RNA Tertiary Structure prediction: Deep Learning vs. Statistical Force field

Peng Xiong Zelixir Biotech, Shanghai, China xiongpeng@zelixir.com

Outline

Introduction to RhoFold
Basic ideas behind BRiQ
Compare between BRiQ and AMBER

Sum (zscore > 0, best model GDT_TS)

AIChemy_RNA AIChemy_RNA2 RhoFold: end-to-end deep learning method BRiQ: modeling with statistical force field

Architecture of RhoFold

RNA foundation model (RNA-FM)

- Only use sequence information
- Self-supervised trained on all the RNA central ncRNA sequences (23 million)
- After trained, the model can output representations of input sequences
- Combined with rMSA, extracting more evolutionary information

RNA foundation model (RNA-FM)

Performance of RhoFold (GDT_TS of best model)

Comparable to other top groups on these 6 targets Failed on 4 synthetic RNAs and 2 protein-RNA complexes Currently, our deep learning method didn't outperform state-of-art structure modeling methods relying on scoring functions

This result is a bit different from what we saw on RNA puzzle tests

Target R1117

PDB: 3fu2_A

The **80%** sequence identity cutoff is widely used to divide training set and test set

Basic ideas behind BRiQ

Try to learn physics from structure database

Probability density decomposition

1D to 3D, draw electron cloud surface of chemical groups

Charge distribution of polar groups to 3D energy

Density of GLU-OE atoms in the local frame of PHE

Density of ribose O4' atoms in the local frame of Base A

6D energy for base-base interactions

Monte Carlo sampling

Motif assembling (R1126)

BRiQ vs. AMBER

Performance of BRiQ (GDT_TS of best model)

R1107

R1126

R1108

R1128

R1156

R1116

R1136

R1189

R1117

R1138

R1190

R1138

Young

It's more like a infant model

R1116

Our energy function can't distinguish these two topologies

X-Ray Crystal model

predicted model

Acknowledgment

Dr. Shen Tao

Prof. Li Yu

Prof. Zhou Yaoqi

Zelixir cofounders