VorolF: analysis of interfaces in protein complexes using Voronoi

tessellations and graph neural networks

Kliment Olechnovi¢

Vilnius University / Life Sciences Center / Institute of Biotechnology

December 2022

o UNIVE,

%\v +1579+

%

<
3>

" Institute of
Biotechnology

Life Sciences
Center

’VSIS . g

N
c
2

Z &
BSras NN

General scheme of VorolF-GNN

| Input protein-protein complex |

L

(Voronoi tessellation-based analysis)

-

| Graph of inter-chain interface contacts |

-

(Graph neural network with attention)

-

| Predicted residue-residue contact quality score |

L

(Accumulation of contact scores)

L L

| Whole interface score | | Per-residue scores |

Voronoi tessellation-derived
interface representation

Deriving atom-atom contacts

Voronoi cell of an atom Atom-atom contact surface
surrounded by its neighbors defined as the face shared
by two adjacent Voronoi cells.

Constraining CSAs and deriving SASA for an atom

» CSA — contact surface area

» SASA — surface-accessible surface area

Deriving residue-residue contacts

Voronoi cells of two Residue-residue contact surface
neighboring residues defined as a union of
atom-atom contact surfaces

SASAs and intersubunit interfaces

Solvent-accessible surface The intersubunit interface The intersubunit interface
of an insulin heterodimer shown together with the shown together with
PDB:4UNG colored by subunit SAS of one subunit both subunits represented

as cartoons

S
N

Interface graph definition

Important note about the interface graphs

Our interface graphs are fairly unusual:

» Graph nodes correspond to inter-chain contacts (on atom-atom or residue-residue
levels)

» Graph edges correspond to borders between adjacent atom-atom or residue-residue
contacts

Interface graph example — source

KJ)
>
<
£
O
-
X

Interface graph example — inter

level

idue

(2]
(]
—
L
(]
-
c
<2
o
(L]
X
(]
-~
o
Q]
—
o10)
(O]
O
0]
G
-
(O]
-
c

Interface graph construction and annotation

Tessellation-derived Interface graph
interface contacts Graph node attributes

C \'®—\ ‘ Contact surface area

Contact-solvent border length

}% \ Contact type-derived info
/®/ Graph edge attributes

ﬁ—é Inter-contact border length
Contact surface /®/

Contact-solvent border !
Inter-contact border

Contact-type derived info in nodes

A node representing a contact between two atoms of types A and B was annotated using
the type-dependent coefficients from our contact area-based statistical potential VoroMQA:

» VoroMQA
» VoroMQA . ef
» VoroMQA_ (B, solvent) * area

(A, B) x area

(A, solvent) area

coef

When going from atom-level to residue-level nodes, the VoroMQA-based values were simply
summed.

What to predict for an interface graph

What values to predict for graph nodes

Ground truth values for graph nodes are derived from CAD-score (Contact Area Difference score)

values of residue-residue contacts.
Target Model 1 Model 2

T

G
)

v

N\

dimer & interface

just interface

. « 0
full interface full interface
CAD-score = 0.72 CAD-score = 0.58

Pseudoenergy trick

Node level scores must behave like a "pseudoenergy™:
» must be "summable", so that global or residue score = the sum of node scores
» must be weighted by corresponding contact areas
» very bad scores must penalize the total sum

pseudoenergy = (qnorm(cad_score)+shift)*area # shift=1 was the best
cad_score = pnorm(pseudoenergy/area-shift)

CAD-score to pseudoenergy coef. pseudoenergy coef. to CAD-score

pseudoenergy coef.
1
contact CAD-score

0.0 02 04 06 08 1.0

S}
o /

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 -2 -1 0 1 2 3 4

contact CAD-score pseudoenergy coef.

Data for machine learning

Generating datasets

Training/testing/validation sets were constructed as follows:

» a non-redundant set of 1567 heterodimers were downloaded from PDB using the
clustering information provided by PPI3D

» the whole set was split into three sets: training/validation/testing containing
1097/235/235 heterodimers

» for each native structure (target), redocking was performed with FTDock, CAD-score
values were computed and a nonredundant set of models of varying quality was
selected (usually about 15-20 models for a target)

» each per-target set included models with at least partially correct binding site, but
completely wrong interface (this made the model scoring and selection tasks
substantially difficult)

Example of a set of docking models

ID X y z al a2 a3 cadscore site_cadscore
1E50_2250 -7 27 4 45 153 90 0.74375 0.87635
1E50_32 -13 26 2 18 153 90 0.63728 0.75543
1E50_2735 -7 28 1 72 162 120 0.53173 0.68644
1E50_15946 -16 26 -2 45 162 120 0.38075 0.55364
1E50_10393 -16 28 5 0 153 90 0.24134 0.47034
1E50_3759 7 20 7 351 117 40 0.13939 0.51889
1E50_17192 24 22 8 315 63 O 0.0386 0.42122
1E50_15006 -13 27 13 342 18 O 0 0.40432
1E50_5533 28 -13 20 O 45 204 O 0.30295
1E50_14280 27 -22 -22 180 126 60 O 0.20266
1E50_532 34 4 -18 207 54 100 O 0.10126
1E50_20368 1 -39 10 324 117 80 O 0.00119
1E50_9297 37 b -22 261 54 80 O 0

Applying graph neural networks

GNN architecture selection and application

Initial ideas for the graph neural network (GNN):

» train to predict node scores (i.e. train to minimize MSE loss between predicted and
ground truth CAD-score pseudoenergies)

» use both node and edge features in an attention mechanism

» in the validation stage, judge GNN performance by assessing how a global score (equal
to the sum of node predictions) is able to select the best multimeric model out of many

A multilayer GNN based on on GATv2 convolutional operator was chosen, because in
GATv2 the edge features are used straightforwardly when computing attention coefficients:

exp(aTLeakyReLU(A[Xi [|| ei,j]))

&. e —
Iy > ken(yuiiy ©P(a’ LeakyReLU (" [x; [| x« [€;]))

Selected GNN architecture hyperparameters

ML experiments resulted in
per layer:

class GNN(torch.nn.Module):
def __init__(self):
super().__init__()

self.convl=torch_geometric.
self.conv2=torch_geometric.
self.conv3=torch_geometric.
self.conv4=torch_geometric.

selecting a 4-layer GATv2 architecture with 8 attention heads

nn.GATv2Conv(
nn.GATv2Conv(16*8, 16, heads=8, edge_dim=1, add_self_loops=False, dropout=0.25)
nn.GATv2Conv(16*8, 16, heads=8, edge_dim=1, add_self_loops=False, dropout=0.25)
nn.GATv2Conv(16*8, 8, heads=8, edge_dim=1, add_self_loops=False, dropout=0.25)

15, 16, heads=8, edge_dim=1, add_self_loops=False, dropout=0.25)

self.linl=torch.nn.Linear(8*8, 1)

def forward(self, data):
x=data.x

x=self.convl(x, data.edge_index, data.edge_attr)
x=torch.nn.functional.elu(x)
x=self.conv2(x, data.edge_index, data.edge_attr)
x=torch.nn.functional.elu(x)
x=self.conv3(x, data.edge_index, data.edge_attr)
x=torch.nn.functional.elu(x)
x=self.conv4(x, data.edge_index, data.edge_attr)

return self.linl(x)

Final testing results

Performance of the final method on a 235 sets of dimeric models generated by redocking
and not used in training:

Selection method Rate of Mean interface Mean z-score of
correct top 1 CAD-score interface CAD-score

Ideal 100% 0.78 1.85

VorolF-GNN (new) 86% 0.74 1.72

VoroMQA energy (old) 53% 0.63 1.34

Case study of T1121 (PDB Ttil)

Model Target
T1121TS205 30 PDB 7til

pCAD-score = 0.87 pCAD-score = 0.68

Case study of T1121 (PDB Ttil)

Model Target
T1121TS205_30 PDB 7til

pCAD-score = 0.92
pCAD-score = 0.87

pCAD-score = 0.27

Conclusions

» VorolF is very local

» VorolF is relatively good at scoring interfaces, but not really suited for per-residue
scores that were required by CASP15

» VorolF is unusual, but it works - so it may be especially useful when combined with
other scoring methods

Acknowledgments

Iy

CASP15 Team

Justas Dapkunas
Lukas Valancéauskas
Ceslovas Venclovas

bioinformatics.lIt

Rytis Dicilnas

Kestutis Timinskas
Albertas Timinskas
Darius Kazlauskas
Mindaugas Margelevicius
Visvaldas Kairys

UNIVE,
S Ry
S r579- %

47
3%

Institute of
Biotechnology

Life Sciences
Center

CURR77
W
2
2
o
sy . o4

w

Funding: Research Council of Lithuania

