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General scheme of VorolF-GNN
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Voronoi tessellation-derived
interface representation



Deriving atom-atom contacts

Voronoi cell of an atom Atom-atom contact surface
surrounded by its neighbors defined as the face shared
by two adjacent Voronoi cells.




Constraining CSAs and deriving SASA for an atom

» CSA — contact surface area

» SASA — surface-accessible surface area




Deriving residue-residue contacts

Voronoi cells of two Residue-residue contact surface
neighboring residues defined as a union of
atom-atom contact surfaces




SASAs and intersubunit interfaces

Solvent-accessible surface The intersubunit interface The intersubunit interface
of an insulin heterodimer shown together with the shown together with
PDB:4UNG colored by subunit SAS of one subunit both subunits represented

as cartoons
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Interface graph definition



Important note about the interface graphs

Our interface graphs are fairly unusual:

» Graph nodes correspond to inter-chain contacts (on atom-atom or residue-residue
levels)

» Graph edges correspond to borders between adjacent atom-atom or residue-residue
contacts



Interface graph example — source
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Interface graph construction and annotation

Tessellation-derived Interface graph
interface contacts Graph node attributes

C \'®—\ ‘ Contact surface area

Contact-solvent border length

}% \ Contact type-derived info
/®/ Graph edge attributes

ﬁ—é Inter-contact border length
Contact surface /®/

Contact-solvent border !
Inter-contact border




Contact-type derived info in nodes

A node representing a contact between two atoms of types A and B was annotated using
the type-dependent coefficients from our contact area-based statistical potential VoroMQA:

» VoroMQA
» VoroMQA . ef
» VoroMQA_ (B, solvent) * area

(A, B) x area

(A, solvent)  area

coef

When going from atom-level to residue-level nodes, the VoroMQA-based values were simply
summed.



What to predict for an interface graph



What values to predict for graph nodes

Ground truth values for graph nodes are derived from CAD-score (Contact Area Difference score)

values of residue-residue contacts.
Target Model 1 Model 2

T

G
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dimer & interface

just interface

. « 0
full interface full interface
CAD-score = 0.72 CAD-score = 0.58



Pseudoenergy trick

Node level scores must behave like a "pseudoenergy™:
» must be "summable", so that global or residue score = the sum of node scores
» must be weighted by corresponding contact areas
» very bad scores must penalize the total sum

pseudoenergy = (qnorm(cad_score)+shift)*area # shift=1 was the best
cad_score = pnorm(pseudoenergy/area-shift)

CAD-score to pseudoenergy coef. pseudoenergy coef. to CAD-score
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Data for machine learning



Generating datasets

Training/testing/validation sets were constructed as follows:

» a non-redundant set of 1567 heterodimers were downloaded from PDB using the
clustering information provided by PPI3D

» the whole set was split into three sets: training/validation/testing containing
1097/235/235 heterodimers

» for each native structure (target), redocking was performed with FTDock, CAD-score
values were computed and a nonredundant set of models of varying quality was
selected (usually about 15-20 models for a target)

» each per-target set included models with at least partially correct binding site, but
completely wrong interface (this made the model scoring and selection tasks
substantially difficult)



Example of a set of docking models

ID X y z al a2 a3 cadscore site_cadscore
1E50_2250 -7 27 4 45 153 90 0.74375 0.87635
1E50_32 -13 26 2 18 153 90 0.63728 0.75543
1E50_2735 -7 28 1 72 162 120 0.53173 0.68644
1E50_15946 -16 26 -2 45 162 120 0.38075 0.55364
1E50_10393 -16 28 5 0 153 90 0.24134 0.47034
1E50_3759 7 20 7 351 117 40 0.13939 0.51889
1E50_17192 24 22 8 315 63 O 0.0386 0.42122
1E50_15006 -13 27 13 342 18 O 0 0.40432
1E50_5533 28 -13 20 O 45 204 O 0.30295
1E50_14280 27 -22 -22 180 126 60 O 0.20266
1E50_532 34 4 -18 207 54 100 O 0.10126
1E50_20368 1 -39 10 324 117 80 O 0.00119
1E50_9297 37 b -22 261 54 80 O 0



Applying graph neural networks



GNN architecture selection and application

Initial ideas for the graph neural network (GNN):

» train to predict node scores (i.e. train to minimize MSE loss between predicted and
ground truth CAD-score pseudoenergies)

» use both node and edge features in an attention mechanism

» in the validation stage, judge GNN performance by assessing how a global score (equal
to the sum of node predictions) is able to select the best multimeric model out of many

A multilayer GNN based on on GATv2 convolutional operator was chosen, because in
GATv2 the edge features are used straightforwardly when computing attention coefficients:

exp(aTLeakyReLU(A[Xi [ || ei,j]))
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Selected GNN architecture hyperparameters

ML experiments resulted in
per layer:

class GNN(torch.nn.Module):
def __init__(self):
super().__init__()

self.convl=torch_geometric.
self.conv2=torch_geometric.
self.conv3=torch_geometric.
self.conv4=torch_geometric.

selecting a 4-layer GATv2 architecture with 8 attention heads

nn.GATv2Conv(
nn.GATv2Conv(16*8, 16, heads=8, edge_dim=1, add_self_loops=False, dropout=0.25)
nn.GATv2Conv(16*8, 16, heads=8, edge_dim=1, add_self_loops=False, dropout=0.25)
nn.GATv2Conv(16*8, 8, heads=8, edge_dim=1, add_self_loops=False, dropout=0.25)

15, 16, heads=8, edge_dim=1, add_self_loops=False, dropout=0.25)

self.linl=torch.nn.Linear(8*8, 1)

def forward(self, data):
x=data.x

x=self.convl(x, data.edge_index, data.edge_attr)
x=torch.nn.functional.elu(x)
x=self.conv2(x, data.edge_index, data.edge_attr)
x=torch.nn.functional.elu(x)
x=self.conv3(x, data.edge_index, data.edge_attr)
x=torch.nn.functional.elu(x)
x=self.conv4(x, data.edge_index, data.edge_attr)

return self.linl(x)



Final testing results

Performance of the final method on a 235 sets of dimeric models generated by redocking
and not used in training:

Selection method Rate of Mean interface Mean z-score of
correct top 1 CAD-score interface CAD-score

Ideal 100% 0.78 1.85

VorolF-GNN (new) 86% 0.74 1.72

VoroMQA energy (old) 53% 0.63 1.34




Case study of T1121 (PDB Ttil)

Model Target
T1121TS205 30 PDB 7til

pCAD-score = 0.87 pCAD-score = 0.68




Case study of T1121 (PDB Ttil)

Model Target
T1121TS205_30 PDB 7til

pCAD-score = 0.92
pCAD-score = 0.87

pCAD-score = 0.27




Conclusions

» VorolF is very local

» VorolF is relatively good at scoring interfaces, but not really suited for per-residue
scores that were required by CASP15

» VorolF is unusual, but it works - so it may be especially useful when combined with
other scoring methods
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