structure
templates (for CM/FR targets) or local fragments (for NF targets). Threading is
done by four simple profile-profile alignment (PPA) runs, where the alignment
score consists of sequence profile and secondary structure matches.! In the first
PPA run, both profiles of target and template sequences are generated by PSI-
Blast search;? In the second alignment run, the profiles are generated by hidden
Markov model from SAM-T99.% During the construction of profiles, Henikoff
weights are used for reweighting the redundant sequences.* The Needleman-
Wunsch global dynamic programming alignment algorithm ° is used to find the
best match between query and template sequences. The third and the forth PPA
alignments are similar as that in the first and the second runs but the Smith-
Waterman local alignment algorithm © is exploited.

TASSER structure assembly. 20/30/50 templates are selected from the four
sets of PPA threading alignments for Easy/Medium/Hard targets, whichare
used for further TASSER Monte Carlo reassembly.” The category of
Easy/Medium/Hard is assigned based on the PPA Z-scores and pre-trained on
the benchmark TASSER simulations.! Based on the threading aignments,
target sequences are divided into aligned and unaligned regions. The models of
aligned regions are directly excised from the template proteins and allowed to
rotate and translate in an off-lattice system. The unaligned regions are modeled
by the TASSER ab initio modeling,® which serve as linkage points of the rigid-
body movement of aligned regions. The Monte Carlo search is implemented by
the parallel exchange method,® '° with each replica starting from different
templates. The potential is similar as origina TASSER,” which includes
predicted secondary structure from a combination of PSIPRED ! and SAM 2
backbone hydrogen bonds,? a verity of statistical short- and long-range
correlations,” and consensus contact/distance restraints extracted from the PPA
aignments. The major new potential is the incorporation of predicted
accessible surface area through neural network.® All weighting parameters of |-
TASSER force field have been separatelgreutuned inEasy/Medium/Hard
categories on the basis of structural decoys.” After TASSER simulations, the
structure decoys generated in low temperaure replicas are clustered by



SPICKER.'* The cluster centroids of the highest structure density are returned
for the further I-TASSER refinement.

TASSERiteration. Following the SPICKER clustering, we run TASSER
Monte Carlo simulations again, which starts from the selected cluster centroids.
The distance and contact restraints in the second round TASSER are pooled
from the initial high-confident restraints from threading and the restraints taken
from the cluster centroid structures and the PDB structures searched by the
structure aignment program TM-align®® based on the cluster centroids. The
conformations with the lowest energy in the second round are selected. Finally,
Pulchra *° is used to add backbone atoms (N, C, O) and Scwrl_3.0* to build
side-chain rotamers.

Multiple-domain proteins. If any region with >80 residues has no aligned
residuesin at least two strong PPA hits, the target will be judged as a multiple-
domain protein and domain boundaries are automatically assigned based on the
borders of the large gaps. I-TASSER simulations will be run for the full chain
as well as the separate domains. The final full-length models are generated by
docking the domain models together. The domain docking is performed by a
quick Metropolis Monte Carlo simulation where the energy is defined as the
RMSD of domain models from the full-chainmodel plus the reciprocal of the
number of steric clashes between domains. The goa is to find the domain
docking orientation that is closest to the I-TASSER full-chain model and has
the minimum steric clashes. The fina models docked from I-TASSER domains
are submitted to CASP7.
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The first step of our CASP7 structure prediction pipeline was to identify
domains within the query sequence. During CASP7 this was done using the
Meta-DP server?. Then for all detected domain sequences suitable templates for
homology modeling had to be found. A pipeline was established to perform
successivePSI-Blast® searches automatically in order to find template
structures. If no suitable template structure was found in the Protein Data Bank®
(PDB), a PSI-Blast search in UniProt® was performed to initiate a new search in
the PDB starting from the UniProt hits.

Starting with the templates found with the Blast searches, for every template 20
homology models were build with MODELLER® in parallel using additional
Smith-Waterman alignments between query and template sequence, sequence



conservation information retrieved from the PSI-Blast profiles and secondary
structure restraints from the DSSP’ assignments for the template structures as
input. The five best models according to the MODELLER score over al
template structures were submitted.

If in the template search procedure described above no suitable template
structure was found, a protein threading procedure using the THESEUS
implementation was initiated. THESEUS is a MPI-parallelizedimplementation
of a protein threading based on a branch-and-bound search algorithm to find the
optimal threading through a library of template structures. The template fold
library was built on SCOP® version 1.69 domains. THESEUS uses a template
core model based on secondary structure definition and a scoring function
based on pseudo energies that include pairwise contacts, solvent accessibility,
sequence profiles for query and template, variable gap lengths, and secondary
structure matching between template and target as predicted by PsiPred™. From
the highest scoring templates we selected the 20 most significant templates for
further processing.

The reconstructed loops between the aligned adjacent template secondary
structure elements were modeled with the inhouse developed alip tool based
on a comprehensive compilation of loop backbone conformations from a recent
version of the PDB. The loop candidates were evaluated according to the
RMSD between the stem atoms of template structure and loop candidate,
sequence conservation, sequence properties and spatial constraints. Side chain
modeling was done using MODELLER. Then a energy minimization was
performed using MODELLER again generating 10 models for every template
structure in parallel and submitting the best models according the MODELLER
score.
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