15th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction
`
Menu
#
GR code
GR name
Domains Count
SUM Zscore (>-2.0)
Rank SUM Zscore (>-2.0)
AVG Zscore (>-2.0)
Rank AVG Zscore (>-2.0)
SUM Zscore (>0.0)
Rank SUM Zscore (>0.0)
AVG Zscore (>0.0)
Rank AVG Zscore (>0.0)
1
162
UM-TBM
109
30.5318
1
0.2801
1
67.2002
1
0.6165
1
2
229
Yang-Server
108
17.0091
2
0.1760
2
61.9838
2
0.5739
2
3
475
MULTICOM_refine
109
9.6907
3
0.0889
4
46.7553
3
0.4289
5
4
035
Manifold-E
109
-7.1245
16
-0.0654
21
46.5604
4
0.4272
6
5
158
MULTICOM_deep
109
6.9675
5
0.0639
6
44.5019
5
0.4083
8
6
086
MULTICOM_qa
109
5.9979
6
0.0550
7
44.1312
6
0.4049
9
7
120
MULTICOM_egnn
109
8.7433
4
0.0802
5
44.1113
7
0.4047
10
8
446
ColabFold
109
2.8253
7
0.0259
9
42.4951
8
0.3899
11
9
288
DFolding-server
109
-0.5624
9
-0.0052
12
40.3075
9
0.3698
12
10
298
MUFold
109
1.6107
8
0.0148
11
39.7763
10
0.3649
13
11
125
UltraFold_Server
109
-2.1128
11
-0.0194
15
38.6993
11
0.3550
14
12
166
RaptorX
109
-0.6948
10
-0.0064
13
38.1597
12
0.3501
15
13
443
BAKER-SERVER
109
-15.8929
26
-0.1458
30
36.4303
13
0.3342
17
14
188
GuijunLab-DeepDA
109
-3.2657
12
-0.0300
17
36.3620
14
0.3336
18
15
466
Shennong
105
-5.7821
13
0.0211
10
35.6774
15
0.3398
16
16
131
Kiharalab_Server
109
-12.6345
21
-0.1159
25
35.1998
16
0.3229
19
17
462
MultiFOLD
109
-16.6924
27
-0.1531
31
35.0810
17
0.3218
20
18
098
GuijunLab-Assembly
109
-6.5869
15
-0.0604
20
34.4453
18
0.3160
21
19
151
IntFOLD7
109
-25.8062
31
-0.2368
35
34.2882
19
0.3146
22
20
282
GuijunLab-Threader
109
-7.5850
17
-0.0696
22
33.7074
20
0.3092
24
21
383
server_124
109
-10.2864
20
-0.0944
24
33.3507
21
0.3060
25
22
353
hFold
106
-8.6677
18
-0.0252
16
32.9860
22
0.3112
23
23
245
FoldEver
109
-13.7336
23
-0.1260
27
32.2247
23
0.2956
28
24
270
NBIS-AF2-standard
109
-6.2334
14
-0.0572
19
32.0511
24
0.2940
29
25
481
GuijunLab-Meta
107
-9.3553
19
-0.0500
18
31.7189
25
0.2964
27
26
261
server_122
109
-13.9143
24
-0.1277
28
30.5781
26
0.2805
30
27
018
server_123
109
-16.9666
28
-0.1557
32
30.3196
27
0.2782
31
28
403
server_126
109
-13.0323
22
-0.1196
26
30.1623
28
0.2767
32
29
264
server_125
109
-14.4751
25
-0.1328
29
30.1061
29
0.2762
33
30
450
ManiFold-serv
109
-17.7947
29
-0.1633
34
28.1847
30
0.2586
35
31
089
GuijunLab-RocketX
108
-18.9832
30
-0.1573
33
28.0519
31
0.2597
34
32
133
ShanghaiTech-TS-SER
105
-37.8928
32
-0.2847
36
24.1274
32
0.2298
36
33
215
XRC_VU
80
-63.7391
34
-0.0717
23
23.7588
33
0.2970
26
34
239
Yang-Multimer
45
-123.5121
37
0.0997
3
21.2334
34
0.4719
3
35
390
NBIS-AF2-multimer
50
-115.9800
36
0.0404
8
20.7387
35
0.4148
7
36
011
GinobiFold-SER
105
-41.8299
33
-0.3222
37
20.0288
36
0.1908
38
37
071
RaptorX-Multimer
45
-128.6547
38
-0.0145
14
19.7221
37
0.4383
4
38
073
DFolding-refine
106
-96.1879
35
-0.8508
39
13.6440
38
0.1287
39
39
370
wuqi
87
-148.6600
39
-1.2030
40
8.1179
39
0.0933
40
40
280
ACOMPMOD
78
-196.4546
47
-1.7238
46
3.6999
40
0.0474
41
41
219
Pan_Server
104
-170.0047
40
-1.5385
42
3.0839
41
0.0297
42
42
046
Manifold-LC-E
15
-196.1211
46
-0.5414
38
2.9338
42
0.1956
37
43
368
FALCON2
107
-186.1678
43
-1.7025
44
2.2185
43
0.0207
44
44
333
FALCON0
107
-185.9677
42
-1.7006
43
2.2086
44
0.0206
45
45
427
MESHI_server
76
-176.5011
41
-1.4540
41
2.1152
45
0.0278
43
46
315
Cerebra
109
-194.3193
45
-1.7827
47
1.0481
46
0.0096
46
47
212
BhageerathH-Pro
103
-189.0712
44
-1.7191
45
0.6155
47
0.0060
47
The cummulative z-scores in this table are calculated according to the following procedure (example for the "first" models):
1. Calculate z-scores from the raw scores for all "first" models (corresponding values from the main result table);
2. Remove outliers - models with zscores below the tolerance threshold (set to -2.0);
3. Recalculate z-scores on the reduced dataset;
4. Assign z-scores below the penalty threshold (either -2.0 or 0.0) to the value of this threshold.