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Agemo  

Omegafold-based Optimization 

Ruihan Guo, Ruidong Wu 
Helixon Inc. 

guoruihan.sansi@gmail.com 

Key: Auto:N; CASP_serv:N; Templ:N; MSA:Y; Fragm:N; Cont:Y; Dist:Y; Tors:Y; DeepL:Y; 
EMA:Y; MD:Y 

We participate in the CASP15 as a human group “Agemo”. Based on Alphafold1 and 

Omegafold2 released in colabfold, we have tried different tricks like MSA-generation and 
contact-based MSA filter. In addition, we have built a structure evaluation model for ranking 
structures from different models. 

Methods 
In our method, we try to optimize the pipeline of Alphafold and Omegafold. Specifically, we try 
to augment the co-evolution information from MSA for those sequences that lacking that. We 
have proposed a profile-based method and a language-model-based method to generate MSAs. 

MSA generation and filter: Before folding, we used a pretrained language model for MSA 
sequence generation. Sequences with 15% masked are sent into PLM to regrow, which will be 
augmentation for co-evolution. The generated MSA sequences are filtered by length, coverage 
and abundance of co-evolution information. To obtain more diverse and useful co-evolution 
information, we filter the natural and generated MSA sequences by contact-based score 
predicted by Omegafold.  

Structure Evaluation: To evaluate the structures predicted by different models, we have 
trained a scoring function to rank the candidates. The training data is generated by Omegafold. 
Adding noise to the single and pair representation, we can control the lDDT of the predicted 
structure. The augmented training data is also satisfied with the basic constraints of protein 
folding. 

Availability 

The method is not publicly available. The components Omegafold can be found in 
https://colab.research.google.com/github/sokrypton/ColabFold. 

 

1. Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with 
AlphaFold. Nature 596, 583–589 (2021). https://doi.org/10.1038/s41586-021-03819-2. 

2. Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuo
fan Wu, Qi Xie, Bonnie Berger, Jianzhu Ma, Jian Peng. 
bioRxiv 2022.07.21.500999; doi: https://doi.org/10.1101/2022.07.21.500999. 

  

https://doi.org/10.1038/s41586-021-03819-2
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Agemo_mix  

AIRFold-Omegafold Ensemble  

Ruihan Guo1*, Yuxuan Song2*, Jingjing Gong2*, Xin Hong2, 
Jianzhu Ma1, Jian Peng1, Yanyan Lan2 

1 – Helixon Inc., 2 – AIR, * – equal contribution 

guoruihan.sansi@gmail.com 

Key: Auto:N; CASP_serv:N; Templ:N; MSA:Y; Fragm:N; Cont:Y; Dist:Y; Tors:Y; DeepL:Y; 
EMA:Y; MD:Y 

We participate in the CASP15 as a human group ‘Agemo_mix’. In this method, we use an 
improved version of Alphafold named AIRFold which integrated a novel homology-miner 
module to better process the co-evolution information. We also show that Omegafold1 can be a 
complementary method for Alphafold2, especially when facing orphan sequences and loop 
fragments.  

Methods 
Homology Miner: To better utilize the co-evol(co-evolution) in the homology sequences, we 

design and implement a novel homology miner module. The module could in general be divided 
into two parts, the co-evol information augmentation part and the co-evol information processing 
part. The augmentation part includes both the homology sequence retrieval methods based on 
deep representation learning and homology information generation methods based on deep 
generative model. To process the gained co-evol information from multiple sequence alignments 
data, the processing part uses information theoretic inspired quantity as the optimization metric 
which has demonstrated the effectiveness and robustness. 

AIRfold-Omegafold Ensemble: Omegafold doesn’t need co-evol information or template to 
predict, hence it can be a good complementary method for Alphafold. To evaluate the necessity 
using Omegafold, we’ve designed a scoring function based on plDDT and abundance of MSA. 
For fragments that acquire more co-evol information, we will use embeddings and results from 
Omegafold to reinforce. 

Monte-Carlo based Complex Prediction: For complicated complexes such as H1111, 
H1114, and H1137, Alphafold-Multimer and Omegafold-Complex can hardly predict the correct 
docking position in one shot. To increase the diversity of docking positions and avoid long time 
computing of large complex targets, we propose a method to assemble the complex step by step. 
First of all we separate the complex and propose several possible subsets by contact prediction. 
Then we predicted the subsets of complex and selected top five models for future prediction. 
With the structure of randomly selected subsets of each component as template, the component 
can be predicted with higher quality and better interpretability. 

Multiple-conformation Selection: Given the protein structures obtained through different 
models or strategies, we use strategic process to conduct multiple-conformation selection. The 
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key components of this part include diversity encouraged conformation cluster, evaluation 
metric debiasing, and energy evaluation. With the above-mentioned components,  it is expected 
to rank different conformation results in proper order and also get a more diverse candidate set 
which could cover as many possible stationary states as possible.  

 

Availability 

The method is not publicly available. The component Omegafold can be found in 
https://colab.research.google.com/github/sokrypton/ColabFold. 

 

1. Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuo
fan Wu, Qi Xie, Bonnie Berger, Jianzhu Ma, Jian Peng 
bioRxiv 2022.07.21.500999; doi: https://doi.org/10.1101/2022.07.21.500999. 

2. Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with 
AlphaFold. Nature 596, 583–589 (2021). https://doi.org/10.1038/s41586-021-03819-2. 

 

  

https://doi.org/10.1038/s41586-021-03819-2
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AIchemy_LIG 

Per-atom deviation prediction of protein-ligand binding pose  
with a transformer-based model 

Tao Shen1, Fuxu Liu1, Jinyuan Sun2, Yifan Bu1, Zechen Wang3, Weifeng Li3, Peng Xiong1, 
Liangzhen Zheng1,4 and Sheng Wang1,4 

1 - Shanghai Zelixir Biotech Co. Ltd, 2 - Institute of Microbiology, Chinese Academy of Sciences. 3 - School of 
Physics, Shandong University. 4 - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences 

yishan@zelixir.com, wangsheng@zelixir.com 

Key: Auto:N; CASP_serv:N; Templ:Y; MSA:N; Fragm:N; Cont:Y; Dist:N; Tors:N; DeepL:Y; 
EMA:Y; MD:N 

Protein-ligand binding patterns are key information for drug discovery. Although the protein 
structure could be accurately predicted through AlphaFold21, it is reported that the ligand 
binding pocket residue side chains may not be precise enough to model the ligand binding in 
some cases. How to make use of the available AlphaFold-DB2 of protein structures to accelerate 
the drug discovery process could be an interesting topic.  

 
Methods 
From RCSB PDB, we collected all protein-ligand complexes, and based on which we predicted 
all the protein structures using fastMSA3 based accelerated torch-version AF2, and docked all the 
ligands into their corresponding predicted protein structures by AutoDock Vina4 to assemble a 
very large decoy dataset. The docking pose RMSD was determined by firstly superimposing the 
AF2 predicted structure to the native structure and using the native ligand pose as the ground 
truth as did in other cross-docked dataset. For this decoy dataset, the docking poses with very 
large RMSD (>15 angstrom) were discarded. Based on this dataset (with similarity-based train-
test split), we designed a transformer-based model to predict per-atom RMSD of the docking 
poses4 with respect to the native conformations calculated. The model directly takes 3D 
coordinates and atom types as input. Self-attention mechanisms allow the model to capture 
protein-ligand interactions. The RMSD value is discretized into 20 bins with an interval of 0.5. 
Cross-entropy loss is employed to calculate if the predicted per-atom RMSD falls in the ground 
truth bin. A mask atom prediction task is also applied to improve robustness. For CASP15 
protein-ligand predictions, the AF2 predicted protein structure was used for ligand docking and 
template-based ligand modeling, and the poses were scored by the deep learning model and 
clustered into 5 groups for submission. 

 

1. Jumper, J., Evans, R., Pritzel, A. et al. (2021) Highly accurate protein structure prediction 
with AlphaFold. Nature, 596, 583-589. 

2. Varadi M, Anyango S, Deshpande M, et al. AlphaFold Protein Structure Database: massively 
expanding the structural coverage of protein-sequence space with high-accuracy models. 
Nucleic acids research, 2022, 50(D1): D439-D444. 
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3. Hong L, Sun S, Zheng L, et al. fastmsa: Accelerating multiple sequence alignment with dense 
retrieval on protein language. bioRxiv, 2021. 

4. Trott O, Olson A J. AutoDock Vina: improving the speed and accuracy of docking with a new 
scoring function, efficient optimization, and multithreading. Journal of computational 
chemistry, 2010, 31(2): 455-461. 
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AIchemy_LIG3 

A hybrid potential energy function for protein-ligand pose scoring and optimization 

Zechen Wang1, Tao Shen2, Fuxu Liu2, Yifan Bu2, Jinyuan Sun3, Sheng Wang2,4, Yanjie Wei4, 
Liangzhen Zheng2,4 and Weifeng Li1 

1 - School of Physics, Shandong University, 2 - Shanghai Zelixir Biotech Co. Ltd, 3 - Institute of Microbiology, 
Chinese Academy of Sciences, 4 - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences 

yishan@zelixir.com, lwf@sdu.edu.cn  

Key: Auto:N; CASP_serv:Y; Templ:Y; MSA:Y.MetaG; Fragm:Y.8-10; Cont:Y; Dist:Y; Tors:Y; 
DeepL:Y; EMA:Y; MD:N 

 

Accurate prediction of protein-ligand interaction patterns is one of the key issues in computer-
aided drug design. The advent of AlphaFold21 made it possible to obtain more protein structures 
at a lower cost. Nonetheless, predicting the specific location and orientation of ligands in protein 
binding pockets remains a challenge. This increases the need for more refined protein pocket 
modeling and for protein-ligand interaction description. Here, we predicted protein structures 
and binding pockets based on AlphaFold-2 and Pointsite2, respectively, and then docked ligands 
into the binding pockets. We employed a hybrid scoring function based on deep learning 
combined with traditional scoring functions to rank protein-ligand binding poses, and further 
optimized the binding poses of ligands based on this scoring function.   

Methods 

The initial ligand binding poses were generated by AutoDock Vina3 and other tools based on 
predicted protein structure and pocket. In addition, protein-ligand templates based on combined 
similarity search against whole-PDB level structures were adopted to generate more reliable 
ligand poses by structure superposition. Inspired by physics, we designed a deep learning-based 
scoring function DeepRMSD4 to predict the root mean square deviation (RMSD) of the docking 
pose with respect to the native pose. We extract interaction features based on pseudo-van der 
Waals and Coulomb potentials, which are fed into a multilayer perceptron to predict RMSD. 
Combining DeepRMSD with Vina, a new hybrid scoring function called DeepRMSD+Vina is 
constructed. The training and testing sets were adopted from PDBBind2019 dataset by 
generating large-scale ligand binding poses. Furthermore, in view of the differentiability of 
DeepRMSD+Vina for molecular coordinates and its superior performance in docking ability, we 
designed a ligand conformation optimization framework. The optimization algorithm does not 
directly change the coordinates of each atom of the ligand, but changes the conformation by 
translating, rotating and twisting the rotatable bonds inside the molecule, thus ensuring the 
rationality of the structure of the ligand molecule in the optimization process.  
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1. Jumper, J., Evans, R., Pritzel, A. et al. (2021) Highly accurate protein structure prediction 
with AlphaFold. Nature, 596, 583-589. 

2. Yan, X., Lu, Y., Li, Z., Wei, Q., Gao, X., Wang, S., Wu, S. & Cui, S. (2022) PointSite: A 
Point Cloud Segmentation Tool for Identification of Protein Ligand Binding Atoms. J Chem 
Inf Model, 62, 2835-2845. 

3. Trott O, Olson A J. AutoDock Vina: improving the speed and accuracy of docking with a new 
scoring function, efficient optimization, and multithreading. Journal of computational 
chemistry, 2010, 31(2): 455-461. 

4. Wang Z, Zheng L, Wang S, et al. A fully differentiable ligand pose optimization framework 
guided by deep learning and traditional scoring functions. arXiv preprint arXiv:2206.13345, 
2022.  
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AIchemy-RNA 

Yu Li1, Tao Shen2, Sheng Wang2, Jiayang Chen1, Siqi Sun3, Zhangzhi Peng3, Liang Hong1 
1 - CUHK; 2 - Zelixir Biotech, Shanghai, China; 3 - Fudan University 

 

RNA structure determination and prediction served as a critical task across various biological 
applications. Currently, none of the existing approaches is accurate enough, and most of them 
utilize large-scale sampling, which is time-consuming. Here in CASP15, we develop a deep 
learning approach, RhoFold, to accurately predict RNA three-dimensional structures. 

Several strategies are proposed to tackle the computational challenges in this problem.  

Firstly, RhoFold is composed of a fully differentiable end-to-end deep learning model, 
which takes the maximal usage of the existing data with minimal human interference and directly 
outputs the coordinates of all atoms in a valid RNA 3D structure.  

Secondly, our method utilizes multi-aspect information of the RNA sequence, including 
multiple sequence alignments (MSAs) and RNA foundation model (RNA-FM)  embedding, to 
infer the 3D structures. 

Thirdly, by introducing secondary structure information into the loss function, RhoFold is 
forced to capture the RNA folding process instead of only memorizing the training data and thus 
avoid overfitting. 

Finally, inspired by AlphaFold , we also developed a novel procedure to perform self-
distillation and use confidently predicted structures to augment the training dataset. 
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In CASP 15, we tested our RNA tertiary structure pipeline using structure motif assembling and 
full atom optimization with BRiQ statistical potential1. This method took the strategy of Monte 
Carlo sampling to generate structure motifs and final models. The energy function we used is a 
high-resolution statistical potential, describing all bonding, base pairing, steric clashes and other 
polar interactions in a high-dimensional statistical manner. Homology motifs were used when 
available. 

Methods 

Our structure prediction pipeline consists of the following steps 1) Get the secondary structure of 
the target sequence according to literature, homology structures, prediction results or manually; 2) 
Assign structure motifs based on secondary structure; 3) Predict motif structures by ab initial 
structure sampling or structure refinement from homology template. For target R1107, R1108, 
R1116, R1117 homology models were used, for target R1126 and R1136 G-quadruplex motif 
were extracted from native structures; 4) Run Monte Carlo sampling for motif assembling and 
structure refinement using SWORD-RNA program. 

For each target, we generated thousands of models and selected five best models to submit. 

 

1. Xiong, P. et al. (2021). Pairing a high-resolution statistical potential with a nucleobase-centric 
sampling algorithm for improving RNA model refinement. Nature Communications 12(2777). 
  

mailto:xiongpeng@zelixir.com
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APOLLO used Energy-Based Models (EBMs) to assess the overall fold accuracy (global score), 
overall interface accuracy (global interface score), and confidence scores for interface residues 
(local interface scores) in the CASP15 experiment. The intuition behind our use of EBMs stems 
from the fact that proteins fold to their lowest energy state. The EBMs were trained using the 
proposed loss for energy-based regression1. Feature embeddings (local or global, from a pre-
trained transformer2 model) and respective logit values were taken as input to the EBMs. The 
supervised transformer models that produced the embeddings (denoted as pre-trained) were 
trained separately from the EBMs. The embeddings were taken as outputs from earlier layers in 
their respective pipelines. Given an embedding-target (logit) pair, our EBM outputs a 
compatibility score (negative energy1). During inference, the logit that produces the highest 
EBM output (negative energy) given an input embedding is denoted as the prediction. A sigmoid 
function is used to convert the predicted logit back to the probability space.  

 
Methods 
We took input features (details of input features to these pre-trained models can be found in 
LAW, MASS (QA) abstract) and fed them into the described above pre-trained models to 
produce learned feature embeddings. These pre-trained models utilized graph transformer layers 
and/or convolutional 1D layers and BCE/L1 loss functions (with their respective targets).  

The input to an EBM is a logit-embedding pair. Negative (adversarial) samples were 
sampled from a normal distribution1, with the modification of adding a sliding standard deviation 
to account for asymptotes in the logit function. Fixed quartiles for a given sample (hyper-
parameter) in the probability space were used to calculate the standard deviation in the logit 
space. To perform inference given an embedding, we iteratively check a fixed span of logits 
associated with the probability space. Dropout layers were frequently used throughout our 
models to help prevent overfitting.  

The local-interface-score predictor of APOLLO passed input features into a pre-trained 
model consisting of transformer layers2 and linear layers. These embeddings were then passed 
into an EBM that contained recurrent linear and standard linear layers. The recurrent linear 
layers propagated the logit score down the pipeline. Since this predictor was performing a binary 
classification task, we assigned fixed values in the logit space to be 0 and 1 accordingly.  

mailto:zheng.wang@miami.edu
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The global-score predictor of APOLLO passed input features into a pre-trained model 
consisting of transformer and convolutional 1D layers. These embeddings were given as input to 
an EBM consisting of recurrent and standard linear layers. The recurrent linear layers propagated 
the logit score down the pipeline. The inference was performed using a separate model as 
opposed to brute force checking. This separate inference model took in energy values associated 
with (across the fixed span of potential logit values) both the global-score and local-interface 
EBMs. The model also took the predicted global score (final output) from the pre-trained model 
(used for producing learned embeddings). This inference model consisted of convolutional 1D 
and linear layers. The supervised inference model was trained separately from and after the 
EBM. The final output of the inference model is the global-score prediction. 

The global-interface-score predictor of APOLLO passed input features into a pre-trained 
model consisting of transformer and 1D convolutional layers. This pre-trained model produced 
learned feature embeddings which were then used, alongside potential logit values, as input to 
the EBM. The global-interface-score EBM consisted of recurrent and standard linear layers. The 
recurrent linear layers propagated the logit score down the pipeline. 

 
1. Gustafsson, F.K., et al., How to train your energy-based model for regression. arXiv preprint 

arXiv:2005.01698, 2020. 
2. Shi, Y., et al., Masked label prediction: Unified message passing model for semi-supervised 

classification. arXiv preprint arXiv:2009.03509, 2020. 
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The BAKER group performed various ranges of predictions from protein tertiary structures to 
protein-small molecule interactions by utilizing the RoseTTAFold2 with human interventions. 

Methods 

Protein tertiary structure prediction and alternative state sampling 

For human group predictions, the multiple sequence alignments (MSAs) generated by our server 
protocol (see BAKER-SERVER) were manually inspected to fine-tune the e-value and coverage 
cutoffs and enriched with metagenomic sequences1. Templates were re-searched if MSAs were 
updated. We also tried more diverse sampling by running the same model multiple times with 
five different random seeds, and the number of recycling was also manually adjusted if 
necessary. The resulting 25 models were ranked by predicted CA-lDDT (plDDT), and the top 
five models were submitted after relaxation. 

For the alternative state sampling, we gave biases to RoseTTAFold2 prediction by 
providing a biased set of templates corresponding to a certain state. To make RoseTTAFold2 
more sensitive to the given templates, we sub-sampled MSAs to have less than 30 sequences. 

Protein assembly prediction using RoseTTAFold2 

For the homo-oligomeric proteins, the MSA is copied multiple times for each component with 
gap padding. For the hetero-oligomeric proteins where subunits are from the same species, we 
generated paired alignments by the following. All proteomes for bacteria or eukaryotes were 
downloaded from NCBI2 and JGI3 genome databases. We used BLAST4 to generate loose 
orthologous sequences for each query protein by identifying the forward best hit from proteomes 
in the database. Using these similar sequences, we used phmmer5 to search against the loose 
orthologues. We filtered the alignments to create an initial seed alignment which was then 
converted into a HMM with hmmbuild5. This seed alignment is used to align the remainder of the 
orthologous sequences using hmmsearch5. Sequences from the same proteome were paired, 
redundancy was removed using hhfilter6, and additional unpaired sequences were added to these 
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alignments with gap padding. For the hetero-oligomers having subunits from different species 
(e.g. antigen-antibody), MSAs for each chain are stacked in a block-diagonal fashion with 
padding on the off-diagnoals. We also utilized templates for subunits and complexes. We ran all 
five RoseTTAFold2 models five times, resulting in 25 predictions. The final models were ranked 
by plDDT, and the top five models were submitted after energy minimization using Rosetta 
FastRelax with coordinate constraints on given structures. 

Protein-ligand docking with receptor models predicted by RoseTTAFold2 

Initial ligand conformation was generated from the SMILES string using UCSF Chimera7. Ideal 
bond geometry and partial charges were computed using AmberTools8 for small molecules. We 
used our human prediction models for receptors. The binding site was determined based on the 
existing template structures with similar small molecules bound to the protein structure. For a 
few targets that have no ligand-bound template, we manually selected a few putative binding 
sites based on the shape of the protein surface. Metal ions were manually placed in the receptor 
structures based on the templates, and they were fixed during small molecule docking. 

Docking of small molecule ligands was performed using Rosetta GALigandDock9, which 
uses a physically realistic energy model with genetic algorithm optimization. 20 independent 
docking runs were performed for each receptor model, and all the generated models were ranked 
by the estimated binding affinity (dG = dH + TdS). The enthalpy change (dH) upon binding was 
estimated using Rosetta energy: dH = E(complex) - E(receptor) - E(ligand), and the entropy 
change was estimated by a short Monte Carlo simulation of the torsional entropy of the ligand.  

Since GALigandDock can only dock one ligand each time, for targets that have multiple 
ligands, we docked one ligand at a time and used the top five ranked complex structures for the 
next ligand. For homo-oligomer targets such as T1124, T1170, etc., a ligand was docked to one 
of the subunits, and the final complex structure was reconstructed by aligning the ligand-bound 
subunit to the others. For hetero-multimer targets such as H1171 and H1172, we docked ligands 
to all of the subunits independently and reconstructed whole complex structures by combining 
top-ranked predictions for each subunit. The final structures were relaxed with coordinate 
restraints to remove potential clashes before submission. 

RNA structure and protein-RNA complex structure prediction using RoseTTAFoldNA 

During CASP15, we extended the RoseTTAFold2 to predict structures of nucleic acid and 
protein-nucleic acid complexes. We developed a single trained network, RoseTTAFoldNA10, 
that rapidly produces 3D structures with estimated confidences for protein-DNA and protein-
RNA complexes, and for RNA tertiary structures. We trained this end-to-end RoseTTAFoldNA 
model using a combination of protein monomers, protein complexes, RNA monomers, RNA 
dimers, protein-RNA complexes, and protein-DNA complexes, with a 60/40 ratio of protein-only 
and NA-containing structures. 

To generate MSAs for RNA, sequences were searched using blastn4 over three databases 
(RNAcentral11, rfam12, and nt2) to identify hits, then using nhmmer13 to rerank hits. Similar to 
protein MSA generation, we used successive e-value cutoffs (1e-8, 1e-7, 1e-6, 1e-3, 1e-2, 1e-1), 
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stopping when the MSA contains more than 10,000 unique sequences with >50% coverage. The 
models were generated using RoseTTAFoldNA with manual intervention on a choice of MSAs, 
the number of recycling steps, etc. For large RNA molecules, models were predicted in segments 
and combined. The top five models ranked by estimated confidence were submitted after 
relaxation. 

 

Availability 

The RoseTTAFoldNA is available at https://github.com/uw-ipd/RoseTTAFold2NA, and Rosetta 
GALiagndDock is available through Rosetta modeling package, downloadable from 
https://www.rosettacommons.org/software. 

 

1. Wu, Q., Peng, Z., Anishchenko, I., Cong, Q., Baker, D., Yang, J. (2020). Protein contact 
prediction using metagenome sequence data and residual neural networks. Bioinformatics 36, 
41-48. 

2. Wheeler, D. L., et al. (2006). Database resources of the national center for biotechnology 
information. Nucleic acids research, 34(suppl_1), D173-D180. 

3. Clum, A., et al. (2021). DOE JGI metagenome workflow. Msystems, 6(3), e00804-20. 
4. Camacho, C., et al. (2009). BLAST+: architecture and applications. BMC bioinformatics, 

10(1), 1-9. 
5. Eddy, S. R. (2011). Accelerated profile HMM searches. PLoS computational biology, 7(10), 

e1002195. 
6. Steinegger, M., et al. (2019). HH-suite3 for fast remote homology detection and deep protein 

annotation, BMC bioinformatics, 20(1), 1-15. 
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BAKER-ROSETTASERVER performed fully automated protein tertiary structure predictions 
for TS targets. The server employed the RoseTTAFold2 method, an improved version of 
RoseTTAFold1, which combines several components of AlphaFold2 to the RoseTTAFold’s 
three-track architecture. 

 

Methods 

Sequence and template searches 

Multiple sequence alignments (MSAs) for the target sequences were generated by several rounds 
of iterative hhblits3 search against the Uniclust30 database4 (June 2021 version) with gradually 
relaxed e-value cutoffs (1e-30, 1e-10, 1e-6, and 1e-3). If the resulting MSA contains less than 
4,000 sequences after filtering with coverage of 50% and sequence identity of 90%, it performs a 
final hhblits search against the BFD database2 with e-value cutoff 1e-3. The generated MSAs 
were then used to search for putative structural templates in the PDB (Apr 2022 version) by 
hhsearch5. 

Predicting protein structures using RoseTTAFold2 

We developed RoseTTAFold2, which consists of pure three-track architecture and incorporates 
the FAPE loss2 and recycling during training. We took the concept of structurally coherent 
attention from AlphaFold, but implemented it in a way that scales with O(L2) rather than O(L3), 
enabling much more efficient modeling for large proteins. RoseTTAFold2 is trained on not only 
experimentally determined protein monomer structures but also model structures predicted by 
AlphaFold and protein complex structures in the PDB. RoseTTAFold2 takes MSAs and 
templates as inputs, and provides full-atom models with residue-wise model confidence in terms 
of CA-lDDT score (plDDT). Five models were generated by utilizing five different checkpoints 
from RoseTTAFold2 training. The final models were ranked by plDDT. All models underwent a 
final relax with coordinate constraints on all heavy atoms using Rosetta6 before submission. 
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Availability 

The original RoseTTAFold is available at https://github.com/RosettaCommons/RoseTTAFold 
(source code) and https://robetta.bakerlab.org (web-server).  

 

1. Baek, M., et al. (2021). Accurate prediction of protein structures and interactions using a 
three-track neural network. Science, 373(6557), 871-876. 

2. Jumper, J., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 
596(7873), 583-590. 

3. Remmert, M., Biegert, A., Hauser, A. (2012) HHblits: Lightning-fast iterative protein 
sequence searching by HMM-HMM alignment Nature Methods, 9(2), 173-175. 

4. Mirdita, M., et al. (2017). Uniclust databases of clustered and deeply annotated protein 
sequences and alignments. Nucleic acids research, 45(D1), D170-176. 

5. Söding, J. (2005). Protein homology detection by HMM-HMM comparison. Bioinformatics 
21, 951–960. 

6. Conway, P., Tyka, M. D., DiMaio, F., Konerding, D. E., Baker, D. (2014). Relaxation of 
backbone bond geometry improves protein energy landscape modeling. Protein Science, 
23(1), 47-55. 
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In CASP15, we developed OpenComplex, an end-to-end deep learning based model with MSA 
encoders and structural decoder that predicted protein structures based on the layout of 
AlphaFold21 and AlphaFold-Multimer2. Moreover, when it's difficult, this strategy has been 
enhanced with multimer complex templates and deliberate docking, minimization and scoring.  
 
Methods 

OpenComplex: OpenComplex is a deep learning based model with MSA encoders for 
biomolecules and a structural decoder. Trained on the Protein Data Bank (PDB), RNA families 
database (RFRAM), and other databases, OpenComplex can produce suitable models for 
monomers, multimers and big protein complexes. In addition, we screened MSAs using a variety 
of design options, incorporated multimer templates for protein complexes, and introduced 
additional randomness to produce diversity.  

Template Search: we focus on the construction and selection of protein templates for 
multimer as follow, (i) we close the duplication condition in the original AlphaFold-Multimer 
template search before looking for a template of higher grade. (ii) We retain more monomer 
candidate templates. (iii) If there are templates for each chain from the same complex, we select 
the multimer protein template based on the template ID that was used to build the mask. 

Manual intervention: for certain big or intricate targets, we employ manual involvement, 
such as assembly and docking. We employ symmetric docking and binary docking tools, 
respectively, for targets with stoichiometry An or A1B1. When the stoichiometry of the target does 
not fulfill the aforementioned conditions, we are unable to build the complete structure in a 
single shot and must employ other assembly procedures. For target H1137, the membrane protein 
structure with high homology is searched through sequence alignment, and the complex is 
divided into several subunits for docking with reference to the spatial arrangement of the 
template structure. For other symmetric hetero-multimers, such as H1114, we predicted the 
structures of BC, AB2C2 and other subunits respectively. We applied C8 symmetry docking to 
subunit BC, and then docking with chain A, C2, D2 symmetry docking to subunit AB2C2, 
generating a large number of candidate conformations. In addition, we alter the predicted 
structure using the Jackal3 package, which provides modeling using multiple anticipated models 
as templates. We handle excessively lengthy monomer sequences by separating them into two or 
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more domains, which are independently inferred by OpenComplex and subsequently 
superimposed by PyMol4 based on aligned sections. 

Model selection: we reranked the decoys using a hybrid scoring strategy, grading 
complex created interfaces by integrating energy functions and monomer structure by plddt 
score, quality of secondary structure, and disordered area. We manually filtered out these decoys 
for some large complexes in which inaccurate prediction of local domains resulted in long loops 
and increased structural clashes. In addition, we leverage the literature-reported interface zones, 
which provide a crucial basis for our selection of decoys. 
 

 
 

Figure 1: Pipeline overview: A) The architecture of OpenComplex, with MSA encoders and 
structural decoder, was used for candidate structure generation. B) Construction and selection of 
protein templates for multimer. C) Manual intervention such as assembling and docking for some 
large or complicated targets. D) Final models were selected by a hybrid scoring strategy. 
 
Results 
At the present date, several TS targets are released on PDB. Our proposed prediction models 
compared favorably to structures that were made public. We calculated TM-score, RMSD and 
LDDT of the top five models for two monomer targets (T1120, T1133) and DockQ for two 
heterodimers (H1106, H1134) (Figure 2).  
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Figure 2: Structural comparision of OpenComplex predictied structural model and released PDB 
structure: our models for target T1133 and H1106 are close to native structures. 
 
Availability 
The code and models will be made available to the public shortly. 
 
1. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with 

AlphaFold. Nature, 2021. 
2. Evans R, O’Neill M, Pritzel A, et al. Protein complex prediction with AlphaFold-Multimer. 

BioRxiv, 2021. 
3. Petrey, D., Xiang, Z.X., Tang, C.L., et al. Using multiple structure alignments, fast model 

building, and energetic analysis in fold recognition and homology modeling. Proteins, 2003. 
53: 430-435. 

4. Schrodinger, LLC, The PyMOL Molecular Graphics System, Version 1.8. 2015.  
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BhageerathH-Pro protein tertiary structure prediction server is based on an ab initio/homology 
hybrid methodology. It integrates several methodological innovations designed over the years in 
SCFBio, such as grid sampling, empirical energy-based scoring, physicochemical filters for 
screening decoys, RM2TS and NCL methodologies for structure generation, ProTSAV for 
structure selection, together with template-based homology modeling and molecular dynamics 
refinement.  

 

(a) 

(c) 

(b) 

Figure 1: (a) BhageerathH-
Pro overall workflow  

(b) Bhageerath-abinitio 
structure generation 
methodology  

(c) BhgeerathH-Pro Protein 
Tertiary Structure 
Generation Flowchart 

mailto:akshata@scfbio-iitd.res.in
mailto:bjayaram@scfbio-iitd.res.in
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Despite the now well-known successes of Alphafold2, we refrained from inserting 
alphafold2 codes into our methodology and intended to benchmark our server against released 
experimental structures, and Alphafold predicted structures. The expectation, as we analyze the 
shortcomings of our server, from CASP to CASP, is that someday soon, physics-based methods 
can yield reliable tertiary structures. 

 

Methods 

BhageerathH-Pro is an advanced version of Bhageerath-H1 which consists of three major steps of 
structure generation, quality assessment, and refinement respectively [Figure 1(a)]. The structure 
generator methodology follows three paths namely, Path A, Path B, and Path C [Figure 1(c)]. 
Path A caters to the full-length template modeling, while Path B includes the New Chemical 
Logic of amino acids driven protein alignment and decoys generation2 and fragment assembly 
using the previously developed StrGen3 algorithm. The Bhageerath-ab initio module [Figure 
1(b)] is implemented as Path C for ab initio structure prediction in the absence of homology with 
an advanced version of RM2TS4 and an updated smart Bhageerath5, that works on loop 
sampling. The quality assessment pipeline is designed to pull out the best possible structure from 
the basket of almost a million conformations generated [Figure 2]. 

The sample conformations are clustered and filtered to retain mutually exclusive topologies, that 
are scored and ranked using iterative scoring modules like pcSM6, Function-driven scoring7, and 
ProTSAV8 to extract the top 100 structures. The selected structures are energy minimized using 
PROSEE9, and geometry optimized using the deep encoder-based refiner.  

The top 5 models thus generated are subjected to molecular dynamics for final 
refinement. The models resulting from path A are refined using conventional molecular 
dynamics (5ns). [Figure:3 Path A], whereas the models obtained from path B or C are refined 
using Conventional MD, Accelerated MD, and Annealing [Figure:3 Path B or C]. Once the 
simulations are finished, the lowest energy conformer from each simulation is subjected to 

Figure 2: Quality Assessment pipeline for BhageerathH-Pro 
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MMPBSA/GBSA calculations to find the most stable conformer, which is further refined using 
iterative main chain and side chain minimizations. 

 

Results 

The pipeline outlined above is fully automated and fielded in the recently concluded CASP15 
under the TS category as the BhageerathH-Pro server. BhageerathH-Pro has performed 
reasonably well so far for the targets whose native structures are released in RCSB till now. Out 
of 7 targets (whose native information is released), BhageerathH-Pro succeeded in predicting 4 
of them under low-resolution structures and 3 of them under 5Å of RMSD. Structures submitted 
from our server are benchmarked with the now famous Alphafold2 structures, and it is observed 
that for more than 50% of the targets (i.e., 49 out of 94), BhageerathH-Pro structures are within 
3Å of RMSD. We have further noticed that mutational effects and functions are well 
distinguishable in BhageerathH-Pro structures. Most of BhageerathH-Pro modules and tools are 
freely available in the public domain for the user community.  

Figure 3: Molecular Dynamics 
Simulation-based Refinement 
Protocol 



34 

 

Availability 

BhageerathH-Pro is an open-source web server and is available at the SCFBio website: 
http://www.scfbio-iitd.res.in/bhageerathH+/. 
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We participated in the CASP15 protein modeling category as "Bhattacharya" group which is the 
result of a system integration of our monomeric quality estimation and refinement methods for 
structure prediction; and in the accuracy estimation category with our unpublished ongoing work 
in accuracy estimates for multimeric complexes and inter-subunit interfaces using graph neural 
networks. 

 

Methods 

Our protein modeling pipeline leveraged the AlphaFold2 and RoseTTAFold predictions released 
by the CASP Prediction Center to perform model selection using our rapid multi-model 
structural consensus approach clustQ1. For each of the top selected models, we independently 
performed structure refinement using refineD2 method and ranked them using the method’s 
internal scoring scheme following a similar strategy as employed by QDeep3, to submit five top-
ranked models. 

Our unpublished ongoing work in protein complex accuracy estimation first extracts the 
interface of interacting residues from the complex model and constructs a graph representation of 
the interfacial region using sequence- and structure-derived node features and novel geometric 
edge features of the interface interactions. The accuracy of the interfacial region is then 
estimated using a graph neural network with graph embeddings and multi-head attention. The 
estimated interfacial accuracy is then combined with consensus-based accuracy estimates of the 
interacting monomers1 for estimating the accuracy of the whole multimeric complex. 

 

Availability 

QDeep is freely available at https://github.com/Bhattacharya-Lab/QDeep/, clustQ is freely 
available at http://watson.cse.eng.auburn.edu/clustQ/, refineD is available via the DeepRefiner 
server available at http://watson.cse.eng.auburn.edu/DeepRefiner/. 

  

https://github.com/Bhattacharya-Lab/QDeep/
http://watson.cse.eng.auburn.edu/clustQ/
http://watson.cse.eng.auburn.edu/DeepRefiner/
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The number of peptide-based therapeutics is growing continuously and it is expected to increase  
even more in coming years. Recently a wide attention has been drawn to cyclic peptides as 
potential modulators of biomolecular interactions with improved biological activity. Only a few 
methods exist that enable molecular docking of cyclic peptides, however with some limitations. 
Here, we present a protocol for a flexible docking of cyclic peptides. Method is based on the 
combination of a well-established tool for protein-peptide docking – the CABS-dock1, and on the 
Rosetta FlexPepDock2 refinement.  

 

Methods 

Proposed protocol consists of the following steps: 

 Step 1: Generating peptide starting conformations: 10 random starting models in C-
alpha trace representation are generated. 

 Step 2: Conformational space sampling: Conformational space sampling is performed 
using Replica Exchange Monte Carlo sampling scheme. Generated models are saved into 
trajectory for every starting structure. 

 Step 3: Reconstruction: All generated models are reconstructed to CABS (C-Alpha, C-
Beta, Side chains) coarse-grained representation. 

 Step 4: Scoring: 10 best structures are selected using a combination of CABS energy-
based scoring function and k-medoid structural clustering. 

 Step 5: Reconstruction and refinement: 10 top-scored models are rebuilt to all-atom 

representation and refined using PD23 method and Rosetta FlexPepDock tool.  

 

Results 

The proposed protocol was evaluated on a set of 38 cyclic peptide complexes. Provided results 
show that the combination of CABS-dock with Rosetta refinement may be an effective way for 
docking not only linear, but also cyclic peptides.  
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Availability 

The CABS-dock repository is available at https://bitbucket.org/lcbio/cabsdock/src/master/ 

Rosetta FlexPepDock tool is available at http://flexpepdock.furmanlab.cs.huji.ac.il/ 

 

1. Kurcinski, M. et al. CABS-dock standalone: a toolbox for flexible protein–peptide docking. 
Bioinformatics 35, (2019). 

2. London, N., Raveh, B., Cohen, E., Fathi, G. & Schueler-Furman, O. Rosetta FlexPepDock 
web server - High resolution modeling of peptide-protein interactions. Nucleic Acids 
Research 39, (2011).  
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In this CASP, we built a protein structure prediction model called Cerebra, which is a hybrid 
architecture deep learning neural network model, which used convolutional neural network 
(CNN) and attention mechanism to obtain local information and global information respectively. 
Cerebra is an end-to-end model, which only needs to input multiple sequence alignment (MSA) 
to predict the coordinates of each target residue. 
 
Methods 

Training data: Cerebra was trained on subset of CATH S35 v4.21, then we searched their 
homologous sequences to build MSA as model input. 

Structure prediction: This model could predict the CA atoms coordinates of each 
residue. We trained the model by minimizing the difference between the predicted coordinates 
and the real coordinates. 

Generate CASP15 target sequence MSA: we searched the following databases during 
CASP15 to obtain related sequences: UniRef302, UniRef902, BFD3, MGnify4, etc. 

Refinement: The CA atoms from our models were fixed using Modeller5 and PDBFixer6, 
and then relaxed using OpenMM6 minimization function with Amber ff14SB and customized 
restrained gradient descent method. 
 
Availability 
Cerebra is still under development. Once completed, we will open the source code and related 
data. 
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Our protein complex structure prediction and scoring is based on an optimized protein docking 
potential (ODP) derived using a single-layer perceptron and docking decoys.  
 
Methods 

Docking Potential for complex structure scoring. ODP potential is an upgraded version 
of neural network-based distance-dependent atom-pair potential for protein docking as described 
in ref1. The potential was trained on a large protein complex dataset from ref2. To train the neural 
network, 4400 decoys of even distance(iRMSD) distribution generated by in-house docking 
decoy generation program were used for each of the 500 protein complex training set.  

Decoys were computed applying to one protein of the native protein complex random 
rotations (with rotation axes going through the interface centroid) and subsequent translations. 
We considered these artificially generated protein-pair structures to be valid decoys only, if the 
fraction of atom-pair contacts (maximum distance between atoms 3.8Å) between atoms 
belonging to different proteins (ignoring hydrogen atoms) is above 50% relative to the contacts 
that are present in the corresponding native complex structure. We also checked for atom clashes 
occurring in these decoys, which we defined for atom pairs, which are closer than 2.4Å. The 
maximum number of allowed atom clashes in a decoy was set to the number of clashes found in 
the native complex geometry plus four additional clashes. 

We use atom-pair distance distributions to evaluate docking geometries. The neural 
network input information uses type specific atom-pairs (with atoms belong to different proteins 
of the complex), which are assigned to different distance classes (bins). The complete distance 
range that we take into account extends from 0.0 (although distances close to zero do not occur) 
to 10Åand is divided into 16 distance bins. 

As a target function we used Fnat which is the fraction of native interfacial contacts 
preserved in the decoy. 

 
Assembly prediction. For each assembly target, the models of the individual subunits 

were taken from the af2-multimer, af2-standard and BAKER CASP-hosted servers. 
Free docking of these subunit CASP server models was done by ZDOCK3.0 for 

homodimer or hetero-complexes and SymmDock3 for homomultimers. The predicted quaternary 
structures were then ranked for submission using the ODP potential. Furthermore, the 
information from assembly templates (if any) along with visual inspection was used for some 
targets in order to manually filter the modelled complexes. 
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Multimer structure model quality assessment. For each predicted quaternary structure 
model, ODP score was calculated and normalized to estimate the overall fold accuracy and 
overall interface accuracy. 
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3. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J. (2005) PatchDock and 

SymmDock: servers for rigid and symmetric docking, Nucleic Acids Res., 33(Web 
Server issue), W363–W367. 
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We participated in the CASP15 tertiary structure prediction experiment as a human group 
"ChaePred", which is based on our recently developed deep learning based single-model quality 
assessment method DeepEMA. 
 
Methods 
 
CASP15 server models were evaluated by single-model quality assessment method DeepEMA, 
and the top model was selected.  

We trained our method on the CASP7-CASP10 datasets. Prior to training, we filtered out 
models with the same GDT-TS scores for a given targets as well as low quality models(lDDT 
score1<0.3). In total, the training dataset includes 33,000 models for 435 target proteins. 

From each 3D model, we derived the following residue-specific features: 1) one-hot 
encoded secondary structure(3-state), 2) relative solvent accessibility (RSA) calculated by DSSP, 
3) sine and cosine of backbone torsion angles, 4) residue-residue contact environment(the 
numbers of 20 residue types contacting with a given residue). 

One-dimensional sequence features include one-hot encoded predicted secondary 
structure and relative solvent accessibility from SSpro2 and one-hot encoded amino acid 
sequence. 

For statistical potential terms, we used GOAP3 and two versions of DOOP4 potential, 
DOOP-CB which incorporates main-chain atoms and CB atoms, and DOOP-CBCG which 
incorporates main-chain atoms, CB, and CG atoms. Potential features include per-residue 
DOOP-CB/DOOP-CBCG potentials, per-residue GOAP potential(in-house implemented), 
DOOP-CB and GOAP potential averaged on residues within 8Å sphere of a specific residue. 

For each protein sequence, we run PSI-BLAST5 against UniRef50 to construct multiple 
sequence alignment(MSA)(e-value 0.001). If there were still not enough sequences in the MSA, 
sequences were searched again using e-value cutoff of 100. 

Distance distributions were predicted by trRosetta6 from the MSA, and three(2-8Å, 8-
12Å and 12-16Å) distance distribution probabilities were derived from trRosetta prediction. For 
each residue, these three distance distribution probabilities for residue-pairs within 
corresponding distance bin were summed up and used as distance features. 
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Our deep neural network consists of five 1D convolutional blocks which are composed of a 
convolutional layer with 8 filters and kernel size of 3 with varying dilation rates(1, 2, 4, 8 and 1), 
a batch normalization layer, an elu layer, a dropout layer with a dropout rate at 0.4. We trained 
this network using ADAM optimizer with the learning rate of 0.001 and 10-4 penalty for the L2 
regularization. The 1D-CNN was trained to predict the local lDDT scores of residues. The loss of 
our deep neural network model is the MSE(Mean Square Error) between predicted local quality 
and its ground truth(1DDT score). The global accuracy score of a model is derived by averaging 
the predicted local lDDT scores of residues. 
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We used three different methods, Vfold-Pipeline1, IsRNA2,3,4 and RNAJP5, to generate RNA 3D 
structures from the sequence. If structural templates for some motifs in the RNA targets were 
found in the current PDB database, they would be constrained in the sampling process in our 
methods. 
 
Methods 

Vfold-Pipeline1: Vfold-Pipeline is a pipeline connecting 2D and 3D structure predictions 
from the sequence, where 2D structures are predicted using the Vfold2D6 method combined with 
sequence analysis, and 3D structures are predicted using the Vfold3D and VfoldLA methods. 
Vfold2D is a physics-based model that predicts 2D structures based on the free energies of 
mismatched base pairs and various RNA loop motifs, including pseudoknots. Vfold3D and 
VfoldLA methods are based on the assembly of A-form helices with loop and/or motif templates, 
extracted from the known RNA 3D structures. Up to five structures are obtained through this 
pipeline, and an energy-minimization is performed for structure refinement. 

 IsRNA2,3,4: IsRNA is a coarse-grained model for RNA 3D structure prediction for a given 
2D structure and sequence. To efficiently sample the conformational space, it performs replica 
exchange molecular dynamics simulations with the coarse-grained force field built from an 
iterative simulated reference state approach to decipher the correlations between different 
structural parameters. The low-energy structures sampled in the simulations are clustered into 
five groups and the centroid structures in the clusters are chosen as the predicted structures. The 
all-atom structures are rebuilt based on the coarse-grained structures and an energy-minimization 
process is performed for structure refinement. 

 RNAJP5: RNAJP is a nucleotide- and helix-level coarse-grained model for RNA 3D 
structure prediction with a primary focus on junction structures. Given the RNA 2D structure, it 
performs global sampling of the 3D arrangements of the helices using molecular dynamics 
simulations with explicit consideration of non-canonical base pairing and base stacking 
interactions as well as long-range loop-loop interactions. It also clusters the low-energy 
structures sampled in the simulations into five groups, and then rebuilds the all-atom structures, 
and finally performs an energy-minimization structure refinement. 
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Model ranking: When we had more than five structural candidates by the above three 3D 
structure prediction methods, we ranked them by calculating the AMBER energies in implicit 
solvent for the RNA structures after energy minimization.  

  

 
Availability 
 
Vfold2D is available at http://rna.physics.missouri.edu/vfold2D/index.html 
Vfold-Pipeline is available at http://rna.physics.missouri.edu/vfoldPipeline/index.html 
IsRNA is available at http://rna.physics.missouri.edu/IsRNA/index.html 
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In the latest CASP-CAPRI round, our group generated models of protein assemblies using a 
combination of Alphafold-Multimer (AFM), Alphafold2 (AF2), and docking using the ClusPro 
webserver.1-3 Here, we will describe the methods used for both generating and ranking 
ensembles of protein—protein complexes. For ligand modeling we have used ClusPro LigTBM 
approach.4 

 

Methods 

Assembly Prediction 

For assembly prediction, our group utilized a two-stage methodology in which we first generate 
an ensemble of initial models, which are subsequently provided to Alphafold-Multimer (AFM) 
as templates for generating “refined” structures of the target complex. Briefly, the protocols used 
for initial model generation are described below: 

Docking Alphafold2 Models with Cluspro (AF2+ClusPro): The structure of each chain 
in the assembly is independently predicted using the pTM parameter set of AF2. These single-
chain predictions are then ranked by the predicted LDDT (pLDDT). The top ranked model for 
each chain is selected, and low confidence residues (pLDDT < 0.50) are cut from the termini. 
The trimmed models are then docked using the ClusPro web server.3 All models generated using 
the “Electrostatic-favored” coefficient set are downloaded and retained for further processing. 
For antibody and nanobody targets, ClusPro was run in antibody mode.5 For homomeric 
complexes additional models were generated using ClusPro’s multimer docking mode.  

Multimer Prediction with Templates (AFM-Temp): An unmodified version of AFM was 
used to generate 25 models of the target complex. For template searching, the maximum 
template release date was set to May 14th, 2022.  

Multimer Prediction without Templates (AFM-NoTemp): The MMseqs2 API was used 
to generate multiple sequence alignments (MSAs) for each subunit of the complex.6 The pTM 
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parameter set was then used to generate 5 models of the target assembly. No templates were used 
in the generation of these models. 

Template-based modeling with ClusPro-TBM (TBM): The ClusPro template-based 
modeling functionality was used to generate templates for a given target-complex. The 
sequences and stoichiometry of the assembly are given as inputs. Templates were found using a 
local installation of HHPred, from which the HHblits and HHsearch commands were used to 
search the uniclust30 and pdb100 databases.7-9 Search results were for hits with > 20% 
probability and > 20% query sequence coverage. If the stoichiometry of a template matches that 
of the target, the template is retained and used for model generation in the next step.  

 The models generated using each of the aforementioned approaches are then refined with 
Alphafold-Multimer. The refinement stage is dual purpose, as it can not only improve the quality 
of template models, but also produce a confidence score for each model that can be used for 
ranking. For refinement, MSAs were prepared for each subunit using the AFMMseqs2 API.6 

Ligand Docking 

We applied the template-based small-molecule docking algorithm ClusPro LigTBM to build the 
model of the ligand. If no global template was found, LigTBM was extended to consider local 
templates of binding pockets in PDB structures containing fragments of the candidate metabolite. 
Instead of searching for fully homologous receptor-ligand pairs,  our  approach identifies ligand 
substructures and matching binding pockets on the target protein surface. 

 

Availability 

ClusPro and ClusPro LigTBM are available as webservers that are free for academic and 
governmental use. 
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In CASP15, we participated the category of ligand binding prediction. The template-based 
docking method and AI-based scoring function are used to predict the binding mode of small 
molecules or metal ions. The template-based docking method adopts the align algorithm 
developed by our group, which can accurately identify templates from the structure database. 

Method 
Template searching 

In previous work, a sequence-based template search strategy was applied for protein-protein 
docking problem 1. Here for ligand binding prediction, a structure-based 3D align algorithm is 
developed by our group and used for both of pocket template searching and ligand alignment. 
For pocket template searching, the CA atoms in protein pocket are set as nodes. For ligand 
alignment, all atoms in ligand are set as nodes. A set of fully adjacent nodes is defined as a 
clique. Then, matching is formulated as a graph theoretical problem, which attempts to find the 
maximum clique between the request structure and the template structure. We use the exhaustive 
matching algorithm as DOCK program 2 to search the most similar template and generate 
orientation for alignment.  

Binding pose prediction 

With all the complex templates found by the 3D align algorithm, the macro-molecule structures 
of potential templates are extracted and compared with the target structure provided by AF2 or 
disclosed by CASP organizing committee. In some of the target systems, complex templates with 
high similarity score are found, such as H1114, R1117, H1135, R1136, T1146, T1127, etc. For 
those ligands identical to ligands in complex template, structure-based alignment is directly used 
to get the ligand position in the predicted target. For example, the structure of R1117 and metal 
ions for H1114 are obtained by this way. For those ligands chemically similar with ligands in 
complex templates, template guided docking protocol are used to obtain the target-ligand 
complex structure. For target systems with no appreciate complex templates, such as T1181 and 
T1187, traditional docking is performed by using glide 3.  

Pose ranking by AI score 

An AI-based scoring is applied to evaluate the results. We use Convolutional Neural Network 
(CNN) 4 to train the scoring function for protein small molecule complex prediction, and the 
final docking poses are evaluated and ranked by this scoring function. 

mailto:schang@jsut.edu.cn
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ColabFold-AlphaFold2 is an enhanced implementation of the accurate protein structure 
prediction method AlphaFold2. While its main goal was to build upon AlphaFold2 to make it 
widely accessible, we also implemented a series of performance enhancements: Besides 
modifications to reduce model compilation time and runtime, we also incorporate the fast MSA 
search and generation method MMseqs2. For this report, we limit our description, as the details 
have previously been published1. 

 

Methods 

For monomer prediction, we used the AlphaFold2-ptm model2 and for multimeric protein 
structure prediction we used the AlphaFold-multimer-v2 model3. The MSA was generated 
following the protocol described in 1. The sequence and template databases we used were 
UniRef100 2103 and 2202 (switched to 2202 from target T1119 on), ColabFoldDB 202108, and 
PDB70 220313. For the AlphaFold runs we used 12 recycles without early-stopping and 3 
ensembles. For extremely large oligomeric proteins, we predicted a maximum number of 
components that could fit into memory and submitted these for the automated submission. 
Additional, manual parameter tweaks were required for these large models to fit them into 
system memory (reduced recycles, ensembles, etc.) For the manual-intervention submission 
(colabfold_human), we used symmetry operations to generate the entire complex. More 
specifically, we used the make_symmdef_file.pl script from Rosetta5. The AlphaFold predictions 
were ranked using the predicted confidence metrics. For monomers, this was the predicted 
LDDT (pLDDT) and for multimers the predicted interface TMscore (ipTM).  

 

Results 

Mean pLDDT of the non-cancelled targets is 80.85. (1st Quantile: 80.10, Median: 85.21, 3rd 
Quantile 91.98). Mean Neff value (see HH-suite Userguide section “How is the MSA diversity 
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Neff calculated?”) for the generated MSA for all 132 chains is 4.217 (1st Quantile: 2.475, 
Median: 4.350, 3rd Quantile: 5.925). Mean ipTM score of the 20 hetro-oligomeric complexes is 
73.10 (1st Quantile: 63.15, Median: 74.35, 3rd Quantile: 83.35). Final results are not yet known. 

 

Availability 

ColabFold is free open source software that can be installed locally from 
https://github.com/sokrypton/ColabFold or used online with a web browser through Google 
Colab at https://colabfold.com. The ColabFold databases can be found at 
https://colabfold.mmseqs.com. Submitted predictions, including MSAs and confidence metrics, 
were uploaded immediately after prediction to CASP15 to 
https://wwwuser.gwdg.de/~mmirdit/casp15. 
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CoMMiT (Comparative Modeling of RNAs by Multi-Threading), is a fully automated template-
based RNA tertiary structure prediction program that uses deep learning-predicted distances for 
template-based modeling of RNAs. 
 
Methods 
CoMMiT performs sequence and secondary structure alignment between an input RNA sequence 
and template structures in the PDB database using five threading methods: RATeS, MapAlignG, 
LocARNA 1, LaRA 2 and Foldalign 3. Among these five methods, RATeS and MapAlignG are 
threading methods developed in-house. RATeS aligns both sequence and secondary structure 
while MapAlignG aligns secondary structure only. Structure fragments derived from templates 
are then assembled into a full-length structure by simulated annealing Monte Carlo (SAMC) 
simulation. The simulation is guided by a hybrid energy function consisting of template-derived 
distance restraints, statistical energy terms 4, secondary structure formation terms defined by 
CSSR 5 and nucleotide-nucleotide distance constraints predicted by a deep residual convolutional 
neural network (ResNet) using features derived from the input sequence. Conformations 
generated by the simulation are grouped by the SPICKER density-based clustering algorithm6 
and the final structure model is derived from the centroid of the largest cluster. 

1. Will, S., Joshi, T., Hofacker, I. L., Stadler, P. F., & Backofen, R. (2012). LocARNA-P: 
accurate boundary prediction and improved detection of structural RNAs. RNA, 18(5), 900-
914. 

2. Winkler, J., Urgese, G., Ficarra, E., & Reinert, K. (2022). LaRA 2: parallel and vectorized 
program for sequence–structure alignment of RNA sequences. BMC bioinform, 23(1), 1-22. 

3. Sundfeld, D., Havgaard, J. H., de Melo, A. C., & Gorodkin, J. (2016). Foldalign 2.5: 
multithreaded implementation for pairwise structural RNA alignment. Bioinformatics, 32(8), 
1238-1240. 

4. Zhang, T., Hu, G., Yang, Y., Wang, J., & Zhou, Y. (2020). All-atom knowledge-based 
potential for RNA structure discrimination based on the distance-scaled finite ideal-gas 
reference state. Journal Comput Biol, 27(6), 856-867. 
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In CASP15, we assessed our docking and scoring techniques specifically developed for small-
molecule docking. These include an in-house docking engine VinaCPL1 and four types of 
docking scoring functions Convex-PL2, Convex-PLR 1, KORP-PLw, and KORP-PL3.  

Methods 

We have submitted predictions for H1114, T1105v1, T1118, T1118v1, T1124, T1146, and 
T1152 targets. 

We obtained protein models from AlphaFold2 and BAKER-SERVER server predictions. 
Ideal point-group symmetry was set in targets H1114, T1124, and T1152 using the AnAnaS 
tool4-5. For two targets, T1105 and T1118/T1118v1, we simulated continuous structural 
heterogeneity of the binding pocket using nonlinear principal component analysis with the 
NOLB tool6.   

Depending on the target, binding pockets were predicted with Fpocket7, using the 
UniProt8annotations, or from homology to the known complexes from the PDB. 3D structures of 
carbohydrate ligands in T1146 and T1152 were obtained from the PDB. In T1124, we have used 
both RDKit9 and PDB complex 7clf as a source of ligand structures. Other ligands were 
generated with RDKit. For the macrocycle in T1118, we clustered 1,000 of the RDKit’s 
conformations10. For all targets, we then ran docking of all starting ligand conformations to all 
available pockets with AutoDock Vina11 and in-house VinaCPL1 and re-scored the docking 
poses with Convex-PL2 (Convex-PL team), Convex-PLR 1 (Convex-PL-R team), KORP-PLw 3 
(Grudinin team) and KORP-PL3 (KORP-PL team). We then clustered the ligand poses of each 
model with 1 or 2 Å RMSD cutoff. Finally, we submitted the top-5 models based on the ligand 
docking score, keeping top-5 ligand poses per model. 

 

Availability  

Our methods are available on our website at https://team.inria.fr/nano-d/software/. 
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Coqualia is a hybrid multi-model deep learning network. The whole architecture uses 
metagenomic data to obtain multi-sequence alignments (MSA) with different searching methods. 
According to different training configurations, a total of 15 sets of parameters were obtained. 
Finally, we leverage averaged predicted local distance distribution test (pLDDT) value to rank 
multiple predictions. 

Methods 

The whole model architecture includes data processing, feature embedder, evoformer, structure 
module and structure refinement. In data processing part, we used GPU accelerated techniques to 
build MSA database for NCBI and Mgnify. In feature Embedder part, we search MSA from 
above metagenomic data and build different features with different methods. In evoformer and 

structure module part, we used alphafold21 architecture. For all self-attention layers, we used 
dynamic axial parallelism technique to save GPU memory and accelerate forwarding and 
backpropagation speed. In structure refinement, we used OPENMM2 with CUDA platform. We 
got several hundred models for each target with different MSA features and models and rank 
them by averaged pLDDT, then we select top 5. 

Results 

For most of CASP targets, we can get reliable predictions based on pLDDT values.  

Availability 

Coming soon. 
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We report on the improvement of our original bioinformatics platform oriented to predict the 3D 
and 4D structure of proteins and RNA’s1,2 that has been developed by our group to include 
machine learning based algorithms. While the hitherto methodologies developed by our group 
enable the prediction of protein folding patterns as well as local substructures and domains, 
prediction of long-range interactions among amino acids can be improved by exploiting 
structural information in protein structural knowledge bases. In past CASP rounds we have 
combined classical homology methods with our genuine method based on spectral analysis of the 
sequences of the amino acids represented by their physicochemical properties. While this 
methodology assists in determining the overall putative folding family of a target sequence, 
amino acid and atomic long-range interactions are critical in predicting the close to native 
structure. On the other hand, CASP14 results produced by Alpha-Fold3 have been highly 
accurate owing its success to a sophisticated treatment of the stereo-chemical features of 
proteins. Consequently, consideration of this aspect led us to introduce to a limited extent Alpha-
Fold predicted structures in the CASP15. 

 This has been especially the case in the prediction of protein quaternary structure or 
protein complexes. Thus, when computationally possible, besides the structures predicted by our 
original procedure, Alpha-Fold predicted structures were also used to predict these higher 
structures. Energy minimization and molecular dynamics to correct ill placed atoms were used to 
rank the final structures. The process has been handled using our system for the assessment of 
complex structures MIAX4, the main characteristics of which consist on the prediction of binding 
sites and a new protocol for the evaluation of the plausibility of contact regions.  

 
Method 
The multi-platform automatic system proposed starts with the selection of the best homologs for 
the sequence in question with orthodox methodologies. When no homologs are found for the 
target, the process shifts to the spectral analysis of the sequences and homologs from this point 
of view are output that are analysed in a piece-wise manner with the target sequence. Then the 
required 3D sequence for the target structure is built by the platform. Loop and structural 
stability analysis is then carried out with our system for protein stability analysis. Molecular 
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dynamics and other minimization processes are then applied to the most plausible candidate 
structures which are then ranked according to the energetic characteristics. 

On the other hand, protein assemblies are predicted using the system MIAX3 for protein 
interaction assessment, which consists on protein interaction region prediction and docking of 
the structures. For hetero multimer structure prediction, prediction of the binding sites was 
performed based on a new way to assess the order of interaction of the subunits4. 

 
1. Del Carpio, C. A. & Yoshimori, A. (2002). Fully automated protein tertiary structure 
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5. Del Carpio, C. A., Ichiishi, E., Yoshimori, A. & Yoshikawa, T. (2002). A new paradigm for 
modeling biomacromolecular interactions and complex formation in condensed phases. 
Proteins: Structure, Function, and Genetics 48, 696-732. 

  



59 

ddquest 

Manual trial and error using AlphaFold 2 and conventional ligand docking 

Kazuki Yamamoto1, 2, Yoshitaka Moriwaki1, Motoyuki Hattori3,  
Keisuke Yanagisawa2, and Masahito Ohue2 

1 – The University of Tokyo, 2 – Tokyo Institute of Technology, 3 – Fudan University 

kazuki@ric.u-tokyo.ac.jp 

Key: Auto:N; CASP_serv:N; Templ:Y; MSA:Y.MetaG; Fragm:N; Cont:Y; Dist:Y; Tors:Y; 
DeepL:Y; EMA:Y; MD:N 

To test whether predicted structures generated by AlphaFold21 (AF2) would be useful for ligand 
docking, we worked on the ligand prediction targets. Basically, the predictions were made using 
conventional methods and target-specific tricks. 

 

Methods 

The predictions were made according to the flow chart in Figure 1. 

 

Figure 1. Flow chart of modeling process. 

Protein modeling: AF2 was executed via localcolabfold2-4. When needed, M-ZDOCK5 
was used for symmetrical assembly. 
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Ligand docking: Small molecule ligands were docked using conventional docking 

software (Molegro Virtual Docker 7.06). When needed, manual positioning was performed using 

PyMOL7. 

Molecular Dynamics: For H1135, residues 63–77, 111–116, and 156–165 are estimated 
to be candidate regions to bind potassium ions according to insights of a structural biologist (M. 

Hattori). A 10-ns production run with AMBER 228 were then conducted for the 12-mer H1135 
in complex with 27 K+ complex to evaluate their stability. (The ff14SB force field and ion 
parameters created by Joung and Cheatham were used for the protein and the K+ ion, 
respectively.) After the simulation, stable K+ ions bound to the protein were submitted as the 
answer. 

 

Results 

H1114: A4 was modelled reasonably by AF2. B2C2 was modelled reasonably by AF2 and could 
be symmetrically assembled by M-ZDOCK. A4 + (B2C2)x4 could be assembled manually. 
Ligand sites could not be identified. (incomplete) 

H1135: A3B1 was modelled by AF2. Then M-ZDOCK to assemble 12-mer. K+ binding site was 
identified through visual inspection by a structural biologist and optimized by molecular 
dynamics. 

T1105: Removed His-tag. Then AF2. Ligand docked reasonably. 

T1118: Iron ions substituted with bridging carbons. Then docked. After docking, iron ions were 
manually positioned. 

T1124: Docked to AF2 model. A docking pose appropriate for enzyme reaction was selected 
manually. 

T1127: AF2, then docking. 

T1146: AF2. GlcNAc-MurNAc was docked. Then the ligand was separated as two GlcNAcs 
manually. 

T1152: AF2. The ligand was placed using template docking, aligning 5C8Q.PDB. 

T1158: AF2, then docking. The open/closed conformations of the protein were controlled by 
removing long unstructured interdomain region. The ligand v2 was placed aligning LTC4 in 
5UJA.PDB. In v4, AF2 model was morphed to 6S7P.PDB, then the ligands were placed aligning 
the ligands in 6S7P.pdb. 

T1170: AF2. The ligand was aligned from 1J7K.PDB. 

T1186: AF2. The ligand was placed aligning 5KMW.PDB. 
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The RNA tertiary structure prediction for the DF_RNA group in CASP15 is based on the 
DeepFoldRNA pipeline 1, which uses deep self-attention networks to predict inter-residue 
distance and orientation maps as well as backbone pseudo-torsion angles for a query sequence, 
where full-length structure models are generated through L-BFGS optimization of the backbone 
and base torsion angles using a potential constructed from the predicted restraints. The pipeline 
consists of 3 consecutive steps. First, starting from the query sequence, a set of multiple 
sequence alignments (MSAs) are created by rMSA 2, which iteratively searches the query 
through the nt3, RNAcentral4, and Rfam5 sequence databases using blastn6, nhmmer7, and 
CMsearch 7. Additionally, PETfold8 is used to predict the secondary structure information from 
the MSAs. 

In the second step, the generated MSAs and secondary structure predictions are used as 
the input to the deep self-attention networks to predict an ensemble of restraints, including 
pairwise distance and orientation maps that consider the interactions between multiple sets of 
backbone and base atoms as well as the backbone pseudo-torsion angles. Briefly, three 
embeddings are used by the network: the MSA, pair, and sequence embeddings. The MSA 
embedding captures the evolutionary information contained in the alignment of homologous 
sequences, the pair embedding captures the pairwise spatial relationships between each nucleic 
acid, and the sequence embedding captures the network’s representation of the query sequence. 
The MSA embedding is first initialized from the one-hot encoded MSA and processed by 
multiple rounds of row-wise and column-wise self-attention, while the pair embedding is 
initialized from the predicted secondary structure and paired sequence information and is 
processed using a triangular self-attention scheme9. Interaction is encouraged between the two 
representations by biasing the MSA self-attention using the pair embedding and by updating the 
pair embedding using the outer product mean of the MSA embedding. Next, the sequence 
embedding is extracted from the first row in the processed MSA embedding and is similarly 
refined using multiple self-attention layers. The binned pairwise distance and orientation maps 
are predicted from a linear projection of the pair embedding, while the binned backbone pseudo-
torsion angles are predicted from the sequence embedding. Lastly, the network generates 
predicted error maps from the final pair representation, which are used to determine the optimal 

mailto:robpearc@umich.edu
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ensemble weights for the restraint sets generated by the different network variants and parameter 
files. 

In the third step, full-length structure models are created using L-BFGS optimization 
based on a potential derived from the predicted restraints. The potential is constructed by taking 
the negative log-likelihood of the binned probability distributions for each restraint and made 
continuously differentiable by fitting a smooth curve through the histogram distributions using 
cubic spline interpolation. The optimization is carried out on the backbone pseudo-torsion angles 
(η and θ) and the base torsion (χ). A pool of models is generated by taking different restraint 
ensembles, where the model with the lowest predicted error is selected as the first model and 
clustering is used to introduce conformational diversity for models 2-5 by selecting the largest 
cluster centers as the representative models. Lastly, the full-atomic structures are refined using 
SimRNA10 and QRNAS11 with restraints on the backbone atom positions. The modeling 
procedure is fully automated. 

 
Availability 
https://zhanggroup.org/DeepFoldRNA/  
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For CASP15 experiment, we have developed a new pipeline, DeepFold based on AlphaFold2 
(AF2)1, focusing on the more precise backbone and the sidechain prediction. We modified loss 
functions in AF2 and introduced additional loss functions for the sidechain confidence and the 
secondary structure prediction. We have trained the DeepFold models on a training dataset built 
from PDB with 40% sequence identity level using sequence clustering. We updated the 
MSA/template features by searching the sequence databases and re-aligning (by CRFalign2) 
between the target and the templates. Protein 3D structures were generated with DeepFold 
network models (DFolding-server), followed by the refinement using the MD simulation 
protocol (DFolding-refine) and the re-optimization using the conformational space annealing3,4 
(DFolding). 

Loss functions: Torsion angle loss in AF2 was modified, improving the reliability of 
sidechain prediction by providing sequential conditioning. In addition, we introduced a new 
sidechain confidence measure to predict the reliability of sidechains. FAPE (Frame Aligned 
Point Error) loss was modified by giving distance-dependent weights to residue pairs following 
the predicted distogram information (closer residues are emphasized). Finally, a secondary 
structure loss was introduced, which measures the cross-entropy loss between the 8-state 
secondary structure prediction and its ground truth. 

Dataset and training: The training dataset containing about 31k (20k for fine-tuning) 
protein chains was built by CD-HIT sequence clustering using the latest PDB data at 40% 
sequence identity. For training, we cropped the input sequences to 256 and 386 residue sizes as 
in AF2. The 256-crop dataset was used for initial training, and the 386-crop was used for fine-
tuning. We built a training system using uni-fold5 (a trainable modification of AF2) with the 
following protocols: all models were trained from AF2 parameters. The parameters were 
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optimized using the new datasets and the modified loss functions. In total, twelve different 
models were generated. Six were trained in the transfer-learning style, utilizing the fixed AF2 
representation by freezing the evoformer block and updating the parameters only in the structure-
module. The remaining six were trained without freezing. 

MSA and template feature processing: We prepared additional features by searching 
databases. For MSA features, we used HHpred6, Kalign7 and HHblits8 outputs to build 4 
different alignments. Then, we replaced template features by using CRFalign method, which is 
based on conditional random fields for searching best templates, and the optimal alignments 
between the target sequence and the templates. 

Ranking the prediction outputs: DeepFold pipeline generates about 50 different protein 
structures for each target sequence. The generated structures were clustered by the hierarchical 
clustering method based on the TM-score and the five best structures in terms of the plddt score. 
In the case when plddt is larger than 0.85, the weighted average of the plddt and the sidechain 
confidence score in each cluster was used for selecting models for submission as DFolding-
server. 

Multimer prediction: Multimer structures were generated by AF2Complex9,10 using non-
paired MSA between protein chains for the features generated by the DeepFold pipeline. For 
large complex targets, we generated sub-complexes by domains and combined them using the 
Modeller program11. The multimer models were clustered into five based on interface RMSD, 
and we selected the model with the highest interface score in each cluster. 

Refinement: Selected five models were further refined by restrained molecular dynamics 
(MD) simulations. We applied restraint forces to the backbone to prevent extreme 
conformational change, which also reduced the simulation time. Furthermore, we used pairwise 
distance restraints potential between alpha carbons giving the force constant in proportion to the 
plddt of the structure. The MD trajectory was averaged, and the structure was energy-minimized 
for submission as DFolding-refine. 

DFolding as a human prediction protocol: we have applied the global optimization 
method of conformational space annealing (CSA)3,4 to the full atom force field with distance 
restraints and sidechain torsion restraints generated by the DeepFold pipeline. 
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Availability 

A github repository for DeepFold is getting ready and will be opened later. 
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We have recently developed Deep Local Analysis (DLA) - Ranker, a new deep learning 
framework for discriminating near-native complex conformations from incorrect ones by 

exploiting local 3D environments around interfacial residues1. DLA-Ranker applies 3D 
convolutions to interfaces represented as sets of locally oriented cubic volumetric maps. In 
CASP15, we have set up a fully automated server based on DLA-Ranker for assessing the 
quality of inter-subunit interfaces in multimeric complexes.  

 

Methods 

Starting from a candidate conformation, we detected its interfacial residues using FreeSASA 

algorithm2 (with a probe radius of 1.4 Å) as those displaying a change in solvent accessibility 
between the free (isolated) partners and the complex. We associated each interfacial atom with a 
feature vector of length 6 one-hot encoding its chemical element (O,C,N or S) and the partner to 

which it belonged (either “receptor” or “ligand”)1. We computed a density function from the 
atomic 3D coordinates and feature vectors, and we mapped it to grids of 24x24x24 voxels of side 

0.8 Å. To build the maps, we adapted the method proposed in Ornate3. Each map is centered on 
an interfacial residue and it is oriented by defining a local frame based on the common chemical 
scaffold of amino acid residues in proteins. Thanks to this local frame definition, the map not 
only is invariant to the candidate conformation’s initial orientation but also provides information 
about the atoms and residues relative orientations.  

DLA-Ranker takes as input a cubic volumetric map and outputs a score between 0 and 1 
reflecting the probability of finding this local 3D environment in a near-native complex 

conformation1. The DLA-Ranker architecture comprises three 3D convolutional layers, a max 
pooling layer and three fully connected layers. To avoid overfitting, we used 40%, 20% and 10% 
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mailto:yasser.mohseni_behbahani@sorbonne-universite.fr
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dropout regularization on the input, first and second layers of the fully connected subnetwork, 
respectively. The loss function is the binary cross-entropy measuring the difference between the 
probability distribution of the predicted output and the given label (0 or 1). 

Depending on the location of the residues at the interface, their geometrical and physico-
chemical environments are expected to be very different. For instance, the map computed for a 
residue deeply buried in the interface will be much more dense than that computed for a partially 
solvent-exposed residue at the rim. This motivated us to explicitly give some information to the 
network about the location of the input residue at the interface. To do so, we exploited the 

support-core-rim (S-C-R) classification proposed by Levy4. We encoded the input residue’s 
structural class (either S, C, or R) as a one-hot vector which we concatenated to the embedding 

derived from the convolutional layers1. 

 

Results 

For the CASP15 challenge, we trained DLA-Ranker on 449,158 candidate complex 

conformations generated by HADDOCK5 for 142 dimers from the Docking Benchmark version 
5 (BM5)6. On average, each target complex has ~230 near-native conformations and ~2,932 

incorrect ones, according to CAPRI criteria7. In case of multimeric complexes comprising more 
than two subunits, we defined an interface for each subunit. More precisely, in the cubic 
volumetric map centered on residue i from subunit j, we labeled the atoms belonging to subunit j 
as  “receptor” and the atoms from any other subunit as “ligand”. We did not consider interfaces 
with less than 5 residues. For each candidate complex conformation, we submitted to CASP the 
scores computed by DLA-Ranker for the interfacial residues we detected in the complex, and 
also a global interface quality score obtained by averaging over all per-residue scores.  

 

Availability 

The software and model parameters are available at: http://gitlab.lcqb.upmc.fr/dla-ranker/DLA-
Ranker/tree/CASP15. DLA-Ranker can be run on Linux, MacOS, and Windows. We recommend 
running it on GPUs.  
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In CASP15, a new version of the DMPfold method1,2 for tertiary structure prediction was used. 
DMPfold3 is aimed at being as simple as possible and using only standard machine learning 
algorithms to achieve a competitive level of protein structure prediction accuracy. The idea being 
to try to explore end-to-end prediction methods that do not employ extensive domain-specific 
engineering, hopefully whilst still producing good enough results. This will offer a much lower 
bar of entry to exploring these kinds of models (DMPfold3 is only a few hundred lines of code), 
and also allows generic technological improvements in language models, such as new 
transformer models, to be quickly tested in the protein structure domain. 

Methods 
Multiple sequence alignments (MSAs) were built using searches against the latest UniRef30 
databases available at the time of target release. Where this retrieved fewer than 1000 hits, 
deeper MSAs were built using searches of EBI MGnify, NCBI Transcriptome shotgun assembly 
(TSA), MetaEuk and IMG sequence databases, each time building a list of putative hits and 
using these as a custom database for a further search.  

The MSA is used as input to a stack of axial attention blocks with the coordinates 
generated simply by projection from the embedding dimension (384-D) down to 3-D (alpha 
carbon coordinates). No final structure module or explicit pairwise (“distogram”) representation 
is used in the model. As DMPfold is aimed solely at tertiary structure prediction, for multimeric 
CASP targets, the initial single chain C-alpha trace coordinates from DMPfold3 were used as 
input templates for AlphaFold2-Multimer3 modelling. 

Results 
A total of 111 models were submitted for 95 targets.  

Availability 
DMPfold3 will be made available on the PSIPRED GitHub page 
(https://www.github.com/psipred) under a permissive license. 
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73 

2. Kandathil,S.M. et al. (2022). Ultrafast end-to-end protein structure prediction enables high-
throughput exploration of uncharacterised proteins. PNAS 119(4) e2113348119. 

3. Evans, R. et al. (2021). Protein complex prediction with AlphaFold-Multimer. bioRxiv 
2021.10.04.463034. 

  



74 

Elofsson, NBIS-AF2-standard, NBIS-AF2-multimer 

Elofsson group using AlphaFold2 and MolPC in CASP15 

Arne Elofsson1, Patrick Bryant1, Petras Kundrotas1, Aditi Shenoy1, Wensi Zhu1,  
Gabrielle Pozzatti1, Claudio Mirabello2 

1 - Dep of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University;  
2 - Dept of Physics, Chemistry and Biology, NBIS (National Bioinformatics Infrastructure Sweden), Science for Life 

Laboratory, Linköping University 

arne@bioinfo.se 

Key: Auto:N; CASP_serv:Y; Templ:Y; MSA:Y. MetaG;Y Fragm:N; Cont:Y; Dist:Y; Tors:Y; 
DeepL:Y; EMA:N; MD:N 

 

We (group Elofsson #320) have based our predictions on the default AlphaFold pipelines 
(monomer and multimer) submitted by our server as groups NBIS-AF2-standard (#270) and 
NBIS-AF2-multimer (#390). The predictions were manually examined. We deemed the server 
prediction accurate and submitted those for 62/81 targets. For four targets, we used 
metagenomics sequences to provide better alignments (we tried in a few more cases, but there it 
did not seem to help). We ran AlphaFold2 with extra recycles for five targets, and for five targets 
(one overlapping with the recycles), we performed a manual ranking of the models. Finally, for 6 
large (multichain) targets, we used a manual version of MolPC1 to create large complexes. 

 

Methods 

AlphaFold2 is run as the server using the default pipelines. 

Metagenomic sequences were searched using jackhmmer2 against the MGnify3 database for 
targets T1123, T1130, T1131, T1154, and T1179 (no hits). For targets T1173, T1174, T1180, 
T1181, and T1184, 25 recycles were used, while for targets H1171, H1172, T1174, T1179, and 
T1192, the predicted models were reranked manually. Finally, large targets H1111, H1114, 
H1115, H1135, H1137, and T1169 were manually built using superpositions of smaller 
subcomponents, following the methodology of MolPC1. 

Results 

Models where the structure is known. 

At the time of writing, the only target where we submitted a non-
standard AF2 prediction, and the PDB file is available is H1111; these 
predictions were wrong. Here we predicted the structure of two or 
three chains and then built the 27-mer from these subcomplexes. The 
27 chains are present in the final structure, forming a nice 9-fold 
symmetric circle. But, a significant part of the 27 chains was not seen. 

https://paperpile.com/c/aoQxZB/gWiL
https://paperpile.com/c/aoQxZB/Kzsq
https://paperpile.com/c/aoQxZB/1ORQ
https://paperpile.com/c/aoQxZB/gWiL
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Modelling only the parts seen in the final model predicts the repeating unit accurately, and using 
only a 9-mer of chain A makes a nice symmetric structure that can be somewhat superposed to 
the correct structure, i.e. this indicates that a MolPC-like approach could have worked if a careful 
selection of what was modelled was made, but no such method exists yet.  

 

Models where the structure is not yet known. 

Below, we describe a few manual examples, although we do not know if our predictions are 
correct. Left side original model, right side submitted submission. Colouring by plDDT. 

H1135 (A9B3) 

Running H1135 through AlphaFold multimer results in a model where all the B chains are not in 
contact with the A chains. Therefore, we made a model of A3B1 and then superposed this on an 
A9 model. 

H1137 (A1B1C1D1E1F1G2H1I1) 

The AlphaFold-multimer model contained large disorder regions. These disappeared when 
modelled as two parts (6+3 chains). 

T1154 (A1) Adding extra hits from metagenomes (right) makes the predictions more consistent. 
The model also contains fewer regions with low 
confidence (blue colours). 

 

 

 

T1169 (A1) 

Original AlphaFold model contained large low-confident regions. The protein was split into 
three parts (domains), which were modelled separately and manually docked with each other. 
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T1174 (A3) 

Extra recycles made the model 
look better. 

 

 

T1192 (A10) 

AlphaFold multimer could only generate one model within the 72 hours server limit (on a node 
with 8 GPUs). We, therefore, modelled the other submissions, excluding the disordered regions. 

 

 

 

Avail
abilit
y 

Alph
aFold 
is 
freely 
avail
able 
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from DeepMind. 

MolPC is available freely at https://gitlab.com/patrickbryant1/molpc  
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High-quality state-of-the-art protein structure prediction systems such as Alphafold21 and 
RoseTTAFold2 rely on evolutionary information captured by multiple-sequence alignments 
(MSAs), making structures of proteins with few evolutionary relatives tough to predict. 
Additionally, creating high-quality MSAs is not trivial: the parameters for the alignment process 
need to be chosen on an individual basis in order to add enough, yet diverse sequences. This is 
done with the goal of obtaining a rich set of sequences that model structural constraints, whilst 
avoiding the inclusion of sequences with diverging structure. While inference speeds of trained 
machine learning systems are fast, the database searches necessary to build MSAs significantly 
add to the runtime of state-of-the-art structure predictors. 

 

Methods 

We present EMBER3D (EMBedding-based inter-residue distance predictor), a novel end-to-end 
deep learning method used to predict 2D and 3D structure from sequence alone at high speeds. 

 EMBER3D consists of two major parts: first, we use our pre-trained protein language 

model ProtT53 to generate rich, contextual representations of the amino-acid sequence of a query 
protein by extracting both the last-layer representation (1D) as well as the pairwise attention 
matrices (2D) of the underlying transformer architecture. Next, a structure module trained on a 
large set of experimentally determined structures jointly processes these representations to 
compute inter-residue distance probability distributions, anglegrams and 3D backbone 
coordinates (C, C-alpha, N and O). 

 The structure module is closely following the RoseTTAFold architecture with its 2-track 
and 3-track layout, however with some modifications: we significantly reduced the amount of 
both 2-track and 3-track blocks as well as the size of intermediate representations to optimize for 
computation speed. We further increased throughput by replacing the SE(3) transformer 
implementation of the original RoseTTAFold architecture with a functionally equivalent but 
much faster version from NVIDIA. 
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 EMBER3D is primarily inteded as a high-speed tool for the rendering of structure 
mutation movies and to assess the structural impact of mutations on large datasets, trading 
quality for speed. For the purpose of the CASP15 experiment, we therefore included an 
additional relaxation step with pyRosetta, using the predicted distograms and anglegrams as 

constraints for folding. We selected the best five models for each target using DeepAccNet4. 

 

Availability 

Preliminary code for EMBER3D is available at https://github.com/kWeissenow/EMBER3D. A 
preprint of the manuscript will be published soon. 

 

1. Senior,A.W., Evans,R., Jumper,J. et al. (2020). Improved protein structure prediction using 
potentials from deep learning. Nature 577, 706–710. 

2. Baek,M. et al. & Baker,D. (2021). Accurate prediction of protein structures and interactions 
using a three-track neural network, Science Vol 373 Issue 6557. 

3. Elnaggar,A., Heinzinger,M., Dallago,C. et al & Rost,B. (2021). ProtTrans IEEE TPAMI. 
4. Hiranuma,N., Park,H., Baek,M. et al. (2021). Improved protein structure refinement guided 

by deep learning based accuracy estimation. Nat Commun 12, 1340. 
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We study a development version of ESMFold in the CASP15 competition. Our objective is to 
investigate the ability of large scale language models to enable atomic-resolution structure 
prediction from a single protein sequence. ESMFold uses ESM-2, a new family of language 
models trained on diverse protein sequences across evolution, building on the findings of our 
previous generation ESM-1b to further scale up and produce a more performant language model. 
We train ESMFold to output a structure prediction in the form of atomic coordinates directly 
from the language model representation of a protein’s sequence. This permits predictions to be 
made end-to-end from the sequence, an order of magnitude faster than current state-of-the-art 
approaches. 

 

Methods 

ESMFold uses a 3 billion parameter ESM-2 transformer language model1, pretrained with the 
masked language modeling loss2 on the UniRef503 database. Language model weights are frozen 
and features are given to a structure prediction network which outputs three-dimensional 
coordinates. The structure prediction network is trained on a set of experimentally determined 
structures from PDB4 augmented with a set of computationally predicted structures generated 
with AlphaFold25. 

Our approach does not take either MSAs or templates as input. Nevertheless, we find that 
it produces accurate predictions of many protein structures. Replacing the MSA and templates 
with the language model enables predictions to be made at least an order of magnitude faster 
than current state of the art approaches. 

At prediction time, we generate samples from the model by masking 1000 different 
subsets of amino acids from the sequence. The prediction with highest model confidence 
(pLDDT) is refined via Amber6 relaxation. For multimers, we set the residue index between 
chains to a random large gap, as well as inserting a phantom linker of 25 glycines between 
chains. For the latter half of the competition, we realized that masking but only accepting the 
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result if the predicted lDDT was greater than 0.1 compared to the original gave better overall 
performance, so we switched to this scheme. For longer proteins (>length 1600), to reduce 
computational cost we simply gave the single best prediction. 

 

Availability 

ESM-2 language models are available at github.com/facebookresearch/esm. The ESMFold 
structure prediction model will also be made available at the same location in the future. 

 
1. Vaswani,A., Shazeer,N., Parmar,N., Uszkoreit,J., Jones,L., Gomez,A.N., Kaiser,Ł., and 

Polosukhin,I. (2017) Attention Is All You Need. In, Advances in Neural Information 
Processing Systems., pp. 5998–6008. 

2. Devlin,J., Chang,M.-W., Lee,K., and Toutanova,K. (2019) BERT: Pre-training of Deep 
Bidirectional Transformers for Language Understanding. In, Proceedings of the 2019 
Conference of the North {A}merican Chapter of the Association for Computational 
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association 
for Computational Linguistics, Minneapolis, Minnesota, pp. 4171–4186. 

3. Suzek,B.E., Wang,Y., Huang,H., McGarvey,P.B., Wu,C.H., and Consortium,U. (2014) 
UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity 
searches. Bioinformatics, 31, 926–932. 

4. Burley,S.K., Berman,H.M., Bhikadiya,C., Bi,C., Chen,L., Di Costanzo,L., Christie,C., 
Dalenberg,K., Duarte,J.M., Dutta,S., Feng,Z., Ghosh,S., Goodsell,D.S., Green,R.K., 
Guranoví,V., Guzenko,D., Hudson,B.P., Kalro,T., Liang,Y., Lowe,R., Namkoong,H., 
Peisach,E., Periskova,I., Prlí,A., Randle,C., Rose,A., Rose,P., Sala,R., Sekharan,M., Shao,C., 
Tan,L., Tao,Y.-P., Valasatava,Y., Voigt,M., Westbrook,J., Woo,J., Yang,H., Young,J., 
Zhuravleva,M., and Zardecki,C. (2019) RCSB Protein Data Bank: biological macromolecular 
structures enabling research and education in fundamental biology, biomedicine, 
biotechnology and energy. Nucleic Acids Research, 47. 

5. Jumper,J., Evans,R., Pritzel,A., Green,T., Figurnov,M., Ronneberger,O., 
Tunyasuvunakool,K., Bates,R., Žídek,A., Potapenko,A., Bridgland,A., Meyer,C., 
Kohl,S.A.A., Ballard,A.J., Cowie,A., Romera-Paredes,B., Nikolov,S., Jain,R., Adler,J., 
Back,T., Petersen,S., Reiman,D., Clancy,E., Zielinski,M., Steinegger,M., Pacholska,M., 
Berghammer,T., Bodenstein,S., Silver,D., Vinyals,O., Senior,A.W., Kavukcuoglu,K., 
Kohli,P., and Hassabis,D. (2021) Highly accurate protein structure prediction with 
AlphaFold. Nature, 596, 583–589. 

6. Eastman,P., Swails,J., Chodera,J.D., McGibbon,R.T., Zhao,Y., Beauchamp,K.A., Wang,L.-P., 
Simmonett,A.C., Harrigan,M.P., Stern,C.D., Wiewiora,R.P., Brooks,B.R., and Pande,V.S. 
(2017) OpenMM 7: Rapid development of high performance algorithms for molecular 
dynamics. PLoS Comput Biol, 13, e1005659. 
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ProALIGN1 and ProFOLD2 have achieved excellent performance in protein structure prediction. 
However, in-depth examination suggests that when high-quality templates are available, 
ProALIGN is superior to ProFOLD and in other cases, ProFOLD shows better performance. 
Therefore, we design a web server to take advantage of ProALIGN and ProFOLD. 
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Methods 

For the candidate structures predicted by ProALIGN and ProFOLD, FALCON2 estimates 
structure quality by running ProQ3D. Briefly speaking, ProQ3D assesses the quality of a 
structure by considering a variety of features, including residue contacts, residue conservation, 
and the agreement with the predicted secondary structure and solvent accessibility area. By 
running ProQ3D on all candidate structures, FALCON2 obtains the predicted quality value lDDT 
and normalizes them into Z-score. FALCON2 finally selects the candidate structure with the 
highest lDDT as the final prediction result. 

ProALIGN uses a Deep neural network to learn the patterns of context-specific alignment 
motifs. These patterns enable ProALIGN to model the dependence among residue pairs and 
thereafter accurately construct target-template alignments for structure building. Specifically, it 
consists of the following four main steps: (i) Feature calculation: The features to be used include 
sequence profile, secondary structure, solvent accessibility, and inter-residue distances. (ii) 
Alignment likelihood inference: The input features are fed into a pre-trained deep convolutional 
neural network, which predicts alignment likelihood for each residue pair (one query residue and 
one template residue). In our approach, alignment likelihood is represented as a matrix form. 
One entry in the matrix contains the match likelihood value of a residue pair. (iii) Alignment 
generation: Based on the alignment likelihood, we construct the optimal alignment with 
maximum likelihood. (iv) Model building: Build a 3D structure model by running MODELLER3  
on the generated alignment. 

ProFOLD employs an end-to-end framework called CopulaNet to estimate inter-residue 
distances directly from multiple sequence alignment (MSA) of the target protein. It consists of 
three key modules: MSA encoder, co-evolution aggregator, and distance estimator. MSA encoder 
embeds residue mutations using a 1D convolutional residual network. Co-evolution aggregator 
measures the co-mutations between two residues. Before presenting the design of co-evolution 
aggregator module. Distance estimator aims to estimate inter-residue distances according to the 
obtained residue co-evolution. 

 

Results 

We first evaluated the performance of FALCON2 over 104 CASP13 official-defined domain 
targets and 91 CASP14 official-defined domain targets, and the average TM-score is 0.755 and 
0.712, respectively. Simultaneously, the FALCON2 server outperforms the two individual 
approaches. 

 

Availability 

Project name: FALCON2 server 

Project home page: http://falcon.ictbda.cn:89/serve/ 

http://falcon.ictbda.cn:89/serve/
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1. Ju, Fusong, et al. "CopulaNet: Learning residue co-evolution directly from multiple sequence 
alignment for protein structure prediction." Nature communications 12.1 (2021): 1-9. 

2. Kong, Lupeng, et al. "ProALIGN: Directly learning alignments for protein structure 
prediction via exploiting context-specific alignment motifs." Journal of Computational 
Biology 29.2 (2022): 92-105. 
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Kinases catalyze phosphorylation reactions of various substrates. The phosphorylation state of 
substrates controls their biological activities such as regulation of metabolic pathways and cell 
signaling. Thus, the kinase family is one of the most important protein families and draws 
attention as therapeutic targets among the human proteome. Kinases can adopt various 
conformations especially at their ATP/substrate binding pocket and activation loop depending on 
their activation or substrate binding states. More than 8,000 human kinase structures have been 
experimentally determined. Even though structures for around half of the human kinases were 
captured by those experimental structures, they are still far from covering diverse conformations 
of the kinases. Alternatively, computational protein structure prediction methods can predict 
protein models at near experimental accuracy thanks to recent advances in machine learning-
based methods. However, these methods have strong conformational state biases in modeling 
proteins that can have multiple conformational states. For example, AlphaFold1 is likely to 
predict GPCRs in the inactive state2 and kinases in the active state3, at which experimentally 
determined structures are dominant. Recently, we devised a multi-state modeling protocol for 
GPCRs using AlphaFold with activation state-annotated template databases2. The protocol 
utilized experimental structure templates in either active or inactive states to predict models in 
the corresponding states. In addition, to make prediction effectively guided by templates in either 
state, sequences in the input MSA were masked at sequence positions at which templates were 
aligned. Using this protocol, it was possible to predict models for both active and inactive states 
of the GPCR at atomic-level accuracy. 

 

Methods and Results 

During CASP15, we extended the multi-state modeling protocol towards kinases to model 
targets T1195-97. To construct conformational state-annotated template databases for kinases, 
state annotations for experimentally determined kinase structures were taken from KinCoRe3. 
The annotation is based on the spatial orientation of the DFGmotif (DFGin, inter, and out) and 
the dihedral angles of the Phe in the motif, and there are 12 conformational states in total. For 
each target, we attempted to model in every state using the multi-state modeling protocol. 
According to our benchmark test, different from multi-state modeling of GPCRs, multi-state 
modeling of kinases often resulted in a state different from that of used templates. For example, 
modeling in the DFGin state was always successful. On the other hand, modeling in the DFGout 
state succeeded only for 44% of tested kinases and resulted in DFGin and DFGinter states for 
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44% and 12% of the targets because AlphaFold has a strong bias for the DFGin state (c.f. models 
from the original AlphaFold adopted DFGin, inter, and out states for 87%, 6%, and 7% of the 
same set of kinases, respectively). Although our multi-state modeling protocol for kinases cannot 
model in every state, it is still beneficial as it can expand the conformational state coverage 
beyond what the original AlphaFold can do, while all the conformational states may not be 
accessible for every kinase. 

 For the model selection, according to the benchmark test, we found that a model for a 
state from our multi-state modeling protocol was more accurate than a model from the original 
AlphaFold if (1) the sequence identity of templates for the state was high (> 40%) and (2) the 
predicted model was in the same state of the used templates. Consequently, we selected five 
models for submission using aforementioned criteria, and selected models were ranked according 
to their pLDDT scores.  

 

Availability 

The multi-state modeling protocol for kinases and GPCRs is available at 
https://colab.research.google.com/github/huhlim/alphafold-
multistate/blob/main/AlphaFold_multistate.ipynb. 

 

1. Jumper, J. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature 
596, 583-589. 

2. Heo, L. & Feig, M. (2022) Multi-state modeling of G-protein coupled receptors at 
experimental accuracy. Proteins, doi:10.1002/prot.26382. 

3. Modi, V. & Dunbrack, R. L. (2022) Kincore: a web resource for structural classification of 
protein kinases and their inhibitors. Nucleic Acids Res. 50, D654-D664. 

  

https://colab.research.google.com/github/huhlim/alphafold-multistate/blob/main/AlphaFold_multistate.ipynb
https://colab.research.google.com/github/huhlim/alphafold-multistate/blob/main/AlphaFold_multistate.ipynb
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We explored here new strategies for modeling of protein assemblies by integrating deep learning 
approaches like AlphaFold with the docking and energy-based scoring function of pyDock1, 
which previously showed successful results on template-based and ab initio docking models2. 
For that, we participated in the CASP15 Assembly category, as part of the 5th common CASP-
CAPRI Assembly Prediction challenge (CAPRI Round 54), consisting in 39 targets: nine homo-
dimers (A2), 13 hetero-dimers (A1B1 or E1I1), five homo-trimers (A3), three hetero-trimers 
(A2B1), and nine higher-degree homo- and heter-oligomers (ranging from a hetero-pentamer to a 
homo-16mer). As human predictors, we participated in all of the proposed targets except in 
H1137/T204. As scorers, we participated in all 38 proposed targets (target H1106/T191 was not 
included in the scoring experiment). 

For each assembly, the coordinates of the individual subunits were taken from the 
AlphaFold2 models available at CASP site by Elofsson group (except for some subunits in 
targets H1135/T203 and H1151/T210, which had available structure). The AF2 models were 
further processed to keep only reliable residues, based on pLDDT values, initially using a cutoff 
value of pLDDT > 60, and then pLDDT >70 (but for some cases we tolerated smaller pLDDT 
values in order not to remove >30% of the protein sequence, to be able to pass the CAPRI server 
verification).      

 As predictors, we applied our pyDock1 docking pipeline to the individual subunits, in 
order to build the binary interactions in each assembly. For that, we used FTDock (electrostatics 
on; 0.7 Å grid resolution) to generate 10,000 rigid-body docking poses. In homo-oligomers, we 
assume symmetry and removed docking poses not satisfying the expected symmetry (e.g. cyclic 
C2 symmetry for homo-dimers; C3 for homo-trimers) within a given tolerance3. In target 
T1132/T201, we selected docking models that fitted into a trimer of dimers symmetry, as 
expected from an available template (PDB code 2GFF). In target H1135/T203, hetero-tetrameric 
interfaces (A3B1) were built based on an available template (PDB code 6WME), and these 
models were used as input for ab initio docking to build the final assembly as a trimer of hetero-
tetramers (A9B3).  
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 All docking models were scored and ranked by pyDock energy-based function. After 
removing redundant models (within 4 Å ligand RMSD), we selected automatically the 10 best-
ranked models (per rules of CAPRI) from pyDock scoring as our submission set. Interestingly, 
we checked that in around half of the cases, this initial submission set contained docking poses 
that were similar (within 10 Å ligand RMSD) to the AF-Multimer assembly models available at 
CASP site by Elofsson group. In these cases, this consistency between the energy-based pyDock 
and the AF-Multimer predictions reassured our confidence in the submission set based only on 
pyDock scoring. In the rest of the cases, to build a more reliable submission set, we combined (in 
alternative order) the top 5 docking models from pyDock scoring and the 5 docking models that 
were most similar to the AF-Multimer predictions, independently on their energy-based scoring. 
Before submission, all models were minimized with AMBER to remove clashes and improve 
geometries. 

In the CAPRI scorers experiment, we first removed models with more than 25 clashes 
(i.e., intermolecular pairs of atoms closer than 3 Å) per interface. Then, we applied pyDock 
scoring and used the same criteria to rank the docking models as in predictors (i.e. filter by 
symmetry, check available templates, compare to AF-Multimer, and minimize clashes).    

 

Availability 

The pyDock 3.0 program is available for academic use as a GNU/Linux binary and as a web 
server (https://life.bsc.es/pid/pydock/). 

 
1. Cheng,T.M.-K., Blundell.T.L. & Fernandez-Recio,J. (2007) pyDock: electrostatics and 

desolvation for effective rigid-body protein-protein docking. Proteins. 68, 503-515. 
2. Lensink,M.F., Brysbaert,G., Nadzirin,N., et al. (2019). Blind prediction of homo- and hetero-

protein complexes: The CASP13-CAPRI experiment. Proteins. 87, 1200-1221. 
3. Rosell,M., Rodríguez-Lumbreras,L.A., Romero-Durana,M., et al. (2020) Integrative 

modeling of protein-protein interactions with pyDock for the new docking challenges. 
Proteins. 88, 999-1008. 
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Protein structure prediction has made a breakthrough in recent years under the community-wide 
efforts in biological research and the advancement of artificial intelligence techniques1. The 
ever-growing number of large-scale metagenomic sequences significantly boosts the precision of 
computational algorithms in predicting the tertiary & quaternary protein structures from the 
sequences, specifically advancing the capabilities of deep learning (DL) models to extract co-
evolutionary structural information from the sequence families2,3. The multiple sequence 
alignments (MSA) from homologous sequences have become the essential knowledge base from 
most recent state-of-the-art DL approaches to guide the direct folding of protein sequences. 
Substantial studies have shown that the quality of 3D protein structure modeling, including 
multi-metric proteins, largely relies on the resolution of co-evolutionary signals in the sequence 
alignments, such as the number of effective homologs and diversity of organism species in MSA. 
In this work, we proposed an adaptive scheme to select the optimal sequence alignments for 
generating higher-quality 3D structure predictions given the input protein sequences. The quality 
of all the predicted structures were examined using our latest deep learning-based protein quality 
assessment algorithms using graph neural networks to determine the top ranked 3D models for 
the submission to CASP15. 

 

Methods 

The proposed 3D protein structure prediction pipeline starts with the generation of MSAs by 
searching the query protein sequence against the representative biological sequence databases, 
including Uniref90, Uniprot, MGnify, BFD, uniclust30, PDB70 as used in work 2. The algorithm 
will collect the diverse set of MSAs by executing several well-known sequence alignment 
techniques (i.e., HHblits, HHsearch, Jackhammer) with different parameters, including the e-
value thresholds (i.e., 1e-4, 1e-3, 1e-2, 1e-1, 10), sequence overages (i.e., 30%, 40%, 50%, 70%) 
and iteration runs (i.e., 1, 2, 3). The MSAs from another alignment tool, DeepMSA4, will also be 
included in the pool of diverse alignments. The template database (PDB70) is used to determine 
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the existence of domain boundaries in multi-domain proteins. If the multi-metric protein is 
identified, the MSAs for individual domains will be generated and concatenated as full-length 
MSAs to be included in the alignment pool. For single-chain tertiary structure prediction, each of 
the MSAs in the alignment pool is fed into the structure module in Alphafold framework2 to 
generate five 3D structure predictions with Amber constrained relaxation, leading to at least ~70 
predicted structures on average from the available MSAs. The predicted structures are finally re-
ranked according to the averaged pLDDT scores from our in-house graph-neural network based 
quality assessment approach5 and the local predicted scores by Alphafold. The top 5 ranked 
models are then submitted as predictions. For quaternary structure prediction, the structures of 
the protein complex were derived from Alphafold-Multimer 6.  
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The protein structure refinement method aims to improve the accuracy of the predicted protein 
models, especially the local structure at the residue level. Most of the existing refinement 
methods are based on physics, while molecular simulation methods are computationally 
expensive and time-consuming. In this work, we utilize deep learning techniques to extract the 
structural constraints from residues in protein structure to guide protein structure refinement. 
Different from the existing methods, we proposed a new method AnglesRefine for structure 
refinement. AnglesRefine is based on the secondary structure of protein and uses a transformer1 
model to refine the various angles of protein structure (psi, phi, omega, CA_C_N_angle, 
C_N_CA_angle, N_CA_C_angle), and finally generates a higher quality protein model from the 
refined angles. 
 
Methods 

First of all, we use PSIPRED2 tool to predict the secondary structure of the protein model from 
the protein sequence as the target secondary structure, and we compare it with the secondary 
structure extracted from the predicted protein model, and the unmatched fragments or the 
incorrect local structures will be refined. (In this CASP, we used the model predicted by 
AlphaFold23 as the initial protein model, and applied our new method to refine it for the protein 
structure prediction); Then, we extract the angles of those incorrect local structures, and use six 
transformer models to optimize 6 angles (psi, phi, omega, CA_C_N_angle, C_N_CA_angle, 
N_CA_C_angle) of each incorrect local structure to obtain the optimized angles; Finally, our in-
house tool is used to convert the optimized angles into refined local structures, and these refined 
local structures are used to replace the original local structures to obtain the final refined protein 
structure.  
 
Results 

AnglesRefine was trained and tested on casp11-14 dataset, the average accuracy of α-Helix 
structure’s transformer models trained by our method is about 0.7, and the results showed that 
our method effectively trained angles’ transformer models of α-Helix. In addition, the models 
can transform local structures (β-sheet or random coil, but expected to be α-Helix) into α-Helix 
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with 100% accuracy in our test dataset. In addition, our method can refine a protein model in 
about 30 seconds, while other physics-based refinements take several minutes.  
 

1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & 
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing 
systems, 30. 

2. Buchan, D. W., & Jones, D. T. (2019). The PSIPRED protein analysis workbench: 20 years 
on. Nucleic acids research, 47(W1), W402-W407.  

3. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... & Hassabis, 
D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 
583-589 
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The Estimation of Model Accuracy plays an important role in protein structure prediction, 
especially the local quality of residues that contact with other residues from the interacting 
proteins. However, traditional QA methods (like DeepQA1, GraphQA2 etc.) usually predict a 
global quality score of the predicted single protein structure, but cannot be used to evaluate the 
interfaces between multimeric complexes and subunits. In our previous work, we developed a 
local model quality assessment method for evaluating single protein models, ZoomQA3, which 
can assess the accuracy of a tertiary protein structure/complex prediction at the residue level. It 
has shown the potential to identify problematic regions of the SARS-CoV-2 protein complex. 
Based on that, we proposed the new model quality assessment method ZoomScore to evaluate 
the quality of interface residues in protein complexes based on sequence and 3D structural and 
chemical features and benchmark it on CASP15. 

Methods 

ZoomScore uses a novel representation of amino acids in the protein structure and addresses the 
residue level protein quality assessment problem with the help of machine learning techniques. 

ZoomScore utilizes 10 properties regarding the chemical and physical properties of the 
target amino acid and its environment. We will use the term ‘fragment’ to describe a region of a 
protein that can be generated by including all amino acids within a radius of consideration r (Å) 
of a target amino acid where r represents a distance measured in angstroms. Two datasets were 
generated: one where r was set to a minimum of 5 angstroms and a maximum of 25 angstroms, 
and another where r was set to a minimum of 5 angstroms and a maximum of 55 angstroms. For 
each dataset generated, the step for considering a new ’fragment’ was 1 angstrom. According to 
our analysis, the average proportion of protein residues included at the radius of 25 angstroms 
was 0.5265 and the average proportion of protein residues included at the radius of 55 angstroms 
was 0.9393. 

The new method ZoomScore fused the following features: (1) the average amino acid 
density of a fragment; (2). the average hydrophobicity of the fragment. (3). the average 
monoisotopic mass of the fragment. (4). the average solvent accessibility of the fragment. (5). the 
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isoelectric point of the fragment. (6). the stability score of the target amino acid’s torsion angles. 
(7-10). We also included the properties of the center amino acid, into the feature set that 
comprises the amino acids’ monoisotopic mass, hydrophobicity, solvent accessibility, isoelectric 
point, and torsion angles (two values).  We include the amino acid letter code and the secondary 
structure extracted from the protein structure as one-hot encoded vectors, and all features are 
normalized between 0 and 1.  

Interface residues between chains are defined as the amino acids having contacts with at 
least one residue from different chains with a distance of CB-CB atoms <=8 Å (CA atom in the 
case of Glycine). In the training stage, ZoomScore identified all interface residues and generated 
a total of 2397 features for each amino acid. We selected the top 100 performing features based 
on their Pearson correlation with the known quality scores. The final model was trained on 60 
000 vectors of the top 100 features for a set of samples of data generated from a maximum radius 
of consideration of 55 angstroms. The Support Vector Machine is trained as the final model with 
the RBF kernel, a C value of 1.0, an epsilon value of 0.1, and a gamma value of 1.0. In the 
prediction stage, we collect features for all interface residues given the input complex structures 
and generate the predicted quality scores for all residues, including the interface residues 
between chains. 

 

1. Cao, R., Bhattacharya, D., Hou, J., & Cheng, J. (2016). DeepQA: improving the estimation 
of single protein model quality with deep belief networks. BMC bioinformatics, 17(1), 1-9. 

2. Baldassarre, F., Menéndez Hurtado, D., Elofsson, A., & Azizpour, H. (2021). GraphQA: 
protein model quality assessment using graph convolutional networks. Bioinformatics, 37(3), 
360-366. 
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In CASP15, we used ab initio docking(zdock3), template-based modeling (MODELLER5), 
symmetry constraints. 

 

Methods 

For each assembly, the models of the individual subunits were taken from server models of the 
AlphaFold and Baker servers. 

First, we searched template of target sequence against the PDB database2 by using PSI-
blast1. If the target-like template is identified in PDB, we simulated the quaternary structure of 
the target using the multi-chain method of MODELLER. Here we use homo-types. 

And for targets with a small number of subunits (2 ~ 3), initial models were obtained 
using zdock3, and excellent models were selected from them. 

In addition, for targets in which subunits are in symmetrical conformations, symmdock4 
was used to assemble the structures of subunits presented in the target, and excellent models 
were selected from the results. 

In the final result model selection stage, the three-dimensional structure of the templates from 
the PSI-blast search results for the PDB database2 was analyzed and final models were selected 
from the various docking results. 

 

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. & Lipman,D.J. 
(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search 
programs. Nucleic Acids Res. 25, 3389-3402. 

2. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res 28, 235-242 (2000). 
3. Chen,R., Li,L., Weng,Z. (2003) ZDOCK: An initial-stage protein-docking algorithm. 

Proteins. 52, 80–87. 
4. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: 

servers for rigid and symmetric docking. NAR, 33: W363-W367, 2005. 
5. Webb,B. and Sali,A. (2016) Comparative protein structure modeling using MODELLER. 

Curr. Protoc. Bioinforma., 2016, 5.6.1-5.6.37. 
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In the protein-ligand complex modeling class of CASP15, we generated a protein-ligand docking 
model using AutoDock Vina2, a small-molecule docking software. The binding position of the 
ligand and the final model selection were carried out through repeated calculation experiments 
by searching for template data in the PDB database1 and using the information.  

 

Methods 

For the initial protein conformation to obtain the protein-ligand complex model, the AlphaFold 
and Baker sever models or the best model among our predictive models was used. 

If a template structure similar to the target is identified from the PDB database, the type 
of ligand and binding position information are obtained from it. 

Then, using AutoDock Vina2, the binding sites of the ligand are found by the fixed 
docking method and the flexible docking method. 

Finally, the final result model is selected using the protein-ligand binding energy and 
template information. 

 

1. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res 28, 235-242 (2000). 
2. Goodsell, D. S., & Olson, A. J. (1990). Automated docking of substrates to proteins by 

simulated annealing.  Proteins Structure  Function  and  Bioinformatics,  8(3),  195-202.  
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In CASP15, we used the dPPAS alignment method based on PSI-blast1 profile information and 
some structural information. And the database that consist of log-odds profile, relative solvent 
accessibility, and three-state secondary structure information of templates were constructed, and 
alignment between the target and the template was performed based on the dPPAS alignment 
method. Then, the quaternary structure of the target was modeled by MODELLER2. 

 

Methods 

To obtain the log-odds profile of a target sequence, we used PSI-blast against the lastest 
Uniref50 database. 

To predict the three-state secondary structure information and relative solvent 
accessibility value of a target sequence, we used FTBiot method that is based a deep learning 
model. 

Then, we used the profile, the three-statue secondary structure information, relative 
solvent accessibility value of target and template sequence with the dPPAS alignment method, to 
obtain pair alignment between a target and template sequence. The weight coefficients of this 
dPPAS alignment method were optimized through RNN models. 

In our 3D-model construction step, wo used MODELLER2 with the result of the pair 
alignment between a target and template sequence and PDB entry file of templates.  

 

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. & Lipman,D.J. 
(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search 
programs. Nucleic Acids Res. 25, 3389-3402. 

2. Webb,B. and Sali,A. (2016) Comparative protein structure modeling using MODELLER. 
Curr. Protoc. Bioinforma., 2016, 5.6.1-5.6.37. 
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We participated in the Protein conformational ensembles category of CASP15 experiment as 
group “GatorsML”. The structure prediction was done by using AlphaFold (AF)1 with masked 
co-evolution information in the multiple sequence alignments (MSA). 

Methods  

The alternative conformation predictions were performed as the following steps: 

Step 1: initial structure prediction from AlphaFold: we first run the structure prediction 
using trained AF parameters with the local install ColabFold interface, where the MSA is 
generated by MMseqs2 searching UniRef100 database2. No template information is used in the 
prediction. 

Step 2: alternative conformation prediction from AlphaFold with masked MSA: previous 
studies have shown that reducing the depth of input sequence alignments is able to generate 
alternative conformations of transporters and receptors3. Given our assumption that the regions 
with large structure fluctuation correspond to residues with low confidence prediction scores 
(under the condition that MSA information at this region is not too sparse, e.g. >100 alignment 
hits), we first remove the sequence alignments for those residues and then use subsampled MSA 
sets as input for AF structure prediction. To select final models from predicted structures, we 
carried out principal component analysis (PCA), which helps view the structure sets in the 
dimensions of large conformation variance. The top-ranked structure without masked sequence 
alignments was submitted as model_1 and the other four were selected based on (1) the 
population of similar structures in the prediction sets under the top two principal components and 
(2) their RMSD differences against model_1. 

1. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 1–11 
(2021). 

2. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat Methods 19, 679–
682 (2022). 

3. Alamo, D. del, Sala, D., Mchaourab, H. S. & Meiler, J. Sampling alternative conformational 
states of transporters and receptors with AlphaFold2. Elife 11, (2022). 
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Ribonucleic acid (RNA) molecules are the master regulators of cells. They are involved in many 
molecular processes: They can transmit genetic information, sense cellular signals, relay 
responses, and catalyze chemical reactions. The function of RNA, particularly its ability to 
interact with other molecules, is encoded in the sequence. Understanding how these molecules 
perform their biological tasks requires detailed knowledge of RNA structure and dynamics, 
which determine how RNA folds and interacts in the cellular environment. 

 

Methods 

Our workflow for computational modeling of RNA 3D structures and their interactions with 
other molecules uses a suite of methods developed in our laboratory, including PARNASSUS for 
the remote homology detection, MeSSPredRNA for the prediction of canonical and non-
canonical base-pairs, and the SimRNA-family of programs for the modeling of RNA 3D 
structure and its complexes with other molecules. 

 

Results 

We applied out methods to predict RNA 3D structures in the CASP and RNA-Puzzles 
experiments. 

 

Availability 

SimRNA was previously published and is available as a standalone tool at 
http://genesilico.pl/software/stand-alone/simrna 

Other elements of our computational workflow are experimental and are not yet available. 
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GinobiFold is a hybrid multi-model deep learning network. The whole pipeline includes Feature 
Embedding, Evoformer, Structure Module and Structure Refinement. Before the Ginobifold 
pipeline, we need to train a multi-sequence alignments (MSA) generative model and pLM model 
from metagenomic datasets to generate MSA features. According to different training 
configurations, a total of 10 sets of parameters were obtained. Finally, we leverage predicted 
local distance distribution test(pLDDT) value to generate 5 new superposition models. 

 
Methods 
The whole architecture of Ginobifold includes Feature Embedding, Evoformer, Structure Module 
and Structure Refinement.  

Before the Ginobifold pipeline, we need to build metagenomic database that is used to 
train a MSA generative model and pLM model. we downloaded hundreds of TB sequence data 
from NCBI and MGnify and used plass to assemble them. Then, we built our customized 
datasets by a similar pipeline of BFD. Because of the limitation of memory and speed, we split 
assembled proteins into many small parts and used GPU-accelerated techniques to build large 
MSA databases that can be searched by hhblits. These databases are about 20x larger than BFD 
database so that we can get enough homologs for each query sequence. 

In Feature Embedding part, we construct representations from Residue Embedder and 
MSA Embedder. For MSA Embedder, we combined two different Embedders to get the final 
MSA features including Pseudo MSA Embedder and protein Language Model (pLM) Embedder. 
In Pseudo MSA Embedder, we first generate pseudo MSA from pre-trained MSA generative 
model. In pLM Embedder, we output MSA features directly. By different combinations of the 
above two MSA Embedders, we got 10 kinds of MSA features. Finally, we combine Residue 
Embedder features and MSA features to build MSA representations and pair representations. 

In Evoformer and Structure Module part, we used the same architecture as alphafold21. 
For all self-attention layers, we used dynamic axial parallelism technique to save GPU memory 
and accelerate forwarding and back-propagation speed.  
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In structure refinement, we used OPENMM2 with CUDA platform to firstly optimize 
structures. We got several hundred predictions for each target with different generated pseudo 
MSA and different models. Based on the assumption that, the residue with higher pLDDT value 
among all predictions will have more reliable local regions, we used 5 different strategy to 
optimize structures that start from the top 1 structure (ranked by mean pLDDT). Thus, we can 
get 5 so called superposition models. The first strategy is that residues with higher pLDDT value 
have better global coordinates. The second is that better residues have better local coordinates. 
The third is that better residues have better distance vector of CA (only center CA atom)-AA pair 
within certain angstrom shell. The fourth is that the better residues have better distance matric for 
all CA-CA atom pairs within certain angstroms. The strategy of superposition5 is that better 
residues will have better distance matric of CA-AA atom pairs within certain angstroms. 

 
1. Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with 

AlphaFold. Nature 596, 583–589 (2021). 
2. Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang LP, 

Simmonett AC, Harrigan MP, Stern CD, Wiewiora RP, Brooks BR, Pande VS. OpenMM 7: 
Rapid development of high performance algorithms for molecular dynamics. PLoS Comput 
Biol. 2017 Jul 26;13(7):e1005659. 
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GinobiFold-SER is a hybrid multi-model deep learning network. The whole architecture uses 
metagenomic data to obtain multi-sequence alignments (MSA) with different searching methods. 
According to different training configurations, a total of 15 sets of parameters were obtained. 
Finally, we leverage averaged predicted local distance distribution test (pLDDT) value to rank 
multiple predictions. 

 

Methods 

The whole model architecture includes data processing, feature embedder, evoformer, structure 
module and structure refinement. In data processing part, we used GPU accelerated techniques to 
build MSA database for NCBI and Mgnify. In feature Embedder part, we search MSA from 
above metagenomic data and build different features with different methods. In evoformer and 

structure module part, we used alphafold21 architecture. For all self-attention layers, we used 
dynamic axial parallelism technique to save GPU memory and accelerate forwarding and 
backpropagation speed. In structure refinement, we used OPENMM2 with CUDA platform. We 
got several hundred models for each target with different MSA features and models and rank 
them by averaged pLDDT, then we select top 5. 

 

Results 

For most of CASP targets, we can get reliable predictions based on pLDDT values.  

 

1. Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with 
AlphaFold. Nature 596, 583–589 (2021). 

2. Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang LP, 
Simmonett AC, Harrigan MP, Stern CD, Wiewiora RP, Brooks BR, Pande VS. OpenMM 7: 
Rapid development of high performance algorithms for molecular dynamics. PLoS Comput 
Biol. 2017 Jul 26;13(7):e1005659. 
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Specificity and efficacy are the keys to develop a practical therapeutic-available drug against 
aimed-diseases. To establish such therapeutic capability of certain molecules, protein-ligand 
conjugated structures are crucial references to fully understand the mechanism of how a 
molecule conducts its target inhibition ability. We present a novel protein-ligand orientation de-
noised model, constructed with evolutional cross-geometric vector perceptron (cGCP) modules, 
to fully leverage the space orientation information carried by large (protein) and small (ligand) 
molecules. Benefited from the convenience of a topological presentation, we decompose a 
protein description traditionally in the amino acid level further into the atomic level, detailing the 
interaction correlation lied between protein and ligand. Considering the spectral orientations of 
separated molecules are the noisy results given a protein sequence and a small molecule, our 
model reconstructs the binding structure as the de-noised orientation of the conformation by 
minimizing the overall Gibbs energy. 

Methods 

Our mode operates on diverse scales of protein graphs along with the atomic-scale graph of 
ligand. To represent a protein, three scales to describe nodes are considered: (1) protein 
backbone in the atomic scale; (2) whole protein in the amino acid scale; and (3) whole protein in 
the atomic scale. They are dedicated to determining the global protein structure, orienting the 
substructure of each motif, and optimizing the conformation of the protein-ligand conjugating 
complex, respectively. 

As the input features of our model, the nodes in protein and ligand graphs are continuous-
positioned embedded, and the edge information is composed with atomic bonds including the 
inner-protein, inner-ligand, and cross-protein-ligand distance features. Embedded features of 
protein and ligand are used as the inputs of our cross geometric vector perceptron network to 
generate the conjugated structure output. The model generates three predictions: (1) distance 
matrix in the atomic resolution of within and cross protein and ligand, (2) torsions, angles, and 
coordinates of the atoms, and (3) Gibbs energy of the current protein-ligand conformation. 
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For each predicted structure, energy relaxing is conducted using restrained gradient 
descent on CHARMM1 force field and SIMTK-OPENMM2 package to further retrieve the 
refined protein-ligand complex structure. 

 

Availability 

The source codes and models are not publicly available at the moment. 

 
1. MacKerell AD Jr, et al. (1998). All-atom empirical potential for molecular modeling and 

dynamics studies of proteins. Journal of Physical Chemistry B. 102:3586–3616. 
2. Eastman, P. et al. (2017). OpenMM 7: Rapid development of high-performance algorithms 

for molecular dynamics. PLoS Computational Biology, 13(7), e1005659.12.  
3. Altschul, S. F. et al.  (1997), Gapped BLAST and PSI-BLAST: a new generation of protein 

database search programs. Nucleic Acids Research, 25:3389-3402. 
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RNAs play many important roles for cellular processes. They need to fold into secondary and 
tertiary structures to perform their functions and interact with other biomolecules. Experimental 
determination of RNA three-dimensional (3D) structure is time consuming and challenging, so 
that the structures of the majority of known RNAs are still not well understood. Here, we present 
a Deep Reinforcement Learning algorithm to predict the RNA 3D structure. We use the 
Reinforcement Learning combined with Deep Neural Network to predict the RNA 3D structure 
of a given RNA sequence. 

 

Methods 

The process starts with the input sequence of the target RNA, which is initially an open strand 
without any base pairing. Then, according to the policy function learned by the deep neural 
network, the most likely base-pairing is selected from the action space. This will be iterated until 
folding to the final state; here, we use the value function to score the current state to determine 
whether to stop. The error between the tertiary structure is returned as a reward by comparing the 
final folding state with the native state. After training the first round, the process performs the 
next round of the folding simulation on the new model, and repeatedly loops the above process 
until 1000 episodes. Different from traditional deep learning models that just need training data 
to train the model, the training of reinforcement learning generally requires the agent-
environment interactions. Here, we used RNAWorld3D from OpenAI Gym1 to set up the 
reinforcement learning simulation environment for RNA 3D structure prediction. The predicted 
RNA 3D structure from reinforcement learning was further refined by the energy function of 
openMM2. 

 

1. B. Greg, C. Vicki, P. Ludwig, S. Jonas, S. John, T. Jie, and Z. Wojciech. "OpenAI Gym." 
arXiv:1606.01540. (2016) 

2. P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp, L.-P. 
Wang, A. C. Simmonett, M. P. Harrigan, C. D. Stern, R. P. Wiewiora, B. R. Brooks, and V. S. 
Pande. "OpenMM 7: Rapid development of high performance algorithms for molecular 
dynamics." PLOS Comp. Biol. 13(7): e1005659. (2017) 
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Single structure prediction challenge of protein structure has been mostly solved at CASP14 as 
shown by Alphafold2. However, a single protein structure prediction can only solve a limited 
number of problems in the process of drug development. We found the characteristics of proteins 
at the atomic scale, using the equivariaitonl graph attention learning model to understand the 
interaction between branched-chain atoms, can further deduce the direction of the backbone. In 
order to enable the model to simulate the structure with a small number of coevolutionary 
features, we have added atomic-level physicochemical features to the feature set. By this way, 
we can improve the model to become a better structural simulator with a small number of 
reference sequences. In CASP15, we apply a new way to solve multiple protein interaction 
problems by using Equivariational Graph Attention Learning to model structures. 

 

Methods 

For Co-Evaulational features, we use JackHMMER1, HHblits2 and HH-suite 3 tools to search 
related sequences and templetes in UniRef904, BFD5,6, PDB7 and MGnify8 clusters databases to 
obtain related sequences.  

For phesichemical force features, we use pepdata9 and prody10 tools to find residue-residue 
force features. Not only using basic peptide features, but we also apply non-covalent bonding 
forces to present the relation of local side chains by our formular from PDB. 

The input features and initial coordinates are used as model inputs  for  the equivariational 
graph attentional learning method that produces a variety of  predictions including atom-based 
distances, torsions, atom coordinates, and estimates the per-residue value of the Cα-lDDT11. The 
predicted structures are selected according to the predicted value of model reward. All models 
were trained using publicly-available structures in the PDB. 

Each structure prediction is relaxed using restrained gradient descent on the Amber ff99SB 
force field12 using SIMTK-OPENMM13.   
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Availability 

The source codes and models are not publicly available at the moment. 
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4. UniProt Consortium. (2019). UniProt: a worldwide hub of protein knowledge. Nucleic Acids 

Research, 47(D1), D506-D515.  
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12. Hornak, V. et al. (2006). Comparison of multiple Amber force fields and  development of 
improved protein backbone parameters. Proteins: Structure,  Function, and Bioinformatics, 
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In this CASP round, we assessed bioinformatics tools developed in our lab combined with initial 
structural predictions of protein assemblies by AlphaFold2. 

Methods 

We used initial AlphaFold2 models of the monomers and assemblies provided by the Elofsson 
group. We used NOLB normal modes1 to sample conformations in T1113, T1115, H1135, T1184, 
T1185, and T1187 targets. We also used NOLB nonlinear PCA1 to sample conformations in the 
H1151 target. SAM ab-initio symmetry-constrained docking method2 was applied to targets 
T1187, H1114, and T1176. Ideal point-group symmetry was applied to the assemblies, according 
to the provided stoichiometry, with the AnAnaS tool3-4. Final docking solutions were clustered 
with 1-5 Å RMSD cutoff. The models were ranked by the initial deviation from the ideal 
symmetry (as reported by AnAnaS), by the SAM scores, and by pDockQ scores provided by the 
Elofsson group5. 

 

Availability 

NOLB and  AnAnaS are available on our website at https://team.inria.fr/nano-d/software/. SAM 
is available at http://sam.loria.fr. 

 

1. Hoffmann,A., & Grudinin,S. (2017). NOLB: Nonlinear rigid block normal-mode analysis 
method. J. Chem. Theory Comput., 13(5), 2123-2134. 

2. Ritchie,D.W. & Grudinin,S. (2016). Spherical polar Fourier assembly of protein complexes 
with arbitrary point group symmetry. J. Appl. Cryst. 49, 158-167. 

3. Pagès,G., Kinzina,E., & Grudinin,S. (2018). Analytical symmetry detection in protein 
assemblies. I. Cyclic symmetries. J. Struct. Biol., 203(2), 142-148. 

4. Pagès,G., & Grudinin,S. (2018). Analytical symmetry detection in protein assemblies. II. 
Dihedral and cubic symmetries. J. Struct. Biol., 203(3), 185-194. 

5. Bryant,P., Pozzati,G. & Elofsson, A. (2022). Improved prediction of protein-protein 
interactions using AlphaFold2. Nat. Commun., 13(1), 1-11.  
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In this CASP, we used docking-based monomer assembly simulations to generate oligomer 
structures based on predicted monomer structures. For the monomer structure prediction, we first 
predict the domain boundaries of the target sequence using in-house domain boundary prediction 
method DomBPred, and then the structural domains are individually modelled using our 
template-enhanced AlphaFold2 (PAthreader). Finally, the domain structure models are 
assembled into full-length structures using proposed SADA protocol. Based on the predicted 
monomeric structure, we detected structural analogues for generating distance profiles between 
monomeric structures. Guided by general geometric constraints, distance profile, and oligomer 
interactions, a two-stage docking-based approach is proposed to generate oligomer structures. 
The final models are ranked by in-house DeepUMQA. 

 

Methods 

For the monomer structure prediction, we combined the domain boundaries prediction results of 
DomBpred1 to determine the domain boundary of the target sequence. For single-domain 
proteins, we used PAthreader to directly predict the full-length structures. For multi-domain 
proteins, we used PAthreader to predict the single-domain structures, and then SADA2 was used 
to assemble the domain structure models into full-length structures. 

 Based on the predicted monomeric structures, we used a two-stage docking-based 
approach to generate oligomer structures guided by general geometric constraints, distance 
profile, and oligomer interactions. 

 For the oligomer target, we extracted oligomer interactions from AlphaFold-Multimer, 
which can be used as a global restraint between monomers to guide overall conformation space 
sampling4. Based on the predicted monomer structures by PAthreader, the initial oligomer 
structure model is generated under the guidance of the oligomer interactions. 

 We detected suitable multi-domain protein templates from the constructed MPDB3 and 
then extracted the distance profiles of residues between different monomers based on the 
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template information4. The distance profiles of residues between different monomers can be 
regarded as a local restraint, which may be complementary to the oligomer interactions. 

 The assembly engine for monomer assembly was carried out through the simultaneous rotation and 
translation of each monomer. Under the guidance of the general geometric constraints (e.g. atom clash), 
distance profile, and oligomer interactions, a two-stage differential evolution algorithm was proposed to 
determine the optimal solution. The 5 models that best fit these constraints are selected and ranked by 
DeepUMQA5. The temperature factor values of these models are predicted by DeepUMQA5. 

 

Availability 

SADA is available at http://zhanglab-bioinf.com/SADA 

DomBpred is available at http://zhanglab-bioinf.com/DomBpred 

PAthreader is available at http://zhanglab-bioinf.com/PAthreader 

DeepUMQA is available at http://zhanglab-bioinf.com/DeepUMQA  
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IEEE/ACM Transactions on Computational Biology and Bioinformatics, DOI: 
10.1109/TCBB.2022.3175905. 

2. Peng, C., Zhou, X., Xia, Y., Liu, J., Hou, M., & Zhang, G. (2022). Structural analogue-based 
protein structure domain assembly assisted by deep learning. Bioinformatics, 
https://doi.org/10.1093/bioinformatics/btac553. 

3. Peng, C., Zhou, X., Xia, Y., Zhang, Y., & Zhang, G. (2021). MPDB: a unified multi-domain 
protein structure database integrating structural analogue detection. bioRxiv, 
2021.2010.2027.466092. 

4. Peng, C., Zhou, X., & Zhang, G. (2022). De novo Protein Structure Prediction by Coupling 
Contact with Distance Profile. IEEE/ACM Transactions on Computational Biology and 
Bioinformatics. 19, 395-406. 

5. Guo, S., Liu, J., Zhou, X., & Zhang, G. (2022). DeepUMQA: ultrafast shape recognition-
based protein model quality assessment using deep learning. Bioinformatics, 38, 1895-1903. 
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In CASP15, we developed a pipeline for the assembly of protein monomeric structures as well as 
oligomeric structures by predicting inter-domain interactions from deep learning, with protein 
domains as assembly units. We first used the domain segmentation methods to identify the 
domain boundaries of the target sequence, then predicted each domain individually based on a 
template-enhanced AlphaFold2 (PAthreader), and then specifically inferred inter-domain 
interactions through a pre-trained network model. Finally, the predicted interactions were used as 
the driving force to assemble the protein monomer or oligomer structures. 

 

Methods 

The key components of our method include: 1) a deep learning network that predicted inter-
domain interactions (including affine transformations of inter-domain residues); 2) a population-
based optimization method that assembled the domain structure models into full-length 
structures by predicted inter-domain interactions. 

Inter-domain interaction prediction. We pre-trained a deep learning network model over 
multi-domain proteins from the Multi-domain Protein Structure Database (MPDB1-2) to 
specifically predict inter-domain interactions. Given a target sequence, we searched Uniclust30 
and BFD databases to generate the multiple sequence alignments (MSAs), and used our three-
track alignment-based remote homology template detection method, PAthreader, to search for 
templates from the PDB and AlphaFold DB3. In addition, we extracted the inter-domain features 
according to the domain segmentation information of the target sequence, and fed them into an 
attention-based convolutional neural network together with MSAs and templates, and finally 
inferred the interactions between domains. 

Protein structures assembly. We first used the domain segmentation tool (DomBpred4) 
to partition the target sequence (for oligomer target, the sequence of each monomer was divided 
into different domains), then used the template-enhanced AlphaFold25 (templates were identified 
by PAthreader) to predict each domain structure separately, and constructed the atomic 
coordinate deviation potential according to the predicted inter-domain interactions. Finally, we 
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assembled the domain structures by a population-based optimization algorithm6 to obtain the 
monomer or oligomer structure. The generated models were evaluated by our model quality 
assessment method, DeepUMQA7, and the top five models were selected. 

 

Availability 

MPDB is available at http://zhanglab-bioinf.com/SADA 

DomBpred is available at http://zhanglab-bioinf.com/DomBpred 

PAthreader is available at http://zhanglab-bioinf.com/PAthreader 

DeepUMQA is available at http://zhanglab-bioinf.com/DeepUMQA 

 

1. Peng, C., Zhou, X., Xia, Y., Zhang, Y., & Zhang, G. (2021). MPDB: a unified multi-domain 
protein structure database integrating structural analogue detection. bioRxiv, 
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2. Peng, C., Zhou, X., Xia, Y., Liu, J., Hou, M., & Zhang, G. (2022). Structural analogue-based 
protein structure domain assembly assisted by deep learning. Bioinformatics, 
https://doi.org/10.1093/bioinformatics/btac553. 

3. Varadi, M. et al. (2022). AlphaFold Protein Structure Database: massively expanding the 
structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res, 
50, D439-D444. 

4. Yu, Z., Peng, C., Liu, J., Zhang, B., Zhou, X., & Zhang, G. (2022). DomBpred: protein 
domain boundary prediction based on domain-residue clustering using inter-residue distance. 
IEEE/ACM Transactions on Computational Biology and Bioinformatics, DOI: 
10.1109/TCBB.2022.3175905. 

5. Jumper, J. et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 
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conformational sampling algorithm for protein structure prediction. Bioinformatics, 37, 4357-
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7. Guo, S., Liu, J., Zhou, X., & Zhang, G. (2022). DeepUMQA: ultrafast shape recognition-
based protein model quality assessment using deep learning. Bioinformatics, 38, 1895-1903. 
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In this CASP, we used three different strategies to refine protein model structures and selected 
the best structure through the model quality assessment method. For each target, we generated 
the initial five structure models by our GuijunLab-Threader, GuijunLab-Assembly, GuijunLab-
DeepDA, and GuijunLab-RocketX. Then, we further refined the local structure using deep 
learning geometric constraint adjustment and multi-objective structure optimization developed 
by our group and the molecular dynamics refinement1 from Feig Lab. Finally, we utilized a 
protein model evaluation method, which are based on graph coupled networks, to submit the top 
five structures. 

 

Methods 
Deep learning geometric constraint adjustment. We trained a deep-learning graph 

neural network (DN1) to predict the geometrically constrained profile, where the sequence and 
structural features extracted from model were employed. The predicted geometric constraints 
were then combined with the structural template to guide the refinement of the local structure. 
Meanwhile, a model quality assessment network (DN2) was used to improve the quality of the 
local structure and select the best structure. 

 Multi-objective structure optimization. A two-stage multi-objective population 
optimization module was constructed to further optimize the screened conformations, mainly 
driven by the deviation between the residue geometry information derived from the input 
conformation and those extracted from MSAs and remote homologous structure recognition. 
Among them, the model was refined by the full-chain three-segment insertion and the secondary 
structure spatial position adjustment of the loop region in two stages respectively. 

 Model quality assessment method based on graph coupled networks. To train a coupled 
network of our method, we screened structures from the Protein data bank2 (PDB) and 
AlphaFold Protein Structure Database3 (AlphaFoldDB), used different methods to generate 
protein models (i.e. decoys). The method used the following part important features: (1) the 
geometrical triangle localization feature based on the model structure (2) the predicted 
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geometrical constraints from GuijunLab-Threader, a template-based enhanced deep learning 
structure prediction method. The protein structure features were used to evaluate model quality 
through a coupled neural network, which consists of a graph module that encodes sequence-
structure relationships and a transform-based convolution module that decodes structure-quality 
connection.  

 

Results 

We postpone the assessment of the approach until the official release of CASP15 results.  

 

1. Heo, L., & Feig, M. (2018). Improvement of the global structure of template-based models 
via MD and structural averaging. Bioinformatics. 34, 1063-1065. 

2. Berman, H. M., et al. (2000). The Protein Data Bank. Nucleic Acids Res, 28, 235-242. 
3. Varadi, M. et al. (2022). AlphaFold Protein Structure Database: massively expanding the 

structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res, 
50, D439-D444. 
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For this round of CASP, we developed a multi-objective population optimization modeling 
pipeline based on the template-enhanced AlphaFold2 (PAthreader), where the main driving force 
of model building was residue geometric constraints extracted from different coevolutionary data 
and deep learning models. The resulting conformations were further refined by a loop-specific 
dihedral angle optimization strategy based on residue distance bias and ranked by a model 
quality assessment model based on a deep graph coupling network and a protein language model 
(GraphCPLMQA). 

 

Methods 

Multiple sequence alignments (MSAs) of the target sequence were generated by searching 
Unilust30 (version January 2020) and BFD, which will be used to predict residue constraint 
information and construct a variable-length fragment library1 of the target. Among them, the 
predicted distance information will be used for the three-track alignment-based remote homology 
template detection method to obtain template information to enhance AlphaFold22 (PAthreader). 
Further, different residue constraint information was extracted using PAthreader and 
RoseTTAFold3, which will be combined with the original predicted distance information and 
used for modeling in a multi-objective population optimization method4. This multi-objective 
strategy can make up for the deficiencies between different methods to improve prediction 
accuracy, and make it possible to predict different conformations of multiple states. Based on 
residue distance deviation, conformations were further refined by adjusting the spatial position 
relationship between the secondary structures using the dihedral angle rotation model of loop 
region with partial inter-residue distance constraints5. Finally, the refined populations were 
clustered by using the DMscore6, the conformations in each class will be ranked by our in-house 
model quality assessment model (GraphCPLMQA), which is developed based on a deep graph 
coupling network and a protein language model, and the rank 1 model of each class was 
outputted. 
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Availability 

GraphCPLMQA is available at http://zhanglab-bioinf.com/Panda 

PAthreader is available at http://zhanglab-bioinf.com/PAthreader 

MultiDFold is available at http://zhanglab-bioinf.com/MultiDFold 
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4. Hou, M., Peng, C., Zhou, X., Zhang, B. & Zhang, G. (2022). Multi contact-based folding 
method for de novo protein structure prediction. Briefings in Bioinformatics, 23, bbab463. 

5. Liu, J., Zhao, K., He, G., Wang, L., Zhou, X., & Zhang, G. (2021). A de novo protein 
structure prediction by iterative partition sampling, topology adjustment and residue-level 
distance deviation optimization. Bioinformatics, 38, 99-107. 
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Deep learning (DL) has been successfully applied to protein structure prediction and model 
quality assessment in recent CASP. In this CASP, we used deep learning to predict the inter-
residue geometric constraints, model's inter-residue distance deviation and per-residue accuracy, 
and tried to improve the structure accuracy through iterative geometries prediction, structural 
folding simulation, and model quality assessment. We also extended the model quality 
assessment of single chains to complexes. 

 

Methods 

Based on the framework of RocketX1, we designed a protein structure prediction method based 
on iterative geometries prediction, structural folding simulation and model quality assessment. 
For a target sequence, MSA and template were searched using HHblits2 and our in-house 
template recognition method PAthreader, respectively. The MSA and template are embedded 
and fed into the geometries prediction network based on the triangle update and self-attention 
mechanism to predict the inter-residue geometric constraints. The inter-residue geometric 
constraints are construct as continuous energy function, and then used to predict the structural 
models by IPTDFold3, a structure prediction algorithm based on iterative partition sampling, 
topology adjustment, and residue-level distance deviation optimization. The improved model 
quality assessment method, DeepUMQA24, is incorporated to assess the quality of the predicted 
model, i.e. predicting inter-residue distance deviation and per-residue lDDT5 of the model. The 
assessment results will be fed back into a new round of geometric constraint prediction and 
structural folding simulations. On the one hand, it is used as the dynamic features of the 
geometries prediction network to re-predict geometric constraints. On the other hand, it is used 
as an additional constraint of IPTDFold, and combined with the updated geometric constraints to 
correct the predicted structural model. The final models are generated by five iterations and 
ranked by model quality assessment. 

DeepUQMA6 was used to evaluate the structural model of the complex. Firstly, the 
residue-level USR features and other 1D, 2D and 3D features are extracted from the complex 
model, and then the lDDT of each residue was predicted by deep residual neural network. The 
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overall fold accuracy is calculated as the average value of lDDT for all residues, and the overall 
interface accuracy is calculated as the average value of lDDT of residues being in the interface. 
We also provide estimates of residues being in the interface. 

 

Availability 

DeepUMQA is available at http://zhanglab-bioinf.com/DeepUMQA 

DeepUMQA2 is available at http://zhanglab-bioinf.com/DeepUMQA2 

PAthreader is available at http://zhanglab-bioinf.com/PAthreader 

IPTDFold is available at https://github.com/iobio-zjut/IPTDFold  
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Recognition of remote homologous template is a necessary module for deep learning-based 
modeling methods. In CASP15, we used the proposed PAthreader to recognize remote templates 
and predict 3D structures. First, we constructed the template library based on PDB and 
AlphaFold DB with a threshold of 80% structural similarity. The structure profile extracted from 
the PAcluster80 and the distance profile predicted by our in-house program. Then, the structure 
profile and distance profile are aligned by a three-track alignment and get the maximum 
alignment score (alignScore). As an effective supplement to alignScore, the physical and 
geometric features of the alignment structure are extracted and fed into the convolutional 
network with self-attention to predict DMScore (pDMScore)1, which is linearly weighted with 
the alignScore for ranking templates. Finally, we used the identified remote templates to enhance 
AlphaFold2 for protein structure prediction, and ranked the predicted models through our in-
house model quality assessment (GPSEM). 

Methods 

Construction of template library. We constructed a template library based on PDB and 
AlphaFold DB2. We removed structures with 100% sequence identity from the PDB, since 
identical sequences often correspond to very similar structures. Then, we calculated the structural 
similarity of the retained 106,275 proteins using TM-align and classified them into 34,701 
structural classes by an 80% similarity threshold. We used a greedy incremental clustering 
approach similar to CD-HIT3, which avoids many pairwise structure alignments. On this basis, 
we further extended the structure of AlphaFold DB. We selected 100,912 structures with pLDDT 
≥ 90 as available templates and clustered with PDB according to 80% structure similarity, 
resulting in 55.7% of the structures could be classified into 34,701 PDB clusters and the 
remaining structures could form 22,105 new clusters. 

Three-track alignment. To take full advantage of the deposited structure information to 
identify templates, we developed a three-track alignment (residue-residue alignment, residue 
pair-residue pair alignment, and distance profile-structure profile alignment) with two stages. In 
the first stage, the optimal Nclu structural clusters are identified by three-track alignment between 
the query sequence and the representative structures of clusters. In the second stage, the optimal 
templates are identified from the structures within the clusters determined in the first stage by 
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repeating the three-track alignment. The purpose of the three-track alignment is to find an 
optimal alignment between query sequence and template sequence by maximizing the 
alignScore. The first track is to calculate the protein-specific score matrix and find the optimal 
sequence alignment by dynamic programming. The protein-specific score matrix is obtained 
from second track by a second dynamic programming to find the optimal residue pair alignment 
that only considered the inter-residue distance. The residue pair alignment is performed based on 
the construction of residue pair-residue pair score matrix, where the values are calculated from 
the third track by maximizing the probability product and minimizing the distance difference. 

Modeling and folding. In structure modeling, we enhanced AlphaFold24 with the 
template recognition, which provides accurate local atomic information for single-domain 
proteins and accurate domain orientation for multi-domain proteins. Furthermore, the templates 
are aligned by TM-align and the frequency distribution of residues is calculated based on 
different distance deviation thresholds and secondary structures, which are used to identify 
folding intermediates for exploring folding pathway. 

Model quality assessment. We used PDB and AlphaFold DB to construct a non-
redundant dataset with a 35% sequence similarity, 80% of which was divided into training set 
and 20% as validation set. For each protein in this dataset, we generated 100 decoys structures 
using the dihedral angle perturbation method. Using this dataset, we retrained a neural network 
model for global protein model quality assessment based on equivariant graph neural network5. 
The input features of the model include geometric information and physicochemical energy 
information of protein structure. We used the neural network model to score the structure 
predicted in the previous step, and select the best model according to the score. 

Availability 

PAthreader is available at http://zhanglab-bioinf.com/PAthreader 

 
1. Zhao, K., Liu, J., Zhou, X., Su, J., Zhang, Y. & Zhang, G. (2021). MMpred: a distance-

assisted multimodal conformation sampling for de novo protein structure prediction. 
Bioinformatics, 37, 4350-4356. 

2. Varadi, M. et al. (2022). AlphaFold Protein Structure Database: massively expanding the 
structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res, 
50, D439-D444. 

3. Fu, L., Niu, B., Zhu, Z., Wu, S.& Li, W. (2012). CD-HIT: accelerated for clustering the next-
generation sequencing data. Bioinformatics, 28, 3150-3152. 

4. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature, 596, 
583-589 (2021). 

5. Satorras, VcG., Hoogeboom, E. & Welling, M. (2021). E (n) equivariant graph neural 
networks. In: International Conference on Machine Learning. PMLR. p. 9323-9332. 
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RNA folding is a hierarchical process in which secondary structural motifs are the first glimpses 
of an orderly organization, followed by dynamic optimizations of tertiary contacts. As such, 
RNA secondary structural elements are the basic building blocks for constructing tertiary 
structures and the 2D layouts of secondary structures serve as the blueprints for 3D folding. In 
recognition of their close connections and in the light of recent advances in RNA secondary 
structure prediction, we have sought to investigate the feasibility of using RNA secondary 
structure similarity as the key metric for searching for candidate tertiary structures. The structure 
candidates provide the backbones for assembling target atomic structures to be relaxed with 
physics-based energy minimization. 

 

Methods 
We first build a PDB library of known RNA 3D structures by downloading all RNA PDB 
structures and removing redundant sequences with sequence identity over 80% (via CD-HIT-
EST1). Then, for a given target RNA sequence, our pipeline goes through the following steps to 
predict 3D structure models.  

1) The secondary structure of the target sequence is predicted with a home-developed deep 
learning (DL) model, SeqFold2D2;  

2) The predicted secondary structure is aligned against the PDB library with three secondary 
structure pairwise alignment programs (Gardenia3, RNAforester4, and RNAdistance4);  

3) PDB Structure candidates are selected from the PDB library with best structure alignment 
scores;  

4) The backbones of the structure candidates are used to assemble 3D structure models by filling 
in full atomic details and adding missing residues;  

5) The structure models are relaxed with the molecular dynamics (MD) program NAMD5;  

6) Confidence scores are estimated as the absolute displacement of each residue before and after 
energy minimization after structure alignment.  
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Results 
While our methodology strongly depends on the existence of similar RNA secondary structures 
in our PDB library with just ~600 structures, we found over the period of the CASP15 that 
reasonable structure candidates can be found for almost all target sequences and energy 
minimization can proceed without major issues. This observation may suggest that the diversity 
of RNA secondary and tertiary structures is rather limited, especially compared with that of 
proteins, such that a rather small library provides decent coverage of the structure space. It is also 
expected that additional refinements of thus obtained structures can further improve the quality 
of prediction. Nonetheless, this method is expected to perform poorly for out-of-distribution 
sequences. Work is in progress to make better use of molecular dynamics simulations to refine 
obtained structure models, as well as to incorporate DL-based methods to improve the 
generalizability of the pipeline. 

 

Availability 
The DL model for RNA secondary structure prediction is available at 
https://github.com/qiuresearch/SeqFold2D. The complete pipeline is still under active 
development and will be made available at the earliest. 

 
1. Fu, L., Niu, B., Zhu, Z., Wu, S. and Li, W. (2012) CD-HIT: accelerated for clustering the 

next-generation sequencing data. Bioinformatics, 28, 3150-3152. 
2. Qiu, X. (2022) Decisive Roles of Sequence Distributions in the Generalizability of de novo 

Deep Learning Models for RNA Secondary Structure Prediction. bioRxiv, 
2022.2006.2029.498185. 

3. Blin, G., Denise, A., Dulucq, S., Herrbach, C. and Touzet, H. (2010) Alignments of RNA 
Structures. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 7, 309-
322. 

4. Lorenz, R., Bernhart, S.H., Honer Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F. and 
Hofacker, I.L. (2011) ViennaRNA Package 2.0. Algorithms Mol Biol, 6, 26. 

5. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, 
R.D., Kale, L. and Schulten, K. (2005) Scalable molecular dynamics with NAMD. J Comput 
Chem, 26, 1781-1802. 
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The HADDOCK team participated as a scorer group in the CAPRI 54 round. The scoring 
protocol was entirely based on the energetics of the complex, with no information coming from 
other sources such as deep learning methods or bioinformatic predictions. The scoring module of 
the new modular version of HADDOCK, HADDOCK31 
(https://github.com/haddocking/haddock3/) was used throughout the whole round (in its beta 
version). 

 

Methods 

The HADDOCK scoring pipeline consists of few different building blocks, namely 
preprocessing including topology generation, energy minimisation and scoring, and Fraction of 
Common Contacts (FCC) clustering. 

In the preprocessing stage the input ensemble is parsed and potentially problematic 
models are identified and corrected. Topologies are created for each model and missing atoms 
are added. The protonation state of histidine residues and the presence of disulfide bonds are 
automatically handled. 

The emscoring step follows, which consists of a short energy minimisation (50 steps) 
carried out with the OPLS2 force field. The minimized models are then ranked based on their 
HADDOCK score3: 

HS = 1.0 Evdw + 0.2 Eele + 1.0 Edesolv 

where Evdw and Eelec correspond to the intermolecular van der Waals and electrostatic energies, 
respectively, and Edesolv is a solvent accessible surface area-dependent empirical desolvation 
energy term4. 

During the last step of the scoring process, the structures are clustered using the FCC 
clustering algorithm5. This procedure lumps together models that share a consistent part of their 
interfacial contacts. A minimum of four models is required to form a cluster, and the input 
structures that fail to satisfy this criterion are labeled as “unclustered”. 
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The model selection is based on the HADDOCK score of each cluster, calculated as the 
average score of the best four models. A short visual inspection is carried out to exclude 
biologically implausible complexes, whose excellent scores are mainly due to unphysically 
optimal energetics. For submission, we typically select one model for each of the top five 
clusters as top 1-5 predictions. Positions 6-10 are usually filled with additional models coming 
either from the top clusters or from other clusters, depending on the case and number of clusters. 
Occasionally, unclustered structures with a particularly good HADDOCK score are also 
considered. 

 

Results 

The results for the CAPRI 54 round are yet to be published and will be summarized once 
available. 

 

Availability 

HADDOCK3 is freely available from https://www.bonvinlab.org/software/haddock3/  

 

1. Dominguez C, Boelens R, Bonvin AMJJ. HADDOCK: A Protein−Protein Docking Approach 
Based on Biochemical or Biophysical Information. J Am Chem Soc. 2003;125(7):1731-1737.  

2. Jorgensen WL, Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] 
potential functions for proteins, energy minimizations for crystals of cyclic peptides and 
crambin. J Am Chem Soc. 1988;110(6):1657-1666  

3. Vangone A, Rodrigues JPGLM, Xue LC, et al. Sense and simplicity in HADDOCK scoring: 
Lessons from CASP-CAPRI round 1. Proteins Struct Funct Bioinforma. 2017;85(3):417-423  

4. Fernández-Recio J, Totrov M, Abagyan R. Identification of protein-protein interaction sites 
from docking energy landscapes. J Mol Biol. 2004;335(3):843-865  

5. Rodrigues J.P.G.L.M., Trellet M., Schmitz C., Kastritis P.L., Karaca E., Melquiond A.S.J. and 
Bonvin A.M.J.J. Clustering biomolecular complexes by residue contacts similarity. Proteins: 
Struc. Funct. & Bioinformatic. 2021:80:1810-1817  
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We developed HelixFold1 and HelixFold-Single2, and combined them for protein structure 
prediction in CASP15. HelixFold and HelixFold-Single are mainly based on the pipeline of 

AlphaFold23, where HelixFold relies on the MSA to extract the co-evolution knowledge, while 
HelixFold-Single is an MSA-free method that takes advantage of a large-scale protein language 
model. Large-scale unlabeled data and more distillation data are collected for model training. 
Besides, for each target, many variant versions of HelixFold and HelixFold-Single are utilized to 
produce the candidate structures, and the best are selected and submitted to CASP15. 

 
Methods 

Abundant Data: We collected about 200 million targets from UniRef304 (2021-03) and 

hundreds of thousands of protein structures from RCSB PDB5,6. We also produced and collected 
about one million self-distillation protein structure data from UniClust307 and AlphaFold Protein 

Structure Database8. We applied HHblits9,10 and JackHMMER11 to search against BFD12,13, 

UniRef904 and MGnify14 clusters for generating MSAs separately. In addition, we used 

HHsearch9,10 tool to find potential templates from PDB70.  

HelixFold and HelixFold-Single: HelixFold is an MSA-based protein structure 
prediction pipeline based on the architecture of AlphaFold2. Compared with the original 
AlphaFold2, we utilized much more distillation data for training HelixFold to improve the 
prediction accuracy. HelixFold-Single is an MSA-free model, combining the protein language 
model and the geometric modeling for protein structure prediction. The protein language model 
is served as an alternative to MSA to extract the co-evolution. First, the protein language model 
is trained with 200 million unlabeled targets. Second, the protein language model and the 
geometric modeling are jointly trained with the structure data to provide efficient and accurate 
protein structure predictions. 

Ensemble of Multiple Variants: With the increase in the number of recycling and the 
number of layers in the structure module, we found that the accuracy of some targets can achieve 
further improvement. Consequently, for each target, we predict the candidate structures by 

mailto:xiangyingfei01@baidu.com
mailto:fangxiaomin01@baidu.com
mailto:wangfan04@baidu.com
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multiple variant versions of HelixFold and HelixFold-Single with the different numbers of 
recycling and layers in the structure module. The top five predictions are selected according to 

pLDDT and pTM3 scores. 

 

Availability 

The data and tools for data processing used in our system are publicly available. We provide 
online service for HelixFold at https://paddlehelix.baidu.com/app/drug/protein/forecast and 
HelixFold-Single at https://paddlehelix.baidu.com/app/drug/protein-single/forecast. 

 
1. Wang, G., Fang, X., Wu, Z. et al. (2022). Helixfold: An efficient implementation of 
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2. Fang, X., Wang, F., Liu, L. et al. (2022). HelixFold-Single: MSA-free Protein Structure 

Prediction by Using Protein Language Model as an Alternative. arXiv preprint 
arXiv:2207.13921. 

3. Jumper, J., Evans, R., Pritzel, A. et al. (2021). Highly accurate protein structure prediction 
with AlphaFold. Nature 596, 583-589. 
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We participated in TS category of CASP15 with group "hks1988" and number 354. We 
submitted a model which is selected from the released TS models (BAKER-SERVER and 
AlphaFold models, about 15 models) by using our protein model accuracy estimation method 
SARTlddt. The local accuracy of the submitted model is the same as the one of the selected 
model and the global accuracy is SARTlddt_G. 

A new single model-based local quality score SARTlddt_L is based on linear 
combination of 4 components extracted from a sphere centered on the residue of interest. For 
local score, linear regression analysis is performed between 4 components and LDDT of the 
interested residue. The global score SARTlddt_G is the average of SARTlddt_L.31369 CASP 
(CASP9, CASP11 and CASP13) models are used as training set.  

 

Methods 

Calculation of four terms in a sphere (step1):  

In the first step, we compute four terms in a sphere (radius 12 Å) centered on the residue of 
interest. The first component is SS8 = SS8_N / N. N is the total number of residues within the 
sphere. SS8_N is 8 states-agreement number between the predicted (by SSpro8 of 
SCRATCH1.3[1]) and the calculated secondary structure (by DSSP[2]) of amino acid residues 
within the sphere. 

  The second component is SS8BIN = SS8BIN_N / N. SS8BIN_N is the number of residues 
on which the predicted secondary structure from primary sequence equals to the calculated one 
from protein model and the predicted binary solvent accessibility (by ACCpro of SCRATCH1.3) 
equals to the transformed one. To transform the decimal solvent accessibility calculated by DSSP 
into binary state, decimal solvent accessibility is divided by maximum one of corresponding 
amino acid residue. Then, if the divided solvent accessibility is bigger than 0.25, it is in the 
exposed state. If not, the buried state. 

  The third is TORGHA = TORGHA_N / N. TORGHA_N indicates how well the predicted 
torsion angles are reproduced in model. That is, it is the number of residues in the sphere on 
which the difference of the predicted and the calculated ψ is less than 40. The torsion angle is 
predicted by our torsion angle predictor PredTOR based on deep residual neural network. The 
mean absolute error (MAE[3]) between the predicted and the real value of φ is 16.58 and that of ψ 
is 18.63 for the testing set consisting of 716 protein chains. 
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  The last is ACC20GHA = (P5 + P10 + P20 + P40)/4. To compute ACC20GHA, we first 
calculate differences of the predicted and the calculated solvent accessibilities of residues in the 
sphere. Then, we compute P5, P10, P20 and P40. Here, Pi is percentage of residues of having the 
difference smaller than a threshold i in the sphere. The final ACC20GHA is an arithmetic mean of 
four percentages obtained using 4 thresholds 5, 10, 20 and 40, the same ones applied to calculate 
GDT-HA score[4]. 

Smoothing by the second window (step2):  

After calculating four terms in the sphere of residue of interest (step1), we conduct smoothing by 
a window (step2). The so-called “smoothing by the window” means averaging the terms 
obtained in step1 in linear sliding window (window size=5) centered on the residue of interest.  

Calculation of SARTlddt (step3): 

The SARTlddt_L is based on linear combination of 4 components described above (step1 and 
step2). Weights of 4 components and constant term are obtained by linear regression analysis 
between 4 components and LDDT score calculated from 6887535 residues of 31369 CASP 
(CASP9, CASP11 and CASP13) models.   

SARTlddt_G is the average of SARTlddt_L.  

Selection of a good model (step4):  

We selected a model with the highest SARTlddt_G score from the released TS models (BAKER-
SERVER and AlphaFold models, about 15 models). The coordinates and local accuracy of the 
submitted model is the same as the ones of the selected model and the global accuracy is 
SARTlddt_G. 
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The IntFOLD server1 integrates our latest methods for tertiary structure (TS) prediction, domain 
boundary prediction, prediction of intrinsically disordered regions, prediction of protein-ligand 
interactions and quality assessment (QA) of predicted 3D models of proteins. Following the 
successes of our previous IntFOLD servers2,3, which used ModFOLD variants4 to rank models, 
our initial focus for the IntFOLD7 server at CASP15 was the further improvement of global 
model ranking and local model quality scoring, using our newly improved ModFOLD9 method. 
In addition, we integrated two new deep learning methods for tertiary structure modelling: 
LocalColabFold5 (1.0.0) and trRosetta26. 

 

Methods 

For CASP15, a bespoke version of the IntFOLD7 server was developed in order to return 
appropriately formatted results for the tertiary structure (TS) prediction category. Additionally, 
the local quality assessment predictions (QMODE3) using ModFOLD9 were returned as scores 
in the B-factor column of each TS model file. Our TS method was developed with the aim of 
fixing local errors, identified in an initial pool of single template models, through iterative multi-
template modelling. The method attempts to exploit our previous CASP successes in accurately 
predicting local errors in our models7 by taking the global and local per-residue errors into 
consideration during the multiple template selection stage8. For the initial fold recognition stage, 
14 different methods were installed and run in-house to generate up to 10 sequence-to-structure 
alignments each, resulting in up to 140 alternative single-template-based models being generated 
for each CASP target. The following fold recognition methods were used: SP39, SPARKS29, 
HHsearch10, COMA11, SPARKSX12, CNFsearch13 and the 8 alternative threading methods that 
are integrated with the LOMETS package14 (PPA, dPPA, dPPA2, sPPA, MUSTER, wPPA, 
wdPPA and wMUSTER). 

 In the next stage, all single-template models were assessed using ModFOLDclust215 in 
order to assign global and local model quality scores. Using the single template model quality 
scores, and other criteria involving template coverage, the corresponding alignments were then 
selected from each fold recognition method and used to build multiple-template models, with the 
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aim of minimizing local errors in the final models. The alternative multi-template modelling 
alignment selection methods resulted in the generation of a new population of up to 124 multi-
template models for each target. Additionally, I-TASSER light16 (for targets <500 residues; run 
in “light mode” with wall-time restricted to 5h), HHpred17, DMPfold18, trRosetta26 and 
LocalColabFold5 version 1.0.0 were used to generate up to 5 models each, which were then 
added to the final pool of alternative multi-template models for ranking.  In the final stage of the 
IntFOLD7 method, the models in the final reference set were then evaluated using ModFOLD9 
(described below) and the top 5 ranked models were submitted. 

ModFOLD9 is the latest update to our server for evaluating the quality of tertiary 
structure models. The ModFOLD9 protocol builds on that of ModFOLD84 by including 6 new 
integrated scoring methods: 3 new Contact Distance Agreement (CDA) scores, and the 3 variants 
of the DeepAccNet19 methods (DeepAccNet, DeepAccNet-Bert and DeepAccNet-MSA). Our 
CDA scores measure the agreement between the residue contacts predicted from the target 
sequence and the measured Euclidean distance (in Å) between residues in the predicted 3D 
model3. The contact predictions from trRosetta26, DeepDist20, and TripletRes21, were used for 
the three new CDA scores, CDA_trR2 and CDA_DD and CDA_TR respectively. As in previous 
versions of ModFOLD, neural networks were then used to combine the component per-
residue/local quality scores from each of the scoring methods, resulting in a final consensus of 
per-residue quality scores for each model. For each TS model, the model rankings and predicted 
per-residue quality scores (plDDT*100) from ModFOLD9 were added to the B-factor column 
for each set of atom records. 

 For tertiary structure targets >1200 residues, due to lack of resources, we were unable to 
complete predictions from all of the IntFOLD7 component methods within 72h. Therefore, for 
targets >1200 residues we returned our TS models that were already completed using our 
MultiFOLD protocol (see our MultiFOLD abstract for details).  

 

Results 

IntFOLD7 and ModFOLD9 are continuously benchmarked using the CAMEO resource22. 
According to the 3D and QE benchmark results, both of our new servers show improved 
performance over our previous versions of those methods and they are competitive with the other 
public servers in their respective categories. 

 

Availability 

The IntFOLD7 server is available at: 

https://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD7_form.html 

 

https://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD7_form.html
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Our group participated in the TS (Tertiary Structure), H (heteromeric assembly), and LG 
(Ligand) prediction categories for both protein and RNA targets. 

 

Methods 

Single-chain protein structure prediction: We generated MSAs for the deep learning 
network inputs using a following two-step strategy. For a query sequence, we first performed 3 
iterations of search on UniRef30 (2021_03) and UniRef_901 (2022_01) with hhblits2 and 
jackhmmer3, respectively, to obtain two MSAs. These two MSAs were combined and then used 
as input profiles for the second step. In the second step, the MGnify4 (2019_05), Metaclust_nr5 
(2018_06), and BFD (Latest) databases were used. The search was performed with only a single 
iteration with jackhmmer and hhblits. In addition, the MSAs used in ColabFold6 were computed 
independently using mmseqs27 and their corresponding database. All resulting MSAs from both 
first and second step were simply concatenated and then used as input for the network. 

In addition to predictions with the AlphaFold28 that were made available by DeepMind, 
we trained a separate structure module for single-chain prediction. The input for this structure 
module was the pair and single representations generated from the regular AlphaFold inference 
pipeline. The training dataset contained around 30k sequences with 25% sequence similarity. 
Single chain targets with 25% sequence similarity to the training set were used as a validation 
set. We used all losses along with its weight settings as claimed in the AlphaFold paper, except 
for MSA and distogram losses, as they are not applicable to the structure module. Using both 
original Alphafold2 and the model we trained by ourselves, in total, we had 10 predictions for 
each target. Predicted structures were ranked based on the mean pLDDT values. Literature 
information were used for model selection and modifying models when available. When 
necessary, manual modification of input MSA as well as the resulting structure models was also 
performed. 



135 

Protein complex assembly: For protein complexes, MSAs generated as above were used 
to generate AlphaFold models. Models were generated using Alphafold-Multimer and with other 
existing implementation on servers. Models from different sources were ranked by calibrated 
model quality estimates. For large prediction targets where reasonable models could not be 
generated in a single inference, models were broken down, either by reducing stoichiometry or 
separating plausible domains, and combined using minimization by 
phenix.geometry_minimization9.   For homomeric targets where AlphaFold-Multimer still failed 
to generate reasonable models, we used SAM10 for symmetrical docking. We first ran 
AlphaFold-Multimer on repeated target sequences and obtained subunit structures, which were 
fed to SAM to produce complexes with various symmetries. We essentially ranked the structures 
using the score output by SAM. Manual modifications of models and input MSAs were 
performed when necessary. 

RNA structure prediction: We mainly used Rosetta FARFAR211 for modeling RNA 
targets with secondary structure constraints generated from IPknot++12. For some targets we 
manually edited the secondary structure constraints on the basis of literature information as well 
as particular observations, such as complementarity of bases in the target sequences. Based on 
literature as well as sequence search in RNAcentral and BLAST nt, if suitable 3D structure 
templates were found, rna_thread in Rosetta was used for a sequence alignment with the target 
and to generate a (partial) template for the modeling of the aligned region. We used rna_score in 
Rosetta and ARES13 as well as Ranksum of the two scores for model selection as the sum of 
ranks of independent scores performed well in our experience in protein docking14. For the 
RNA-protein complex targets, T1189/R1189 and T1190/R1190, we modeled protein and RNA 
separately then placed them by superimposing onto template structures, after which we 
performed phenix.geometry_minimization. 

 Protein- and RNA-ligand complex assembly: GLIDE XP15 and Induced Fit Docking 
(IFD)16 tools from the Schrödinger software suite were used for RNA and Protein-ligand 
complex assembly when the ligand was a small molecule. We compared rigid-body docking 
(GLIDE) with flexible side-chain docking (IFD) and selected the protein-ligand complexes with 
the best docking score. AutoDock17,18 was used when the ligand was a metal ion. In cases where 
structural templates that had the same ligand were found for the given target sequences on PDB, 
we superimposed the ligand from the template onto our modeled target using PyMOL19 followed 
by restrained Molecular Dynamics simulations or geometry optimization with the Merck 
Molecular Force Field (MMFF94) implemented in PyMOL to clear steric clashes.  

Automatic server: We used an automatic protein structure prediction pipeline to submit 
both monomer and complex TS targets as Kiharalab_Server20. For monomeric protein modeling, 
the deep learning method described above was used alongside AlphaFold. pLDDT predictions 
were calibrated so that model quality estimates from both models could be directly compared. 
The top 5 models by pLDDT were then submitted. For multimeric protein modeling, AlphaFold-
Multimer was run using MSAs generated as described above. In cases where GPU memory was 
exhausted before models were output, the size or stoichiometry of the input was reduced until 
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models were generated. For RNA modeling, 10 replicas of SimRNA21 were run for 1e6 iterations 
each and ranked by their output scores. 
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We present two deep learning methods, named LAW and MASS, for protein single-model 
estimation of multimeric model accuracy or quality assessment (EMA or QA). LAW was 
implemented with graph and heterogeneous graph neural networks, and MASS was built as 
graph neural networks. Both methods were trained to predict an overall fold accuracy (global 
score), an overall interface accuracy (global interface score), and confidence scores for interface 
residues (local interface score).  

Methods  

We used the 22 homomers and 10 heteromers of CASP13-14 for training and four homomers 
and four heteromers of CASP13-14 for validation. TM score1, QSbests2, and the accuracy of the 
predicted interface were used as the target values for global score, global interface score, and 
local interface score, respectively. For each residue of a multimeric model, we generated 83 node 
features, which can be classified into six categories: (1) one hot coding of amino acid sequence; 
(2) position-specific scoring matrix (PSSM) created using PSI-BLAST from the multiple 
sequence alignment (MSA); (3) normalized Rosetta energies; (4) SOV_refine scores3 for 
sequence-based and model-based secondary structure (SS) and solvent accessibility; (5) MASS4 

protein statistical potentials, including pseudo-bond angle potential (PAP), accessible surface 
potential at the atomic level (ASPA), sequence separation-dependent potential (SSDP), contact-
dependent potential (CDP), relative solvent accessibility potential (RSAP), and volume-
dependent potential (VDP); and (6) sinusoidal positional encoding. Additionally, we also used 
the mean, median, standard deviation, and variance of ESM5 features in predicting the global 
score of LAW and all scores of MASS. Edges were created for any residue pairs that have a CB-
CB distance <=8 Å (CA in the case of Glycine). Ten features were generated for each edge: the 
distance of residues, the angle between two residues, torsional angles (omega, theta, and phi), 
and extended contact-dependent potential (CDP) & relative solvent accessibility potential 
(RSAP) (if the residue pairs are in protein interfaces). We generated the global SOV_refine 
consistency scores for SS and solvent accessibility as global features.  

The global-score predictor of LAW used three graph network6 blocks followed by a fully 
connected layer and a sigmoid function. The global-interface-score predictor of LAW applied 
three RGATConv7 layers on node features, and then the predictor  
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concatenated the results of scattering mean function on the node features and scattering max and 
mean functions on the edge features. A fully connected layer and a sigmoid function were 
applied to the concatenated results. The local-interface-score predictor of LAW used three graph 
network6 blocks followed by a sigmoid function to update edge and node features.  

The global-score predictor of MASS used three principal neighborhood aggregation (PNA)8 

layers followed by a global mean pooling layer. The last layer contains a fully connected layer 
and a sigmoid function. The networks of the global-interface-score predictor and local-interface-
score predictor of MASS have almost the same structure as the global-score predictor of MASS, 
except that the global-interface-score predictor used two PNA layers, and the local-interface-
score predictor used six PNA layers.  

 
1. Zhang, Y. and J. Skolnick, Scoring function for automated assessment of protein structure 

template quality. Proteins: Structure, Function, and Bioinformatics, 2004. 57(4): p. 702-710.  
2. Bertoni, M., et al., Modeling protein quaternary structure of homo-and hetero-oligomers 

beyond binary interactions by homology. Scientific reports, 2017. 7(1): p. 1-15.  
3. Liu, T., Z.J.S.C.f.B. Wang, and Medicine, SOV_refine: A further refined definition of segment 

overlap score and its significance for protein structure similarity. 2018. 13(1): p. 1-10.  
4. Liu, T. and Z.J.B.b. Wang, MASS: predict the global qualities of individual protein models 

using random forests and novel statistical potentials. 2020. 21(4): p. 1-10.  
5. Rives, A., et al., Biological structure and function emerge from scaling unsupervised learning 

to 250 million protein sequences. Proceedings of the National Academy of Sciences, 2021. 
118(15): p. e2016239118.  

6. Battaglia, P.W., et al., Relational inductive biases, deep learning, and graph networks. arXiv 
preprint arXiv:1806.01261, 2018.  

7. Busbridge, D., et al., Relational graph attention networks. arXiv preprint arXiv:1904.05811, 
2019.  

8. Corso, G., et al., Principal neighbourhood aggregation for graph nets. Advances in Neural 
Information Processing Systems, 2020. 33: p. 13260-13271. 

  



141 

LCBio  

Structure prediction of RNA and RNA complexes using a combination of different 
modeling methods  

C. Nithin1, M. Lenart1, 2, D. Sztuczka1, 2, M. Zalewski1, M. Kurcinski1, and S. Kmiecik1 
1 - Laboratory of Computational Biology, Biological and Chemical Research Centre, Faculty of Chemistry, 

University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland , 2 - Faculty of Physics, University of Warsaw, 
Ludwika Pasteura 5, 02-093 Warsaw, Poland 

sekmi@chem.uw.edu.pl 

Key: Auto:N; CASP_serv:N; Templ:N; MSA:Y.N; Fragm:Y.v; Cont:Y; Dist:Y; Tors:Y; DeepL:Y; 
EMA:Y; MD:N 

 

The three-dimensional structure (3D) prediction of RNA molecules is in infancy. Various 
methods were developed for 3D prediction.  Here, we use a combination of different methods to 
perform the predictions for the CASP15 targets. 

 

Methods 

Firstly, we gathered information about the RNA sequence from various databases and literature. 
If available, information on the family and multiple sequence alignments was retrieved from the 

Rfam and the RNAcentral databases1-2. We used ViennaRNA, RNAStructure, CentroidFold, 

ContraFold, UFold, and IPknot to predict the secondary structure of the RNA3-4. In addition, 
whenever RNAcentral returned a secondary structure for the sequence, we added it to the set of 
predicted secondary structures. In addition, we enriched the secondary structures based on the 
information from the literature. The consensus secondary structure from the multiple predictions 
served as a guide to prepare restraints for the 3D predictions. We used four different methods, 

SimRNA, DeepFoldRNA, FARFAR, and Vfold, to predict the 3D structure5-8. The simulations 
were performed with and without restraints to sample the conformational landscape of the RNA 
molecule. The top-scored models from the different methods were selected for further analysis 
and checked for convergence to a similar architecture and topology. The selected models were 
subjected to high-resolution refinements using QRNAS to minimize the errors introduced by the 

coarse-grain modeling methods9.   

For the RNA-ligand complexes, the putative pockets were identified based on the 3D 
coordinates of structures containing the same ligand with an RNA and the conservation of 
secondary structure elements. Superposition of the pocket regions in the models to the pockets 
from known structures served as the guidance to adapt the ligand coordinates for preparing the 
initial poses of the complex. To optimize the position of the ligand in the complex, we performed 
short runs of energy minimization.   
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In the case of RNA-protein complexes, the RNA structure was prepared by Frankenstein 
modeling, where part of the structure was built by homology modeling and combined with the 
model of the remaining RNA structure. The protein structures were homology-modeled, and the 
complex was prepared based on the known complexes.   

We optimized the 3D structures further with Molecular dynamics simulations (whenever 
computationally possible) and performed clustering of the trajectories to pick the representative 
structures.  

Results 

The RNA secondary structures were predicted using different methods and the consensus 
secondary structure from these predictions served as a guide to prepare restraints for the 3D 
predictions. The information from literature, when available was used to enrich the restraints. 
The top models from 3D structure predictions were checked for convergence to a similar 
architecture and topology, and was subjected to further refinement. The complex structures were 
modeled for RNA-protein and RNA-ligand targets. The 3D structures were further optimized 
using MD and the representative structures were submitted to CASP. 

Availability 

The various methods used in this pipeline are available publicly. 
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In CASP15, we developed several automated workflows integrating both data-driven and 
physics-driven methods to model all kinds of systems. For proteins and protein-complexes, we 
reimplemented AlphaFold1 and AlphaFold-Multimer2 in the PyTorch framework, improved the 
inference efficiency and reproduced training processes3. Then, we fine-tuned these models with 
various settings and tried to sample the input features for diversity of predictions. Finally, 5 
models were selected for Manifold-E submission according to structure confidence score. For 
predictions of other kinds of systems such as RNA or protein-ligand complexes, we also 
developed automated workflows combing the predicted structures with physics-driven methods. 
For the human group Manifold, we made some manual interventions based on the predicted 
performance for hard cases.  

 

Methods 

Sequence and template searches: MSAs (multiple sequence alignment) were generated 
by hhblits4 against bfd1 and UniRef30_2021_03 with e-value 0.001. And JackHMMER5 was 
used to search against mgnify6, UniRef90_2022_05 and Uniprot_2022_057 with e-value 0.0001. 
Templates were searched by hmmsearch8 against pdb_seqres.txt, downloaded from 
ftp://ftp.wwpdb.org/pub/pdb/derived_data/pdb_seqres.txt on 2022_05_019. 

Protein modeling pipeline: We trained a series of models with different train configs, 
such as number of sequences, sequence crop size, number of templates, etc. Then, we tried to 
predict diverse structures by sampling MSA, templates and number of recycles. Next, all 
predictions were clustered according to structure's RMSD before relaxation. The cluster results 
were sorted according to the best conformation's plddt (for monomer) or ptm (for multimer) 
before relaxation, which was done with OpenMM10 and AMBER99 force field11. Finally, the 
top-five structures were selected as the results of the server group.  

Protein-ligand prediction: We had five steps to obtain the complex conformations. 
Firstly, five different conformations of the protein were generated from the Uni-fold3. Second, 
we performed the mixed-solvent molecular dynamics for identifying binding hotspots12. Third, 
Fpocket13 was used to detect the binding pockets and these pockets were scored by Uni-mol14. 
Fourth, the ligands were docked into the top 20 pockets with Uni-IFD and generated many 
complex conformations. Finally, we used the GBSA scoring method to select the most likely 
complex conformations for submitting. 

mailto:kegl@dp.tech
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RNA prediction: Our RNA folding process was performed as 3D structure folding with 
secondary structure information as constraints. For secondary structure prediction, we used 
RNAStructure15 and ViennaRNA16, selecting base pairs that overlap in both predictions as 
constraints and then calling our own parameterized coarse grained force field for conformational 
search using parallel tempering. 

After the conformational search, we clustered the structures, which were later equilibrated using 
OpenMM10 and the AMBER14 force field11 under implicit solvent. A batch of conformations 
was then filtered based on energy ranking. Finally, we used the statistical force field DFIRE-
RNA17 to fine-tune the conformations and selected the top 5 conformations for submission based 
on the scores given by the statistical force field. 

Manual intervention: For some orphan or designed proteins such as T1119 and T1130, 
we further increased the diversity by changing the e-value cut-off on MSA searching. 

For some very long proteins such as T1169. The server predictions were very messy. In these 
cases, the structures were predicted in segments and then assembled as the final results. 

For some proteins with symmetry such as T1115, in addition to making predictions by 
Uni-Fold symmetry, we manually built structures based on the proteins' asymmetric unit as extra 
results. 

For some additional protein complexes, there were several binding interfaces. In these 
cases, the literature's information was used to determine the binding position of protein 
complexes.  

 

Availability 

The code is available through github at https://github.com/dptech-corp/Uni-Fold 

Uni-Fold paper: https://www.biorxiv.org/content/10.1101/2022.08.04.502811v3   

Uni-Fold symmetry paper: https://www.biorxiv.org/content/10.1101/2022.08.30.505833v1. 
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In the CASP15 experiment, we developed ManiFold, a protein structure prediction system with 
integrated domain knowledge and constraints on residues. Specifically, ManiFold follows an 
encoder-decoder architecture. A single sequence-based protein language model is pre-trained and 
fused with the Evoformer model of AlphaFold21. The decoder part is an improved version of the 
AlphaFold2 structure module, into which a new invariant point attention (IPA) submodule and 
an iterative sidechain refinement submodule are incorporated, resulting in enhanced 
invariant/equivariant constraints. 

Methods 

An enhanced protein sequence representation: We pre-trained a single-sequence protein 
language model on the UniRef database2 in a self-supervised manner. We also migrated the 
MSA-based Evoformer model of AlphaFold21 into the system. The two models are integrated 
into a final representation of the input protein sequence. This alleviates the need for MSA 
information. 

Iterative optimization with sidechain information: Sidechain information is crucial for 
structure decoder but is often overlooked in previous protein structure prediction methods. To 
this end, we trained an equivariant neural network to refine both sidechain and backbone 
simultaneously. Through an iterative interaction process, sidechain features and the backbone 
features are updated alternatively one other.  

Improved protein structure decoding module: In AlaphFold2, the IPA module predicts 
the coordinates of amino acids in a Euclidean space through linear projectors, followed by 
operations invariant to rotation and translation. In ManiFold, we additionally introduced SE(3) 
Transformer3 to incorporate higher-order geometric constraints into the IPA module while 
enhancing rotation and translation equivariance.  

1. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with 
AlphaFold. Nature, 2021, 596(7873): 583-589. 

2. Suzek B E, Huang H, McGarvey P, et al. UniRef: comprehensive and non-redundant UniProt 
reference clusters. Bioinformatics, 2007, 23(10): 1282-1288.  
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For our manual predictions, we used several components from our latest IntFOLD1 and 
ModFOLD2 servers, as well as our newly developed quaternary structure modelling and scoring 
servers (see our IntFOLD7, MultiFOLD and ModFOLDdock abstracts). For our tertiary and 
quaternary structure predictions (TS format), we made use of the CASP-hosted 3D server 
models, which we ranked using our ModFOLD9 and/or ModFOLDdock methods and then 
refined with our new refinement approach, AF2MRefine. Finally, the likely ligand binding sites 
(LG format) were predicted with our latest version of FunFOLD3.  

 

Methods 

Tertiary structure predictions: The server models were ranked according to the 
ModFOLD9 global quality scores (see our IntFOLD7 abstract for more details on ModFOLD9). 
The top 10 ModFOLD9_rank models were then selected and submitted as templates to our 
AF2MRefine pipeline (see our MultiFOLD abstract), which used the LocalColabFold4 1.3.0 
method with the “--custom-template-path” option. We used 12 recycles and AMBER relaxation 
for targets <1000 residues, and we used 3 recycles without AMBER for larger targets. 

Quaternary structure predictions: For multimeric targets, the tertiary structure server 
models for each subunit and the quaternary structure server models were ranked using the 
ModFOLD9_rank and ModFOLDdockR methods respectively (see our ModFOLDdock 
abstract). The top 5 tertiary structure models for each subunit and the top 5 quaternary structure 
models were then selected and used as input templates for the AF2MRefine pipeline, as above.  

For each TS format prediction, the final model rankings and the predicted per-residue 
quality scores  (plDDT*100) from LocalColabFold were added to the B-factor column for each 
set of atom records. The overall plDDT and/or pTM scores were then compared with those of the 
top-ranked models from our MultiFOLD method. If the scores were improved upon, then the 
refined server models were submitted. If not, then our MultiFOLD models were submitted 
instead. We also used some manual inspection of multimer models to check if the final models 
had correctly interacting subunits. For some of the very large complexes (>2500 residues), due to 
our limited GPU resources, we had to divide sequences up into overlapping fragments for 
submission to MultiFOLD. The resulting modelled fragments were then manually assembled, 
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using structural superposition in PyMOL (https://www.pymol.org), to form larger, more 
complete models. 

Ligand binding predictions (FunFOLD4): The FunFOLD server3 was designed to find 
the biologically relevant binding sites and ligands in 3D models by utilising the relevant similar 
templates from the Protein Data Bank5 (PDB) identified by IntFOLD1. In CASP15, we upgraded 
our FunFOLD pipeline to predict the potential binding sites and generate poses for the target 
ligand. Our top manually selected TS models in the human prediction category were used to 
initially locate binding sites in the individual subunits. For each top model, relevant template lists 
were generated using a combination of IntFOLD71, LocalColabFold4 and Foldseek6 (a threshold 
TM-score of 0.4 was applied for the templates found by Foldseek6). FunFOLD4 was run to find 
the biologically relevant binding sites and ligands based on the combined template list and the 
top selected TS model. If the chemical properties of the ligands predicted by FunFOLD4 
matched those of the CASP target ligand, then the ligand was re-docked using Gnina7 to fit into 
the biologically relevant binding site predicted by FunFOLD4. If the chemical properties of the 
target ligands were not similar to the ligands predicted by FunFOLD4, then whole protein 
docking was performed using Gnina to find potential binding sites, which were ranked according 
to the CNN score generated by Gnina. These potential binding sites were also compared with the 
FunFOLD4 predictions, and then the most common binding sites were selected to re-dock the 
target ligands. For each target ligand, five poses were generated using Gnina for the top TS 
model (the corresponding protein receptor in the same frame of reference), which were then 
submitted in LG format. 

 

Availability 

Server methods are available via: https://www.reading.ac.uk/bioinf/ 

Software is free to download via: https://www.reading.ac.uk/bioinf/downloads/ 
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The ModFOLDdock server is our new web resource for the Quality Assessment (QA) of protein 
quaternary structure models. Three variants of ModFOLDdock were tested at CASP15, which 
were optimised for the different facets of the quality estimation problem. 

 

Methods 

The ModFOLDdock server uses a hybrid consensus approach for producing both global and 
local (interface residue) quality scores for predicted quaternary structures. The ModFOLDdock 
variants use various combinations of scores (detailed in the sections below), which are calculated 
using the output from 7 individual scoring methods: DockQJury, QSscoreJury 
QSscoreOfficialJury, lDDTOfficialJury, voronota-js-voromqa, CDA,  and ModFOLDIA.  

For the DockQJury, QSscoreJury, QSscoreOfficialJury and lDDTOfficialJury scoring 
methods, pairwise comparisons were made between each quaternary structure model and every 
other model and then the mean QS1, lDDT2 or DockQ3 scores were calculated. The difference 
between the QSscoreJury and QSscoreOfficialJury approaches was that in the former, in-house 
code was used to calculate the fraction of correctly modelled interface contacts in the complex 
normalised by the max of either the observed or predicted contacts, while in the latter, the 
OpenStructure4 package was used to obtain QS scores (using the “ost compare-structures” 
action). The voronota-js-voromqa5 method was used off-the-shelf with the “--inter-chain” and “--
output-dark-scores” options. 

The CDA score was based on the original Contact Distance Agreement (CDA) score6,7, 
which relates to the agreement between the residue contacts predicted from the sequence and the 
measured Euclidean distance (in Å) between residues in the model. In this case, we used the 
contact prediction profiles that resulted from the generation of LocalColabFold8 version 1.0.0 
multimer models. 

The ModFOLDIA method was also used to carry out structure-based comparisons of 
alternative oligomer models and it produced both global and local/per-residue interface scores. 
The first stage of the ModFOLDIA method was to identify the interface residues in the model to 
be scored (defined as <= 8Å between Cβ atoms, or Cα for GLY) and then obtain the minimum 
contact distance (Dmin) for each contacting residue. The second stage was to locate the equivalent 
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residues in all other models and then obtain the mean minimum distances of those residues in all 
other models (MeanDmin). The final Interface Accuracy (IA) score for each of the interface 
residues in the model was the absolute difference in the Si from the mean Si : IA = 1-|Si-MeanSi|, 
where Si = 1/(1+(Dmin/20)2) and MeanSi = 1/(1+(MeanDmin/20)2). The global ModFOLDIA 
score for a model was then taken as the total interface score (sum of residue scores) normalised 
by the maximum of either the number of residues in the interface or the mean number of 
interface residues across all models for the same target. 

 

ModFOLDdock: This variant produced predicted scores optimised for positive linear 
correlations with the observed scores, i.e., the predicted overall quality scores correlated well 
with the observed overall quality scores, according to the assessors’ formulae for CASP14 
multimer models9. The overall fold accuracy (column 2 in the QA file) was calculated from the 
mean of the DockQJury and the lDDTOfficialJury scores. The overall interface accuracy 
(column 3) was calculated from the mean of the DockQJury and the QSscoreOfficialJury scores. 
Additionally, confidence scores (IA scores) for all of the interface residues in each model were 
calculated using the ModFOLDIA method (as shown above). 

 

ModFOLDdockR: This variant produced predicted scores optimised for ranking, i.e. the top-
ranked models (top 1) should have higher observed overall accuracy, but the relationship 
between predicted and observed scores may not be linear. The overall fold accuracy (column 2) 
was calculated from the mean of the QSscoreJury, lDDTOfficialJury and voronota-js-voromqa 
scores. The overall interface accuracy (column 3) was calculated from the mean of the 
DockQJury, QSscoreOfficialJury and voronota-js-voromqa scores. The confidence scores for all 
of the interface residues in each model were calculated from the mean of the IA score and the 
per-residue score from voronota-js-voromqa. 

For the very large complexes (>1500 residues total length of all subunits), due to CPU 
and RAM limitations, we could not carry out all-against-all pairwise structural comparisons 
using all approaches within the 48h time window. So in these cases, for both the ModFOLDdock 
and ModFOLDdockR methods, we initially scored all models using voronota-js-voromqa and 
then selected just the top 40 models to act as the reference set for all model comparisons. 

 

ModFOLDdockS: This variant used a quasi-single model approach to score models. Sets of 
reference multimer models were firstly generated from the input sequences using our 
MultiFOLD method (see our MultiFOLD abstract for details) and then each model was 
compared individually against the reference set using the 7 individual scoring methods described 
above. The overall fold accuracy (column 2) was calculated from the mean of the DockQJury 
and the lDDTOfficialJury scores. The overall interface accuracy (column 3) was calculated from 
the mean of the DockQJury and the QSscoreOfficialJury scores. The confidence scores for all of 



154 

the interface residues in each model were calculated from the mean of the IA, the voronota-js-
voromqa and the CDA scores. 

 

Availability 

The ModFOLDdock server is available at: 

https://www.reading.ac.uk/bioinf/ModFOLDdock/ModFOLDdock_form.html 
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MUFold and MUFold2 are two new protein complex QA methods designed on top of 
AlphaFold-Multimer. MUFold uses a single-stage machine learning method based on 
AlphaFold-Multimer results, while MUFold2 features a 2-stage machine learning method. In 
MUFold2, a model is first trained to make initial predictions using the output of AlphaFold-
Multimer. Then, a second pre-trained predictive model is used to generate more accurate 
predictions.   

 

Methods 
TS/QS: The monomer and assembly 3D structure prediction are done using the publicly 

available AlphaFold-Multimer1 with postprocessing methods we developed for some difficult 
targets. The output is later used as input to our QA algorithms, which will be the focus of this 
abstract. 

QA: The input of the algorithm is the target protein sequence S and a predicted protein 
model M. 

Step 1.  Run AlphaFold-Multimer to get 25 unrelaxed predictions UiPj, where i=1..5, j=0..4, 
(unrelaxed_model_[1-5]_multimer_v2_pred_[0-4].pdb) and 25 relaxed ones  RiPj, where i=1..5, 
j=0..4, (relaxed_model_[1-5]_multimer_v2_pred_[0-4].pdb). During CASP15, we simply used 
our results from our 3D structure prediction. 

Step 2.  Calculate TMscore between model M and U[1-5]P[0-4] using MM-align2 to get 
TMS_U[1-5]P[0-4]. Do the same with R[1-5]P[0-4] to get TMS_R[1-5]P[0-4]. 

Step 3.  Divide unrelaxed and relaxed AlphaFold-Multimer predictions respectively into five 
groups in a way that each group has the same P index, i.e., U[1-5]P0, U[1-5]P1, U[1-5]P2, U[1-
5]P3, U[1-5]P4, and R[1-5]P0, R[1-5]P1, R[1-5]P2, R[1-5]P3, R[1-5]P4. 

Step 4.  For each group in Step 3, use a machine learning method based on the models in this 
group and pre-generated features to train a predictive model. Use this machine learning model to 
make an initial QA prediction on protein model M. 
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Step 5.  Feed the QA predictions on protein model M from different groups and additional 
protein features like sequence information to a pretrained machine learning model to make the 
final QA prediction on M. The difference between MUFold and MUFold2 is that MUFold does 
not consider the output from step 4, whereas MUFold2 considers the outputs from both step 2 
and 4. 

 

1. Evans, R., et al. (2021). Protein complex prediction with AlphaFold-Multimer. BioRxiv 
2021.10.04.463034; doi: https://doi.org/10.1101/2021.10.04.463034 

2. Mukherjee, S., & Zhang, Y. (2009). MM-align: a quick algorithm for aligning multiple-chain 
protein complex structures using iterative dynamic programming. Nucleic acids research, 
37(11), e83. 
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In the CASP15 experiment, we deployed three different quality assessment methods for 
estimating the accuracy of predicted multimer models. MULTICOM_egnn is a single-model 
deep learning method using the gated-graph transformer architecture to predict the global quality 
of a multimer model. MULTICOM_deep is a single-model deep learning method that uses an 
equivariant graph neural network to predict both the per-residue local distance difference test 
(lDDT) scores and the global quality score of a multimer model. MULTICOM_qa is a multi-
model method that combines the pairwise similarity between multimer models and the inter-
chain contact probabilities predicted by deep learning methods to estimate their global quality.  

 

Methods 

MULTICOM_egnn 

MULTICOM_egnn is built on top of our in-house single-model quality assessment method – 
DProQ [1] that takes a multimer model as input and represents it as a 3D graph to predict the 
DockQ [2] score of the model. The node features include one-hot amino acid encoding, 
secondary structure type, relative accessible surface area, phi angle, psi angle, and graph 
Laplacian positional encoding of residues. The edge features include Ca-Ca distance, Cb-Cb 
distance, N-O distance, inter-chain contact encoding, permutation-invariant chain encoding, and 
edgewise positional encoding. It uses a gated-graph transformer architecture to update node and 
edge embeddings during graph message passing to predict the DockQ score of the multimer 
model.  

MULTICOM_deep 

MULTICOM_deep is based on our in-house single-model quality assessment method – 
DeepRefine [3]. It represents a multimer model as a 3D graph, where the nodes of the graph 
correspond to residues in the model and the edges are defined according to each residue’s 20 
nearest neighbors in 3D space. For this 3D graph, DeepRefine generates geometric features for 
each of its nodes and edges such as cosinusoidal and sinusoidal encodings of the residue’s 
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backbone dihedral angles and distance, direction, and orientation between residues. With such 
3D graphs instantiated with these features, it then applies a steerable equivariant graph neural 
network [4] to predict the input structure’s quality (i.e., nativeness). Specifically, DeepRefine 
predicts the lDDT score corresponding to the nativeness of the 3D position of each node 
(residue). The average of the per-residue lDDT scores is used as the predicted global quality of 
the multimer model.  

MULTICOM_qa 

MULITCOM_qa is a multi-model quality assessment method based on our in-house method 
MultimerEva. It takes a pool of multimer models of a target as input to predict their global 
quality score. The multimer models are compared with each other using MMalign [5]. The 
average TM-score between a model and all the other models in the pool is calculated as one 
measure of the quality of the model (denoted as avg_pairwise_score). Moreover, for each 
multimer model, the probabilities of interchain residue-residue contacts in the model are 
predicted by our deep learning tools for predicting interchain residue-residue contacts and/or 
distances [6-8], which are averaged as another measure of the global quality of the model 
(denoted as avg_interface_score). Finally, the weighted sum of avg_pairwise_score and 
avg_interface_score is used as the final predicted quality score of each multimer model in the 
pool.  

Availability 

DProQ (MULTICOM_egnn) is available at: https://github.com/BioinfoMachineLearning/DProQ; 
DeepRefine (MULTICOM_deep) is available at: 
https://github.com/BioinfoMachineLearning/DeepRefine.  

 

1. Chen, X., Morehead, A., Liu, J., & Cheng, J. (2022). DProQ: A Gated-Graph Transformer for 
Protein Complex Structure Assessment. bioRxiv. 

2. Basu, S., & Wallner, B. (2016). DockQ: a quality measure for protein-protein docking 
models. PloS one, 11(8), e0161879. 

3. Morehead, A., Chen, X., Wu, T., Liu, J., & Cheng, J. (2022). EGR: Equivariant Graph 
Refinement and Assessment of 3D Protein Complex Structures. arXiv preprint 
arXiv:2205.10390 

4. Brandstetter, Johannes, et al. "Geometric and physical quantities improve E(3) equivariant 
message passing." arXiv preprint arXiv:2110.02905 (2021). 

5. Mukherjee, S., & Zhang, Y. (2009). MM-align: A quick algorithm for aligning multiple-chain 
protein complex structures using iterative dynamic programming. Nucleic Acids Research, 
37(11), e83. https://doi.org/10.1093/nar/gkp318 

6. Quadir, F., Roy, R. S., Soltanikazemi, E., & Cheng, J. (2021). DeepComplex: A Web Server 
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For the CASP15 experiment, we developed a protein assembly prediction system on top of 
AlphaFold2-Multimer1’s superior capability of generating structural models. While using the 
deep learning models of AlphaFold2-Multimer as the underlying engine to generate structural 
models from alignments and templates, our system focuses on improving the input fed to 
AlphaFold2-Multimer and evaluating and refining the outputs generated by AlphaFold2-
Multimer to enhance multimer structure prediction. Specifically, we developed several different 
algorithms to sample multiple sequence alignments, identify structural templates, rank structural 
models generated by AlphaFold2-Multimer, and refine the structural models via a novel 
structure-alignment based refinement method. Particularly, we leverage monomer structure 
prediction and sensitive structure alignment to generate deep multiple sequence alignments and 
identify remote templates to improve and refine assembly (multimer) prediction.  These different 
methods were tested as two server predictors (MULTICOM_deep and MULTICOM_qa) and two 
human predictors (MULTICOM and MULTICOM_human) in the assembly structure prediction 
in CASP15. 

 
Methods 
 
1. The multimer (assembly) structure prediction pipeline 
 

The protein structure prediction pipeline of our multimer prediction system consists of six 
sequential steps: (1) monomer (tertiary) structure prediction for each unit of a multimer, (2) 
multiple sequence alignment sampling, (3) template identification, (4) model generation, (5) 
model ranking, and (6) model refinement. Except that the model generation is handled by the 
deep learning models of AlphaFold2 and AlphaFold2-Multimer, all the other steps are largely 
based on our customized algorithms, which are described in detail below.  
 

Monomer (tertiary) structure prediction for each unit of multimer. Our in-house tertiary 
structure prediction system of optimizing the multiple sequence alignments and templates fed to 
AlphaFold22 and ranking and refining structural models generated by AlphaFold2 is used to 
generate multiple sequence alignments (MSAs) and predict tertiary structures for each unit of a 
multimer target (see our server tertiary structure prediction abstract entitled “Improving Tertiary 
Structure Prediction by Alignment Sampling, Template Identification, Model Ranking, Iterative 
Refinement, and Protein Interaction-Aware Modeling” for technical details).  
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Multimer MSA sampling. The MSAs of the subunits of the multimer target are 
concatenated using potential protein-protein interactions extracted from multiple sources such as 
the species information, UniProt accession IDs, the protein-protein interactions in the STRING3 
database, and  the protein complexes in the Protein Data Bank4 (PDB), resulting in a series of 
MSAs for the multimer. Moreover, the predicted tertiary structures of the units of the multimer 
target are also searched against an inhouse complex template database built from PDB and 
against the single-chain models in the AlphaFoldDB (the version released before March 2022) 
by a structure alignment tool - FoldSeek5 to identity similar structural units in a template 
complex or similar non-overlapped domains of an AlphaFoldDB model, whose sequences are 
concatenated to generate MSAs for the multimer. This structure alignment-based method can 
generate deeper MSAs for some hard targets than traditional sequence alignment methods, 
leading to better structure prediction.  
 

Multimer template identification. The sequence of the multimer is searched against 
PDB70 and an inhouse complex template database built from PDB by HHsearch6 to identify the 
structural templates. The templates for each subunit are concatenated together if they share the 
same PDB code. Moreover, the predicted tertiary structural model of each unit of the multimer is 
searched against the inhouse structure template database by FoldSeek to identify more templates, 
which are concatenated as multimer templates.  This structure alignment-based method can 
identify some remote structural templates for multimers that cannot be found by traditional 
sequence alignment methods.  
 

Multimer structural model generation. Each combination of the concatenated MSAs and 
templates is fed for the customized AlphaFold2-Multimer to generate multimer structures. 
Usually, more than 100 models are generated for a target.  
 

Multimer model ranking. MultimerEva, an inhouse tool of evaluating the quality of 
multimer models based on the average pairwise structural similarity score between models of a 
target, is used to rank the generated models. The pairwise structural similarity score is calculated 
by MM-align7. The confidence score generated by AlphaFold-Multimer is also used to rank the 
models. Finally, the average of the two is applied to rank the models as well.  
 

Multimer Iterative model refinement. We developed a novel iterative model refinement 
method based on structure search and alignments. An initial target structural model is used as 
input for FoldSeek5 to search for similar structures in the template databases curated from the 
PDB and the AlphaFoldDB (the version released before March 2022). The output of the 
FoldSeek includes the e-value of the similar structural hits as well as the structural alignments 
between the target model and the hits, which are converted into the sequence alignments between 
them. The MSAs and templates of the subunits generated from FoldSeek search are concatenated 
if they are from the same PDB complex structure or the non-overlapped regions of the same 
single-chain AlphaFoldDB model. The sequence alignments are added into the original MSA to 
generate a deeper MSA.  The new MSA and the top-ranked structural hits found by FoldSeek are 
used as MSA and template inputs for the customized AlphaFold2-Multimer to generate the 
refined models. If the highest confidence score of the newly refined models is higher than that of 
the input model, the refinement process is repeated with the refined model as input until the 
number of the refinement iterations reaches 5. This iterative, structure alignment-based 
refinement method can improve the quality of the final prediction for some hard targets. 
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2. Implementation of the CASP15 assembly (multimer) structure predictors 

 
Both the monomer and multimer prediction methods in our prediction system above were 
executed to generate the models for multimer targets. Our two CASP15 multimer server 
predictors (MULTICOM_qa and MULTICOM_deep) used the AlphaFold2-Multimer confidence 
score and the average of the confidence score and MultimerEva score to rank multimer models, 
respectively. Due to the three-day time constraint, the refinement was only applied to some 
smaller multimer targets in the server prediction.  

The two human multimer predictors (MULTICOM and MULTICOM_human) generated 
more multimer models from more diverse MSAs thanks to a much longer timeline. The 
FoldSeek-based iterative model refinement was applied to most targets. MULTICOM_human 
used the average of the confidence score and the MultimerEva score to rank and select models 
for final submission, while MULTICOM applied the MultimerEva score to rank models. The 
ranking may be manually adjusted according to human inspection.   
 

1. Evans R, O'Neill M, Pritzel A, et al. Protein complex prediction with AlphaFold-Multimer. 
BioRxiv 2021. 

2. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with 
AlphaFold. Nature 2021;596:583-589. 

3. Mering Cv, Huynen M, Jaeggi D, et al. STRING: a database of predicted functional 
associations between proteins. Nucleic acids research 2003;31:258-261. 

4. Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic acids research 
2000;28:235-242. 

5. van Kempen M, Kim S, Tumescheit C, et al. Foldseek: fast and accurate protein structure 
search. bioRxiv 2022. 

6. Steinegger M, Meier M, Mirdita M, et al. HH-suite3 for fast remote homology detection and 
deep protein annotation. BMC bioinformatics 2019;20:1-15. 

7. Mukherjee, S., & Zhang, Y. MM-align: a quick algorithm for aligning multiple-chain protein 
complex structures using iterative dynamic programming. Nucleic acids research 
2009; 37(11), e83-e83 
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Since CASP14, AlphaFold21 and its extension AlphaFold2-Multimer2 has become the standard 
method for predicting protein structures. For the CASP15 experiment, we developed a protein 
tertiary structure prediction system on top of AlphaFold2’s superior capability of generating 
structural models. While using the deep learning models of AlphaFold2 as the underlying engine 
to generate structural models from alignments and templates, our system focuses on improving 
the input fed to AlphaFold2 and evaluating and refining the outputs generated by AlphaFold2 to 
enhance tertiary structure prediction. Specifically, we developed several different algorithms to 
sample multiple sequence alignments, identify structural templates, rank structural models 
generated by AlphaFold2, and refine the structural models via a novel structure-alignment based 
refinement method. Moreover, for monomer targets that are the units of multimer targets, we 
integrate monomer and multimer prediction to account for the structural change on tertiary 
structures induced by protein-protein interaction. These different methods were tested as four 
server predictors (MULTICOM_egnn, MULTICOM_refine, MULTICOM_deep, and 
MULTICOM_qa) and two human predictors (MULTICOM and MULTICOM_human) in the 
CASP15 tertiary structure prediction.   

Methods 

The general tertiary structure prediction pipeline of the system consists of five sequential steps: 
(1) multiple sequence alignment sampling, (2) template identification, (3) model generation, (4) 
model ranking, and (5) model refinement. Except for Step 3 (model generation) that is handled 
by the deep learning models of AlphaFold2, all the other steps are largely based on our 
customized algorithms, which are described in detail below.  

The tertiary (monomer) structure prediction pipeline 

Monomer multiple sequence alignment (MSA) sampling. When the system receives a 
monomer target, a monomer alignment generation pipeline is applied to generate various kinds 
of MSAs by using HHblits3,4, JackHMMER5 and MMseqs26 to search the sequence databases, 
including UniRef30, UniRef907, BFD8,9, MGnify clusters10, UniProt7, and the ColabFold DB6. 
Moreover, a DeepMSA-like alignment tool is executed in the background to search the huge 
Integrated Microbial Genomes (IMG) database to generate alternative alignments for hard targets 
having few homologous sequences.  
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Template identification. In addition to using the templates identified by the default 
AlphaFold2, the MSA generated from UniRef90 is used to search our inhouse template database 
curated from Protein Data Bank11 (PDB) to identify alternative templates.  

Monomer structural model generation. A customized version of AlphaFold2 is used to 
generate models using the MSAs and templates generated from the previous steps. Each 
combination of a MSA and a set of templates is used to generate five models. Multiple 
combinations of MSAs and templates lead to about 50 models generated for each target. If the 
depth of the MSA generated by the default AlphaFold2 is less than 200, the MSA generated from 
the IMG database is also used to generate more models.  

Model ranking. The APOLLO12 model ranking score (the average pairwise structural 
similarity between models) and the global pLDDT score generated by AlphaFold2 are used to 
rank the structural models. The average of the two is also used to rank them. Moreover, a deep 
learning method - DeepRank13 is  used in model ranking.  EnQA14 – a 3D-equivariant deep 
learning model is applied to rank the structural models when appropriate.  

Iterative model refinement. We developed a novel iterative model refinement method 
based on FoldSeek15 structure search and alignments. An initial target structural model is used as 
input for FoldSeek to search for similar structures in the template database curated from the PDB 
and the AlphaFoldDB (the version released before March 2022). The output of the FoldSeek 
includes the e-value of the similar structural hits as well as the structural alignments between the 
target model and the hits, which are converted into the sequence alignments between them. The 
sequence alignments are added into the original MSA to generate a deeper MSA. The redundant 
sequences in the new MSA are removed by HHfliter4 according to 90% sequence identity 
threshold. The filtered MSA and the top-ranked structural hits found by FoldSeek are used as 
MSA and template inputs for the customized AlphaFold2 to generate the refined models. If the 
highest pLDDT score of the newly refined models is higher than that of the input model, the 
refinement process is repeated with the refined model as input until the number of the refinement 
iterations reaches 5. 

Implementation of CASP15 predictors & integration of monomer and multimer prediction 
to account for structural changes induced by protein-protein interaction 

If a monomer target was a single-chain target, only the monomer prediction method above was 
used to generate structural models. MULTICOM_egnn server predictor used the average of the 
pLDDT score and the APOLLO pairwise similarity score to rank models; MULTICOM_refine 
refined the top five models selected by the average ranking and selected the final five models 
with the highest pLDDT scores from the 10 unrefined and refined models (5 unrefined + 5 
refined); MULTICOM_deep used pLDDT score to rank and select models; and MULTICOM_qa 
refined the top 5 models generated by the default AlphaFold2.  

The two human predictors (MULTICOM and MULTICOM_human) selected monomer models 
from a larger model pool generated in a longer period and from more diverse MSAs than the 
server predictors. The refined models were also added into the pool for ranking. DeepRank13 was 
used to rank models for MULTICOM_human, while the average ranking of the pairwise 
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similarity score and pLDDT score generated from AlphaFold2 was used to rank models for 
MULTICOM. The ranking may be manually adjusted according to human inspection.  

If a monomer target was a chain of a multimer target, the monomer models extracted 
from the multimer models predicted for the multimer target were added into the model pool for 
ranking if available (see our assembly structure prediction abstract entitled “Improving Assembly 
Structure Prediction by Sensitive Alignment Sampling, Template Identification, Model Ranking, 
and Iterative Refinement” for more details). Because the structure of a chain may change when 
interacting with other chains in a multimer, the monomer models extracted from the multimer 
models accommodating protein-protein interaction were preferred to the monomer models 
generated by the monomer structure prediction without considering the interaction between 
chains. Therefore, generally, the top ranked models extracted from multimer models were used 
as top 3-4 models submitted to CASP15, while the remaining models submitted could be the top 
ranked monomer models generated by the monomer modeling. This protein interaction-aware 
prediction of tertiary structure integrating monomer and multimer prediction appeared to 
improve prediction accuracy for many monomer targets that are a unit of multimer targets in 
CASP15.  
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We developed a template-based modeling pipeline for accurate ligand-protein interaction 
prediction (TULIP) for the CASP15 experiment, which participated in the protein-ligand 
complex structure prediction as a server predictor (MULTICOM_qa) and a human predictor 
(MULTICOM). TULIP primarily made use of a novel template-based approach to predict the 
structure of protein-ligand complexes, which was supplemented by an optional deep learning 
tool for fitting ligands into protein structures.   

 

Methods 

Input Data Preparation. Given a target ligand’s SMILES1 string, TULIP generated its 
3D structure using the cheminformatics tools (RDKit2 and Open Babel3), which could be the 
global minimum energy conformer 4. The structure of the receptor protein was predicted by our 
CASP15 3D protein structure predictors (i.e., MULTICOM_qa for the server prediction and 
MULTICOM for the human prediction). The predicted protein structures were searched against a 
database of known experimental protein structures curated from the Protein Data Bank (PDB) 
using Foldseek5 to identify similar protein structure templates containing ligands for the protein-
ligand complex structure prediction6 

Template Based Protein-Ligand Prediction. The target ligand’s 3D initial conformer 
structure, predicted receptor protein structure, and identified template structures were used as 
inputs for TULIP to extract the ligands from template structures. Like the approach employed in 
DeepProLigand7 , TULIP first aligned the template structure containing ligands into the same 
geometrical space of the predicted receptor structure using UCSF Chimera’s8 matchmaker in the 
non-interactive mode and saved the superimposed template structures and their ligands relative 
to the predicted receptor structure in a PDB file. This output PDB file was then processed by 
PyRosetta’s 9 is_ligand function, which identified the template ligands by checking each residue 
into the chemical component dictionary. The extracted unique ligands from each template and 
the target ligand were converted into molecular fingerprints to compute the molecular similarity 
between them. Morgan Fingerprint10 was used to convert the ligand molecules into fingerprints, 
and Dice and Tanimoto similarity metrics were used to measure the similarity between the 

mailto:Chengji@missouri.edu
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fingerprints. The similarity was measured as scores between 0 and 1, where scores closer to 0 
indicated no structural similarity and scores closer to 1 high structural similarity between the two 
molecules. This step provided the initial binding location of the target ligand with respect to the 
receptor protein structure.  

Furthermore, to adjust a target ligand’s binding pose and orientation by rotation and 
translation, TULIP used LS-align11 to align the target ligand with the template ligands of higher 
similarity by both flexible and rigid body alignments. Between the flexible and rigid body 
alignment’s outputs, it selected the alignment that had lowest  between the template and 
target ligands to obtain the predicted coordinates of the target ligand. The target ligand’s 
coordinates were then submitted to CASP15 in the MDL file format. 

 
Optional Deep Learning Based Protein-Ligand Prediction. For several targets released in 

the early stage of the CASP15 experiment before TULIP was fully developed, we also applied a 
deep learning tool, EquiBind12 to make protein-ligand predictions. EquiBind used graph 
matching networks13 and E (3)-equivariant graph neural networks14 (E(3)-GNN) to perform a 
direct prediction of protein-ligand complex structure from the input structure of a target ligand 
and a predicted receptor structure.  
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The MultiFOLD server is our new integrated pipeline for producing tertiary and quaternary 
structure models of proteins via modelling, quality scoring and refinement. 

 

Methods 

The MultiFOLD protocol has 3 main stages: modelling, scoring, and refinement. In the first 
stage, 3D models of tertiary and quaternary structures were built using two different versions of 
LocalColabFold1 (https://github.com/YoshitakaMo/localcolabfold). Firstly, LocalColabFold 
version 1.0.0, which is based on the ColabFold/AlphaFold2_advanced notebook integrating the 
AlphaFold22 weights (AlphaFold2-ptm) and modified to additionally produce models for 
multimers. Secondly, LocalColabFold version 1.3.0, which is based on the 
ColabFold/AlphaFold2_mmseqs2 notebook integrating the official AlphaFold2-Multimer3 
weights (AlphaFold-multimer-v2) and specifically tuned for multimer prediction.  

For version 1.0.0, we used the following options for all targets: “--homooligomer”, “--
use_ptm”, “--use_turbo” “--max_recycle 3", and " --num_relax Top5”. However, for 1.0.0 we 
were GPU resource-limited to 1800 residues for the total length of all subunits. For 1.3.0, the 
GPU usage was more efficient and we were able to model complexes up to 2500 residues. We 
used templates and AMBER relaxation if the total length was <1000 with the following options: 
“--templates”, “--amber”, “--num-recycle 3”, and “--model-type auto”.  For targets with lengths 
>1000 and <2500 residues, the “--templates” and “--amber” options were not used. The first 
stage resulted in the generation of up to 20 3D models (5 relaxed and 5 unrelaxed from each of 
the two methods). 

In the second stage of the process, the first stage models were scored and ranked using 
ModFOLDdockR, which is a hybrid consensus approach for producing both global and local 
(interface residue) quality scores for predicted quaternary structures (see our ModFOLDdock 
server abstract for further details). 

In the final stage, the top 5 ModFOLDdockR selected models were reformatted to 
mmCIF files using MAXIT4 and then used as input templates for our AF2MRefine protocol. The 

https://github.com/YoshitakaMo/localcolabfold
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AF2MRefine approach used the LocalColabFold 1.3.0 method with the “--custom-template-
path” option, with 12 recycles and AMBER relaxation for targets <1000 residues or 3 recycles 
without AMBER for larger targets. For each model, the model rankings and predicted per-
residue quality scores (plDDT*100) from LocalColabFold were added to the B-factor column for 
each set of atom records. 

For the very large complexes (>2500 residues), due to our limited GPU resources, we had 
to divide sequences up into overlapping fragments for submission to MultiFOLD. The resulting 
modelled fragments were then manually assembled, using structural superposition in PyMOL 
(https://www.pymol.org), to form larger, more complete models. 

 

Availability 

The MultiFOLD server is available at: 

https://www.reading.ac.uk/bioinf/MultiFOLD/MultiFOLD_form.html 

MultiFOLD is also available as a docker image here: https://hub.docker.com/r/mcguffin/multifold 
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Predicting the ligand binding structure is important for the drug design and was often realized by 
docking and molecular dynamics methods. The classical docking methods generally sample the 
possible poses of ligands and rank them based on physics-based, knowledge-based, or half-
experience-based scoring functions.  While those classical methods showed limited docking 
accuracy, our approach can improve docking performance by combining the classical scoring 
function with predicted intermolecular distance distributions, which was learned by a graph 
neural network-based model called Collie. The Collie model predicts ligand poses based on a 
given protein structure with a specified pocket center and uses AutoDock Vina and GNINA 
docking poses as input templates. In CASP 2015 ligand pose prediction tasks, we adopted the 
AlphaFold predicted protein structure provided by the CASP-hosted server and utilized a protein 
pocket detection model developed in our previous work to get pocket centers. Collie model 
showed significant improvement compared with the classical docking methods on benchmark 
datasets. 

 

Methods 

Protein preparation. Collie followed the same protein preparation workflow as MoG. In 
CASP15 ligand tasks, we utilized the AlphaFold1 protein structures provided by the TS 
prediction server, which were transformed to pdb files by Biopython2 package. Then the pdb 
files were modified by pdbfixer3. The protein pdb files were then used to build the anchor 
features and to prepare pdbqt files for the docking step with openbabel4. 

Binding site prediction. Collie used same predicted binding sites as MoG. We utilized 
our pocket detection model to predict the pocket centers5. The pocket detection model was 
trained on PDBbind v2020 dataset and could recommend several possible pockets on a given 
protein. Then, using one pocket or multiple pockets was manually decided according to the 
protein size. 

Ligand – protein anchor distance prediction. Collie model is designed to predict the 
pairwise distance distributions between protein anchors and ligand atoms with the templates 
from docking methods. Anchors were sampled points in protein pockets for representing the 



174 

subpocket-level protein features5. Compared with MoG, Collie accepted the reference anchor-
atom distances as extra inputs, which would be transformed into the original distance features. 
Here we adopted the top 1 docking poses from AutoDock Vina6 and GNINA7 and calculated the 
features together. 

Collie was trained to maximize the likelihood of the distribution parameter values given the real 
distances. We built the training set with Vina and GNINA docking poses in the general set of 
PDBbind v2016 dataset, and we used CASF2016 and newly updated data in 2020 as validation 
and test sets. 

Ligand pose sampling and ranking. Collie and MoG shared the same ligand preparation 
and docking programs. For a ligand with predicted distance distributions, we built a statistical 
potential and combined the potential with Autodock Vina scoring function with a certain 
weight6. And we used the same Monto Carlo search algorithm and BFGS optimization algorithm 
as Vina.  

In the ligand pose prediction task, we used rdkit8 to generate 3D structures from SMILES and 
transformed the structures to initial pdbqt files with openbabel for the pose sampling. The 
docking centers were the pocket centers provided in "Binding site prediction". Similar to 
Autodock Vina, our method could recommend multiple binding poses and rank them according 
to the mixed scoring function. We submitted the top 5 poses for the ligands in the task with a 
single pocket and the top 1 pose for each pocket in those tasks with multiple pockets. 

Results 

The binding pocket prediction model demonstrated SOTA accuracy in the test datasets, and 
Collie showed improvement compared with MoG on benchmark datasets. 

Availability 

The methods will be released when published. 
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Scoring is a critical step in docking and represents, in fact, a separate challenge of the CAPRI 
(Critical Assessment of PRedicted Interactions) experiment since 2006.1 Traditionally, scoring 
functions for protein-protein docking models (DMs) are either energy-based or knowledge-
based. However, over the years, a wide variety of algorithms have been developed, some of them 
combining the above potentials into a hybrid approach or integrating them with evolutionary 
information, others based on alternative approaches, such as the consensus of the inter-residue 
contacts at the interface of the complex.2-4 Nowadays, over 100 scoring functions are available 
from the CCharPPI web server,5 while more potentials can be obtained from other public 
sources. These are all descriptors of the protein-protein complexes, which can be in principle 
combined to gain an improved performance in assessing the quality of predicted 3D models. 

Herein, we present the results of a machine learning (ML) approach we developed to 
exploit all the scoring functions we could collect from public sources. To this aim, we generated 
a set of ≈ 7 x 106 DMs with three different docking programs for the 230 complexes in the 
protein-protein interaction benchmark 5 (BM5).6 

Furthermore, we explored the effect of training data augmentation on the above models. 

Methods 

Three different ML approaches, Random Forest (RF), Support Vector Machines (SVMs), and 
single-layer Perceptron (PRC), were used to train classifiers with 157 different scoring functions 
(features), including 93 potentials from CCharPPI, and 32 features calculated by our tools 
CONSRANK and COCOMAPS,7 within the scikit learn python library and within 
pyplot/seaborn for visualization. For each of the 230 protein-protein complexes (targets) in BM5, 
we generated a total of 30,000 DMs with FTDock,8 ZDock,9 and HADDOCK.10 The quality of 
the generated DMs was assessed following the CAPRI protocol. Balanced and unbalanced 
“core” datasets were built from the DMs above for the training and test processes.  

To augment our training dataset, we started from the 1,392 protein pairs from the high 
confidence human interactome in the I3D database,11 to create a “silver set” that we then added 
to the above balanced “core” set to obtain our “augmented set”. The augmented dataset consists 



177 

of 1,553 protein pairs, with a total of 4,224,740 labeled DMs (being 76-fold larger than the 
original training set). Labeling of the “silver set” was performed with a Snorkel statistical 
modeling approach. 

Results 
We trained three different machine learning approaches on a balanced dataset of ≈7 x 104 DMs, 
Bal-BM5, and validated them on an unbalanced dataset of  ≈7 x 105 DMs, 3K-BM5. To our 
knowledge, these are the largest datasets used to develop a ML classifier in this field. We made 
them open access, labeled with their respective quality assignment (incorrect, acceptable, 
medium- and high-quality, according to the CAPRI criteria) and complete with the values of 
calculated features, to be used as reference benchmarks both for developing and comparing 
different scoring methods using classic empirical potentials, and for the training of ML-based 
methods.  

Since the RF approach showed the best performance, we trained a final RF-based 
classifier by optimizing its hyperparameters. The final RF classifier was named CoDES 
(COnservation Driven Expert System), as, within the 16 selected features optimizing its 
performance, the one having by far the highest importance is the CONSRANK score, which 
represents the average conservation (frequency) of the inter-residue contacts featured by a given 
DM, relatively to the set of models it belongs to. Testing of CoDES on the CAPRI Score Set 
showed it to outperform any single scorer in the corresponding CAPRI Rounds and to be able to 
top rank not just correct but medium- and high-quality DMs.12 Overall testing on independent 
datasets resulted in CoDES equaling or exceeding the performance of the few state-of-the-art 
machine learning methods available in the literature.  

Classifiers based on the above machine learning approaches were also trained on an 
“augmented set” we generated by a weak supervision approach, which proved to significantly 
improve the performance, at least for the RF-based models.  

 

Availability 

Generated DMs in the “core” and “augmented” datasets are available at 
https://doi.org/10.5281/zenodo.4012018 and https://repository.kaust.edu.sa/handle/10754/666961. 

ML algorithms are available at https://github.com/D-Barradas/CoDES,  

https://github.com/D-Barradas/hAIkal_TF2_exploratory_test, and 

https://colab.research.google.com/drive/1vbVrJcQSf6_C3jOAmZzgQbTpuJ5zC1RP?usp=sharing.  
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Correctly scoring protein-protein docking models is an open challenge, continuously monitored 
in the CAPRI Rounds since 2006.1 To the traditional scenario of energy-based and knowledge-
based scoring potentials, we added CONSRANK (CONSensus RANKing), an alternative 
approach which uses the conservation rate (or frequency within the ensemble of decoys) of inter-
residue contacts featured at the interface by a given model, as a measure of its reliability.2-4 
CONSRANK has been blindly tested in CAPRI since 2014, where it proved to provide state-of-
the-art predictions, especially in terms of top-1 success rate, i.e. the ability to locate a correct 
solution at the 1st ranked position.5-8 

To further explore the CONSRANK potential, we present here an algorithm 
development, IterCONSRANK, where CONSRANK is applied iteratively to a set of models to 
be scored, taking to the next iteration only those ranked in the top N% positions. Thus, Iter-
CONSRANK decreases the number of models analyzed at each step, discarding the bottom (100-
N)% scored ones. The method performance was tested both in terms of percentage of correct 
solutions for the ensemble at each step, and of success rate, i.e. the ability of locating correct 
solutions at the top positions of the ranking 

Methods 

To test the performance of IterCONSRANK, we used a total of 175,985 models, for 65 targets 
from two public benchmarks, 3K-BM5up9-10 and Score_set.11 Based on the featured percentage 
of correct solutions (%corr), we classified the 52 3K-BM5up targets as “very difficult” cases (19 
targets), “difficult” cases (12 targets), “medium” cases (8 targets), and “easy” cases (13 targets), 
for scoring. This dataset was used to select the optimal iteration parameters and perform detailed 
analyses of the performance by different metrics. The second dataset, Score_set, includes 14 
interfaces to be scored, of which 3 represent “very difficult”, 3 “difficult”, 5 “medium” and 3 
“easy” cases for scoring. This dataset was used to test again the method performance on an 
independent CAPRI dataset. Different values have been tested for the iteration threshold (N%): 
80%, 85%, 90%, 95%. To fully explore the method potential, the maximum number of steps has 
been set to 30. At the 30th step, with a cut-off of 85%, the number of models is reduced to ≈1% 
of the original set. 
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Results 

We tested IterCONSRANK on the 3K-BM5up and Score_set benchmarks, by varying the 
number of iteration steps and ranking thresholds for iteration (N%). Optimizing these parameters 
allowed us to significantly enrich the docking decoys in correct solutions (i.e. to increase the 
%corr value) for all the represented ranges of target difficulty.  

To get a deeper understanding of the obtained results, we performed detailed analyses of 
targets for which a strong improvement of the scoring prediction was achieved. Such analyses 
outlined how the background noise in the recorded inter-residue contacts is cleared over the 
iteration process while the native consensus clearly emerges. This allows increasing the %corr of 
the ensembles and the scoring success rate itself. As the %corr values directly correlate with the 
rate of difficulty of the scoring process, IterCONSRANK proposes itself not only as an efficient 
scoring algorithm but also as a preprocessing step allowing to increase the percentage of correct 
solutions in the examined ensemble of decoys, for the subsequent application of other scoring 
functions. 

Finally, the iterative approach was shown to further improve the CONSRANK 
performance in terms of top-1 success rate, clearly outperforming all the 100+ publicly available 
scoring potentials12 we comparatively tested on the above datasets. 

 

Availability 

Code available upon request from the authors. 

 
1. Lensink, M. F. et al. (2007) Docking and scoring protein complexes: CAPRI 3rd Edition. 

Proteins 69, 704–18. 
2. Oliva, R., Vangone A., Cavallo L. (2013) Ranking multiple docking solutions based on the 

conservation of inter-residue contacts. Proteins 81, 1571–84. 
3. Chermak, E., Petta, A., Serra, L., Vangone, A., Scarano, V., Cavallo, L., Oliva, R. (2015) 

CONSRANK: a server for the analysis, comparison and ranking of docking models based on 
inter-residue contacts, Bioinformatics 31, 1481–3. 

4. Chermak, E., De Donato, R., Lensink M.F., Petta, A., Serra, L., Scarano, V., Cavallo L., 
Oliva R. (2016) Introducing a Clustering Step in a Consensus Approach for the Scoring of 
Protein-Protein Docking Models, PLoS ONE 11, e0166460. 

5. Lensink M.F. et al. (2016) Prediction of homoprotein and heteroprotein complexes by protein 
docking and template‐based modeling: A CASP‐CAPRI experiment. Proteins 84, 323-348. 

6. Barradas-Bautista, D., Cao, Z., Cavallo, L., Oliva, R. (2020) The CASP13-CAPRI targets as 
case studies to illustrate a novel scoring pipeline integrating CONSRANK with clustering 
and interface analyses. BMC bioinformatics 21, 1-18. 

7. Lensink M.F. et al. (2019) Blind prediction of homo‐and hetero‐protein complexes: The 
CASP13‐CAPRI experiment. Proteins 87, 1200-21. 

8. Lensink M.F. et al. (2021) Prediction of protein assemblies, the next frontier: The 
CASP14‐CAPRI experiment. Proteins 89, 1800-23.  



181 

9. Vreven, T. et al. (2015) Updates to the Integrated ProteinProtein Interaction Benchmarks: 
Docking Benchmark Version 5 and Affinity Benchmark Version 2. J Mol Biol 427, 3031–41. 

10. Barradas-Bautista D., Cao Z., Vangone A., Oliva R., Cavallo L. (2021) A random forest 
classifier for protein–protein docking models. Bioinform Adv 2, vbab042.5.  

11. Lensink M.F., Wodak S.J. (2014) Score_set: a CAPRI benchmark for scoring protein 
complexes. Proteins 82, 3163-3169. 

12. Moal, I. H. et al. (2015) CCharPPI web server: computational characterization of protein-
protein interactions from structure. Bioinformatics 31, 123–25. 

  



182 

OpenFold 

OpenFold: A trainable reproduction of AlphaFold2 

Gustaf Ahdritz1, Nazim Bouatta2, Sachin Kadyan1, Mohammed AlQuraishi1 

1 – Department of Systems Biology, Columbia University, 2 – Harvard Medical School 

ma4129@cumc.columbia.edu 

Key: Auto:Y; CASP_serv:N; Templ:N; MSA:Y; Fragm:N; Cont:N; Dist:N; Tors:Y; DeepL:Y; 
EMA:Y; MD:Y. 

At CASP14, AlphaFold21 revolutionized structural biology by predicting protein structures with 
experimental accuracy. The following year, DeepMind released the paper, model weights, and 
accompanying code for the model’s inference pipeline. This official implementation, however, 
(i) lacks the code and data required to train models for new tasks, such as predicting protein-
ligand complexes or antibody structures, (ii) is unoptimized for commercially available 
computing hardware, making large-scale prediction campaigns impractical, and (iii) remains 
poorly understood with respect to how training data and regimen influence accuracy.  

Here, we present OpenFold, a fully open-source, trainable, and optimized reproduction of 
AlphaFold2 using PyTorch. We trained it from scratch and used our model with its original 
weights at CASP15. 

 

Methods 

OpenFold hews as closely as possible to the training and inference procedures described in the 
original supplement to the AlphaFold2 paper, which we summarize briefly here. The model’s 
hyperparameter settings are identical to those used by AlphaFold2. Training data consisted of 
130k structures from PDB2 and a filtered self-distillation set of 270k Uniclust303 chains with 
structures predicted by AlphaFold2, all with accompanying MSAs. PDB MSAs are computed 
from MGnify4 and Uniref905 with JackHMMER6 and Uniclust30 + BFD with HHblitsv37. 
Distillation MSAs are computed using an all-against-all HHblits search against Uniclust30 itself. 
Structural templates are obtained by searching PDB708 using the UniRef90 MSA. We trained the 
model using the abbreviated training schedule outlined in the AlphaFold2 supplement and all of 
the same losses and optimizer settings used to train AlphaFold2. At a high level, the model is 
trained in several phases: one “initial training” phase that uses relatively short MSA inputs and 
shorter crops of training proteins (256 residues), one “finetuning” phase that uses deeper MSAs, 
longer crops (384 residues), and a structural violation loss, and finally an additional finetuning 
phase with the predicted-TM score module activated. After these three phases were finished, we 
trained an additional branch of the model with templates disabled starting from the end of the 
initial training phase. For additional details, we direct readers to the aforementioned supplement. 

During inference, the model accepts both MSAs and structural templates as inputs. MSAs 
are computed exactly as they were during training. Output structures are relaxed with AMBER9. 

mailto:ma4129@cumc.columbia.edu
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 Five predictions were generated for each target using as many sets of model parameters, 
each corresponding to a peak in the validation lDDT-Cα during training. To maximize the 
diversity of outputs, parameters were sampled as sparsely as possible while maintaining output 
quality; they range from the beginning of the finetuning stage to the very end of the pTM phase. 
Models were run with their own config settings differing primarily in the number of templates (0 
– 6), recycling iterations (4 – 20), and extra MSA depths (1024 – 5120). Outputs were ranked in 
order of descending mean pLDDT, AlphaFold2’s built-in confidence measure. 

To predict complexes, we used the inference-time hack known as AlphaFold-Gap10. This 
involves concatenating chains in the complex, marking chain boundaries with constant-sized 
gaps in the residue indices used to compute positional embeddings. MSAs and templates are 
combined in similar fashion. The models are run on the resulting “chain” as usual, without any 
further training. Predictions are then split back into their component parts. 

All targets were run on a single 40GB A100 GPU. 
Manual interventions were fairly minimal. For a handful of chains with low average 

confidence, we re-ran predictions with tweaked config settings, mainly adding additional 
recycling iterations and templates. For extremely long chains and complexes, we reduced the 
number of recycling iterations and templates to save compute and enabled OpenFold’s memory-
saving features, including low-memory attention implementations, tensor offloading, and in-
place operations.  

It should be noted that the models were not fully trained by the beginning of the 
competition; additional training and finetuning were performed until July 12, after which the 
model weights were frozen. It should also be noted that a bug in our inference pipeline initially 
caused the model to run with shallower MSAs than intended (containing 128 sequences instead 
of 512). This issue was resolved by late June. 

 

Availability 

OpenFold code, weights, model config presets, and, soon, its preprint are publicly available at 
https://github.com/aqlaboratory/openfold. The model’s complete training data is made available 
via the Registry of Open Data on AWS (RODA) at https://registry.opendata.aws/openfold/. 
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In CASP15, we have tested our new pipeline based on our workflow in CASP14. Panlab and 
Pan_Server followed the same pipeline but we have performed some manual intervention in 
expert group(Panlab). Briefly, we construct 3D-models based on our remoter homologous 

protein recognition method with alignments generated, RosettaCM1 to model 3D structures, 

3DRobot2 to generate decoys which are near top-ranked structures, then, we applied PBEscore, a 
novel knowledge-based-energy scoring function, to guide protein conformation search and 
refinement. 

 

Methods 

Given a target sequence, our pipeline has 4 steps as fellow. 

 1. Remote protein homology detection by alignment-based PairThreading. There are 
many alignment methods for remote protein homology detection, but these methods are based on 
the assumption that the types of residues at different positions are independent of each other. We 
break this assumption and propose a method, PairThreading, based on residue pair substitution 
information. PairThreading obtains position-specific residue pair substitution information 
indirectly from the position-specific score matrices (PSSMs) rather than directly from the 
multiple sequence alignments (MSAs) to avoid statistical non-convergence problem. Thus, 
PairThreading can detect more remote homologous proteins and can generate more accurate 
alignments. For targets whose sequence length larger than 1000, our method have a dynamic 
strategy to detect domain region and generate fragment for further 3D modeling and template 
hybridize. 

 2. Constructing 3D-models by RosettaCM1. We use RosettaCM1 to construct 3D-models 
based on the single or multiple templates which are selected by PairThreading along with 
corresponding alignments.  
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 3. Generating decoys using 3DRobot2.  After selecting top-ranked models by PBEscore, 
we use 3DRobot to create protein structure decoys which have enhanced hydrogen-bonding and 
compactness interactions. 

 4. Ranking 3D-models by PBEscore. PBEscore is a novel knowledge-based-energy 
scoring function, simply considering the interactions of peptide bonds, rather than, as 
conventionally, the residues or atoms as the most important energy contribution. This energy 
function is trained on in-house dataset and has outstanding performance on several independent 
benchmark datasets. We applied PBEscore in every ranking steps involved in our pipeline. 

5. Refinement 3D-models by OpenMM3 . We ran the molecular dynamics to refine the 
Top 5 ranked models. The program PDBFixer was used to add hydrogen atoms, N- and C-

terminal patches to selected models.  All simulations were run using OpenMM3 under 
AMBER144 force field.  
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MELD has been successful in predicting protein and its complex structures. MELD was used in 
the last couple of CASPs with good successes for predicting protein structure with data-assisted 
category, mainly NMR data assisted. In this CASP, our goal was to model more RNA structures 
and conformational ensembles of the kinases.  

 In CASP 15 event, we have submitted 7 predictions in the- 4 RNA model and 3- kinases 
conformational ensembles. All simulations were performed with our local resources on 
HiPerGator Supercomputer at the University of Florida.  

 

Methods 
MELD (Modeling Employing Limited Data) is a Bayesian inference-based enhanced sampling 
tool which accelerates molecular dynamics in presence of data which works a plugin to 
OpenMM(1). Data from different sources with different levels of quality can be used in MELD. 
We map data as spatial (e.g. distance or dihedral) information between atoms in the systems to 
limit the conformation search space. The way these restraints work is, there is no energy penalty 
when the data is satisfied and increases quadratically (and then linearly after a cutoff) otherwise. 
The data has the peculiarity that some of the data might not be correct, we generally do not know 
what percent to trust as well as which data to trust. The Bayesian aspect of the method comes 
from inferring which subset of the data is most compatible with the system given a prior (given 
by the molecular dynamics force field). MELD uses H-T,REMD(2) protocol where at higher 
replicas, temperature is high and distance restraints are weak, and at lower replicas, temperature 
is low and restraints are strong, which facilitate multiple folding-unfolding events through 
exploration-exploitation of the energy landscape. All simulations were run for at least a 
microsecond using 30 replicas with temperature ranging from 300K to 500K, the GBneck2 
implicit solvent model(3) and the ff14SB force field for side chains with ff99SB for the 
backbone for proteins(4) and with OL3 forcefield for RNAs(5). 

Data used in simulations: 

We used two different approaches for protein and RNA modelling. Details are given in the 
following paragraph. For RNA, T1107 and T1108 were supposed to be homodimers. We used 
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RNAfold WebServer(6) (from the ViennaRNA package) to predict their secondary structures 
and then we used modelling to assemble them into multimers based on known similar systems. 
From the server predicted structures, we deduced a set of base pairs which are taking part in the 
helix pairing in the monomer. And from the known complexes we deduced base pair contacts 
that might be present in the complex. We put distance restraints (as mentioned above) on those 
base-pairs with 80% and 50% accuracy for the monomer restraints and complex restraints 
respectively. Target T1116 and T1128 are monomer. For these two we only had distance 
restraints for monomer base pairs, and we enforced those with 80% accuracy.  

 We predicted conformational ensemble of 3 kinase systems- T1195, T1196, and T1197. 
At the first step we predicted their structures with AlphaFold (AF) colab with MSA searched 
from Uniref100.(7, 8) Then, the top model from AF was selected as the starting conformation for 
MELD simulation. We also extracted the distograms from AF and created restraints based on 
their confidence estimation from AF. Then, we apply cartesian restraints on the CA atoms of the 
residues that are part of high confidence distograms (>90% in 2Å range) to model them as 
flatbottom harmonic restraints as mentioned above. For the low confidence distograms, we 
further separated them in two groups: local distograms (for i-j<4, where i and j are two residues 
in a distogram) and global distograms (for i-j>4, where i and j are two residues in a distogram). 
We designed two protocols for each, both with the cartesian restraints and one with global 
distogram restraints and another with local distogram restraints. We used 50% and 80% of the 
starting accuracy for the global and local distograms respectively, where the accuracy parameter 
would self-optimize as the simulation proceeds. 

 In the end of the simulations, we performed hierarchical clustering using cpptraj(9) on 
five lowest temperature replicas, then we selected the top 5 models based on the population of 
the clusters. For RNA targets, we submitted those structures as our predictions. For protein 
conformation ensemble targets we further refined those selected models with AF using them as 
templates and we submitted AF output as the final predictions.  

Results 
MELD traditionally has been successful for NMR assisted protein structure prediction and small 
globular protein structure prediction(10–12). These types of targets were not part of the CASP in 
the current edition. With the goal of expanding the use of MELD, we attempted different 
modeling challenges this time. However, none of our predicted target has experimental structures 
released by CASP yet. We are hopeful that our sampled ensemble has some close to native 
conformations, but we might be missing them while picking top5. A better scoring method for 
RNA conformations would help in future.  

 
Availability 
OpenMM, AmberTools, MELD and the MELD-OpenMM plugin are all available and free to 
use. Our MELD frontend can be accessed at: git@github.com:maccallumlab/meld.git, and the 
MELD-openMM plugin can be accessed at:  git@github.com:maccallumlab/meld-openmm-
plugin.git. (font different, and these git links is not valid) 
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At CASP14, AlphaFold2, developed by DeepMind, demonstrated outstanding accuracy of 
monomeric structure prediction1-3. After the competition, its derivative, AlphaFold-Multimer 
(hereafter, both are referred to as AF2), was presented4. It also showed excellent performance in 
predicting multimeric structures. Since their inference code and weights are publicly available 
under the generous license, their predictions will be the baseline for CASP15. 

Therefore, I set the following challenges for CASP15: (1) Collect a sufficient number of 
evolutionary related sequences for inputs of AF2. (2) Improve the structures generated by AF2. 

Methods 

Collecting evolutionary related sequences: I used various tools and DB(database)s to 
collect evolutionary related sequences (Table 1). The MSA(Multiple Sequence Alignment)s 
created by B, C, D, E, and F were merged, and the resulting MSAs were clustered by identity 
threshold (90 %, 95 %), filtered by identity with the query sequence (60 %, 80 %), or sent to the 
next step without any arrangement.  

Model building: The input MSAs are fed into a customized AF2 pipeline using the 
official AF2 weights. This pipeline is essentially the same as the original pipeline, although it is 
more flexible (e.g. more internal variables that can be changed with arguments) than the original 
pipeline. For multimeric targets, the monomer mode of AF2 was also used with adding gaps (as 
extra-residue index5,6) between different subunits and all final unrelaxed models were processed 
with refinement script (described below) to produce the self-reliability metrics for multimer. 

For multimer targets, template base modelling with TM-align7 was applied when I found 
multimeric templates which matched the stoichiometry information provided by the CASP 
organizer. When the target was too large to fit in GPU's RAM, two approaches were used to 
build the model: (1) building the entire structures on CPU, and (2) building the partial models 
using MSAs which were divided into multiple pieces. And the partial models were concatenated 
after prediction. 

Model selection: The predicted models were sorted according to the self-reliability 
metrics (plddt or (i)ptm) produced by AF2. The top one model was always selected. The 
remaining 4 models were selected considering the metrics and TM-score8 with the other selected 
models to take variety of the conformations. Human intervention was introduced when there 
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were issues in the models (e.g., the refined models sometimes have many atom clashes, the 
concatenated models did not yield metrics) or there were the specific notes provided by the 
CASP organizer. 

Refinement: The selected 5 models were refined by an in-house fine-tuned AF2, which 
takes the protein 3D structures as input and outputs the refined structures. The details of this 
customized AF2 will be described elsewhere. 

If structures with good self-reliability metrics could not be obtained, additional runs were 
performed by selecting other models, or randomly changing the position of chains or atoms in 
the input structures for refinement. 

Relax: The relaxation step defined in official AF2 scripts was run before submission. 
When the program failed or there was no time to run the step, the models before the relaxation 
were submitted. 

Target specific process: Since the method pipeline was completed during the season and 
there were many different types of targets, the details of the applied procedure varied from target 
to target. As an extreme example, T1109 had a mutated residue at position 183, therefore all 
residues at that position in the MSAs were changed to alanine. 

 tool query DB description 

A PZLAST9 target sequence public 
metagenomic 
aminoacid 
sequences 

The hit sequences were aligned with 
jackhmmer10 and assembled with a simple 
python script. 

B PSI-
BLASTexB11,12 

MSA made at A nr+in-house 
metagenome 
database 

The in-house metagenome database was 
derived from amino acid sequences or 
nucleotide sequences in Assembly 
database13. The nucleotide sequences 
were translated to amino acids by 
prodigal14.  

The hit sequences were aligned with 
jackhmmer. And when the number of hits 
was small, MSAs made at A were 
merged. 

C hhblits15 MSA made at B Uniclust3016  

D hhblits MSA made at B BFD 
https://bfd.mmseqs.
com/ 

If the number of hit sequences was large, 
the sequences were filtered by hhfilter15 
with the option “-id 100 -cov 30 -diff 
10000”. 

E jackhmmer target sequence Uniprot/TrEMBL17  

F jackhmmer target sequence MGnify18 The same procedure was used as in D. 
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Table 1. The tools and DBs used for sequence similarity search. 
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Refining AlphaFold TS models using 3D residual and convolutional neural networks  
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EMA:N; MD:N.  

We present two computational predictors in CASP15, named QUIC and PICNIC, for protein 
tertiary structure (TS) prediction. QUIC and PICNIC were trained to refine the predictions of 
af2-standard1 provided by the CASP15. QUIC was implemented as a three-dimensional (3D) 
residual neural network (Resnet), while PICNIC was built as a 3D convolutional neural network. 
Both servers were trained with 120 AlphaFold21 predicted models during CASP14.  

Methods  

Our refinement is performed at the atom level. For N, CA, C, and O atoms of each amino acid, 
we created an 81x81x81 mesh cube with each small cell in the cube having a side length of 0.1 
Å. We put the atom in the AlphaFold model that our algorithm will refine at the center cell of the 
mesh cube, and we also put the other neighboring atoms that are within the boundaries of the 
cube in the corresponding cells. During training, we superpositioned each AlphaFold2 predicted 
model with the corresponding native structure, and then we used the position of the 
corresponding atom in the native structure as where the target value 1 was located. All other cells 
in the cube were assigned target values of 0s.  

We generated 10 features for each cell if at least an atom exists in it. If no atom exists in 
a cell, the features of that cell were assigned 0s, and if there are ≥_2 atoms existing in a cell, we 
used the averaged scores of the features. Those features are atom existence, an amino acid token, 
an atom type token, averaged ESM2, MASS2-CASP14 and LAW-CASP14 predicted local 
qualities, and sinusoidal positional encoding. We trained the following two methods using the 
same features to refine the AlphaFold2 predicted structures.  

QUIC contains eight Conv3D-BatchNorm3D-LeakyReLU-Dropout residual blocks 
followed by one Conv3D-BatchNorm3D layer. QUIC allows each atom to move up to two cubes 
on an axis.  

PICNIC contains 10 Conv3D-BatchNorm3D-LeakyReLU-Dropout layers followed by a 
Conv3D-BatchNorm3D layer. PICNIC only predicts atoms belonging to the coiled coils.  

For both predicted protein structures of QUIC and PICNIC, we added hydrogen and other 
missing atoms using PDBFixer and relaxed the predicted protein structure using OpenMM3 with 
the same parameters used by AlphaFold2. After that, we used MASS2-CASP14 to evaluate the 
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final predicted structure, the local quality scores of which were submitted to CASP as quality 
scores.  

 

1. Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. Nature, 2021. 
596(7873): p. 583-589.  

2. Rives, A., et al., Biological structure and function emerge from scaling unsupervised learning 
to 250 million protein sequences. Proceedings of the National Academy of Sciences, 2021. 
118(15): p. e2016239118.  

3. Eastman, P., et al., OpenMM 7: Rapid development of high-performance algorithms for 
molecular dynamics. PLoS computational biology, 2017. 13(7): p. e1005659. 
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Significant improvement has been achieved in computational protein structure prediction in 
recent CASPs, especially the deep ResNet- and Transformer-based methods 1–5. In CASP15, we 
developed an automated pipeline for protein structure prediction by employing following 
strategies: 1) in addition to the uniref90, mgnify, bfd and uniclust30 databases, we collected an 
in-house metagenome sequence database; 2) in addition to the templates from PDB, we used 
decoy models predicted by AlphaFold2 as extra templates; 3) we used our in-house attention-
based methods and AlphaFold2 to predict structures simultaneously and selected top models 
based on the predicted confidence (i.e. pLDDT); 4) we used the predicted structure as query 
structure to search templates from template databases. 

Methods 

MSA search 

The main pipeline to generate the multiple sequence alignment (MSA) is similar to the 
AlphaFold2 MSA generation process. We use the Jackhmmer to search the uniref90 and mgnify, 
and use the HHBlits to search the bfd and uniclust30. It should be noted that all databases 
(except for the bfd) have been updated at the end of April 2022. If the MSA is shallow, we will 
use the HHBlits to search our in-house metagenome sequence database to enrich the MSA. Our 
in-house metagenome sequence databases are built from SMAG6, MetaEuk7, TOPAZ8, MGV9, 
GPD10 and IMG/M (from June 2018 to January 2022)11 with a maximum sequence identity of 
90%. 

Template search 

We built three template databases for CASP15: PDB70 and PDB100, and the DistillPDB. The 
templates in PDB70 and PDB100 were collected from PDB (released before April 2022)  and 
were filtered based on the sequence identity of 100% and 70%, respectively. The templates in 
DistillPDB were the predicted decoy structures by AlphaFold2 with pLDDT no less than 90. 

We employ two strategies to search templates: 1) using hhsearch to search templates based on 
MSA; 2) using the predicted model of highest pLDDT as the query structure to search templates 
by TMalign and generating sequence alignment between the query sequence and templates by 
DeepAlign. 

In-house attention-based methods 

https://www.zotero.org/google-docs/?5PrzVf
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The overall architecture of our in-house attention-based methods is a modified version of 
AlphaFold2 architecture. One difference is that we use a linear layer to integrate the scalar, point, 
and pair attention values in the IPA model while AlphaFold2 uses only addition. We modified 
the AlphaFold2 feature module and trained four methods with different feature combinations: 1) 
MSA, 2) MSA & Template,  3) MSA & MSATransformer & Template and 4) MSA & 
MSATransformer & Template & AlphaFold2 predicted model. In addition to the MSA based 
methods, we trained a single sequence method which only uses the query sequence and the 
sequence representation from the protein language model (ESM-1b) as input. 

Repeatedly search new templates using predicted model 

We use the predicted model of highest pLDDT as the query structure to search for new templates 
by TMalign and generate sequence alignment between the query sequence and templates by 
DeepAlign, then run the template based predictions using the new templates. This procedure may 
repeat several rounds until we could not improve the pLDDT of predicted models anymore. 

Model selection 

The predicted models are sorted based on the pLDDT and the top 5 models were submitted. To 
improve the diversity of models, we cluster all predicted models and select the model at cluster 
center (based on TMscore) as one of the top 5 models. 
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Proceedings of the National Academy of Sciences 117, 1496–1503 (2020). 
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Non-coding RNAs are fundamental in living cells, performing specific functions determined by 
their tertiary architectures. Currently, RNA structures are mostly understood and computationally 
approached using RNA secondary structures, which are often predicted with high accuracy. On 
the contrary, obtaining high-resolution RNA tertiary structure predictions from nucleotide 
sequences is still a challenging task. We describe a novel method, rDP, for prediction of RNA 
tertiary structure using single sequence information. 

 
Methods 
 
The input of rDP is the RNA sequence which is represented by a 5-D one-hot encoding, 
including 4 types of nucleotides and an unknown state. Based on the sequence, the secondary 
structure is predicted, in the form of a binary matrix where each bit is set to 1 if the 
corresponding residue pair forms a base pair. The query sequence and predicted secondary 
structure are fed into an embedding layer which outputs the sequence and the pair 
representations. Next, the embedded representations go through 48 RNA transformer blocks, 
following the successful design of Evoformer in AlphaFold21. The transformer blocks output 
nucleotide-wise rotation matrices and translation vectors applied on a coarse-grained 
representation of nucleotides represented by three atom types (P, C4’, and the glycosidic N atom 
of the nucleobase). Considering the higher flexibility of RNA structures compared to that of 
proteins, we construct reference frames with SVD orthogonalization2, instead of Gram-Schmidt 
orthogonalization as used in Alphafold2. The full model is trained end-to-end. Two types of loss 
functions, i.e., the main Frame Aligned Point Error (FAPE) loss and the inter-N atom distance 
loss, are used when training the end-to-end models. Additionally, the pair representations are 
also used for RNA inter-nucleotide distance and orientation prediction with the supervision of 
negative log likelihood loss function. 

 The predicted frames and geometries are then integrated as potentials for RNA structure 
optimization. The conformations predicted by end-to-end models were also used as initial 
structures of the optimization system and separately optimized by the same hybrid potential 
function. The gradient of parameters with respect to the hybrid potential function can be 
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calculated by the automatic differentiation package in PyTorch. With the energy value and the 
gradient, we can use the L-BFGS algorithm to iteratively update the parameters of the system, 
i.e., nucleotide-wise rotation matrices and translation vectors. The conformation with lowest 
energy is considered as the final predicted structure, among the 6 models from different initial 
conditions.  

 
Availability 
The web server is available at https://zhanggroup.org/DRfold/ 
 
1. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., 

Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate 
protein structure prediction with AlphaFold. Nature 596, 583-589. 10.1038/s41586-021-
03819-2. 

2. Aiken, J.G., Erdos, J.A., and Goldstein, J.A. (1980). On Löwdin orthogonalization. 
International Journal of Quantum Chemistry 18, 1101-1108.  
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In CASP15, our group participated in RNA tertiary structure modeling category. 

Methods 

The general workflow of the 3D structure prediction pipeline consists of three major stages: (1) 
RNA secondary structure prediction, (2) building of an ensemble of RNA 3D structures, and (3) 
selecting the final submissions. 

RNA secondary structure prediction. We predicted RNA secondary structures using 
computational tools incorporated into the computational engine of the RNAComposer system 1,2 
or based on the consensus structures obtained from the literature or Rfam database 3. In the case 
of synthetic targets such as R1128 and R1138, we manually modeled pseudoknots following the 
basic principles of RNA origami. 

RNA 3D structure construction. RNA 3D models were generated using the 
RNAComposer system in either automated or expert modeling manner. In the latter case, we 
introduced structural elements 1,2 selected from the RNA FRABASE 2.0 repository 4. We filtered 
out identified 3D structure elements of low sequence homology, clustered the remaining ones, 
and selected best candidates for modeling. 

In the case of R1126, we manually constructed a structural element for a branched 
Kissing Loop (bKL) based on the principles published in the literature 5.  

For R1126 and R1136, we have identified structural elements binding the ligands, 
including quadruplexes. These elements served as the user-provided blocks in expert modeling 
scenarios available in RNAComposer 6,7. 

In the case of R1117, we manually constructed the model using structural elements 
extracted from the experimentally determined RNA 3D structures for class I preQ1 riboswitch, 
type 1, and 2 8. Finally, we applied RNAComposer to refine the prototype 3D models. 

Model selection. Obtained RNA 3D models were sorted by the total energy coefficient 
computed by XPLOR 9. For the subsequent analysis, we selected promising models in which the 
total energy is below the threshold, i.e., -20kcal/mol per residue 1,2. 

Next, the promising models were processed by RNAspider 10 to ensure that they did not 
include incorrect entanglements of structural elements 11. Entangled models were rejected. In 
some prediction challenges, we performed additional refinement using RNAComposer. When 
selecting predictions to submit, we verified the post-refinement total energy coefficient and the 

mailto:mszachniuk@cs.put.poznan.pl
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presence of non-canonical interactions. The latter was done using RNApdbee 12,13,14. Finally, we 
performed the RMSD-wise clustering with the OC program 15 and selected centroids of the 
groups as our submissions that show consistency with the found literature data. 

 

Availability: 

The methods developed in our laboratory are available at https://rnapolis.pl/. 
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3. Kalvari, Ioanna, et al. "Rfam 14: expanded coverage of metagenomic, viral and microRNA 
families" Nucleic Acids Research 49.D1 (2021): D192-D200. 

4. Popenda, Mariusz, et al. "RNA FRABASE 2.0: an advanced web-accessible database with 
the capacity to search the three-dimensional fragments within RNA structures" BMC 
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During the CASP, I use RNAStructure1, MXFold22, etc, to predict the secondary structure of 

target RNA. Then I use FARFAR23 and 3dRNA4 to predict the tertiary structure. Finally, I use 

self-trained ARES5 to ranking the prediction, and then choose 5 different predictions from the 
best 20-50 predictions. 

 

1. https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predict1.html 
2. http://www.dna.bio.keio.ac.jp/mxfold2/ 
3. Wang J, Wang J, Huang Y, Xiao Y. 3dRNA v2.0: An Updated Web Server for RNA 3D 

Structure Prediction. Int J Mol Sci. 2019;20(17):4116. Published 2019 Aug 23. 
doi:10.3390/ijms20174116 

4. Watkins, A. M.; Rangan, R.; Das, R. “FARFAR2: Improved de novo Rosetta prediction of 
complex global RNA folds.” Structure, 2020, 28: 963-976. 

5. Townshend, R. J. L., et al. (2021). "Geometric deep learning of RNA structure." Science 
373(6558): 1047-1051. 
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For our CASP15 contribution to RNA structure prediction we use a four step workflow: building 
an MSA, unsupervised deep learning from MSAs, contact prediction with traditional ML, and 
finally: structure prediction using Monte Carlo simulations. 

We applied deep transformer models combined with gradient-boosted decision trees and replica 
exchange Monte Carlo simulation to RNA structure prediction. Starting with a multiple sequence 
alignment we produce attention maps with a pre-trained deep transformer model. These serve as 
input for gradient boosted decision trees that predict a binary contact map. The contact map is 
then used to bias a SimRNA simulation. 

 

Methods 

Selbstaufsicht is based on the MSA transformer models1 used for unsupervised protein contact 
prediction. We pre-train the transformer on MSAs from the Rfam2 database using a hidden 
language modeling or inpainting task. In a second training stage we fit a supervised logistic 
regression contact predictor using the latent attention maps from the transformer as input. The 
labels for this stage are the same as described in CoCoNet3. Unlike the MSA transformer we do 
not freeze the transformer parameters during this process. Instead we use aggressive early 
stopping to manage overfitting. We do not use this regression model for the final contact 
predictions. Instead we feed the latent attention maps of this fine-tuned transformer into an 
XGBoost4 model trained on the same labels. 

 For the CASP15 submissions we first built MSAs. For that we submitted queries to RNA 
Central5 and BLAST6 databases. Further we used the ClustalW7 and Infernal8 analysis tools for 
alignment. For sequences longer than 300 bp we heuristically split the target sequence into 
several overlapping fragments according to their secondary structure and created MSAs for each 
one of those. To bias the structure prediction  implement the L most confidently predicted 
contacts into the course-grained simulation SimRNA9,, where L is the sequence length. The 
contact biases add one-well and two-slope potentials to the energy function. We clustered the 
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lowest energy configurations from ten replicas and submitted a representative of the largest 
cluster. 

 

Availability 

Selbstaufsicht is being prepared for publication. Upon publication a repository of the necessary 
resources for training and inference including source code and datasets will be made available. 
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Griffiths-Jones, S., Toffano-Nioche, C., Gautheret, D., Weinberg, Z, Rivas, E., Eddy, S.R., 
Finn, R.D., Bateman, A. & Petrov, A.I. (2020) Rfam 14: expanded coverage of metagenomic, 
viral and microRNA families. Nucleic Acids Research. 49(D1), D192-D200. 
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We used the fifth iteration of the Seder server to participate in the CASP15 experiment. The 
Seder server attempts to predict the TM score of protein models based on the sequence of the 
protein and the structure of its model using an iterative deep neural network. This cycle of Seder 
is unique in that it uses a balanced set of hybrid back-propagation/Levenberg-Marquardt and 
standard back-propagation neural networks. We have found evidence that this approach is more 
useful for this problem than either one on its own. The hybrid networks are useful in cases where 
a crucial part of the network is of a limited extent, while other parts may be very large. This is 
only partially the case here, since there is not enough data to support larger networks. Both 
networks use associative memory. The hard/easy flavors of the server are distinguished by the 
training set used for them. For the hard set only proteins with low identity to templates, less than 
40% sequence identity as judged by three iterations of PSIPRED. 

 

1. Faraggi, Eshel, and Andrzej Kloczkowski. "A global machine learning based scoring function 
for protein structure prediction." Proteins: Structure, Function, and Bioinformatics 82, no. 5 
(2014): 752-759. 

2. Faraggi, Eshel, Robert L. Jernigan, and Andrzej Kloczkowski. "A Hybrid Levenberg–
Marquardt Algorithm on a Recursive Neural Network for Scoring Protein Models." In 
Artificial Neural Networks, pp. 307-316. Humana, New York, NY, 2021. 
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Deep learning (DL) methods like AlphaFold21 has been successfully applied in the last CASP to 
predict highly accurate protein structure in most cases, but these methods still rely heavily on co-
evolution information(MSA) or template information. In CASP15, we sought to further improve 
performance of DL methods and extend their application. We participated the protein tertiary 
structure track and developed a more accurate and efficient end-to-end protein structure 
prediction toolkit called MEGA-Protein. This toolkit mainly consists of three parts: protein 
structure prediction tool MEGA-Fold2, MSA generation tool MEGA-EvoGen3 and protein 
structure assessment tool MEGA-Assessement. We used five different settings to predict tertiary 
structure and submitted results to 5 servers separately(named by server 122/123/124/125/126 
respectively) . 

 

Methods 

Given a query sequence, we prepared templates and four different MSAs as input. Then we 
adopted MEGA-Protein to predict and selected the best models according to different criteria. 
Models selected were refined by OpenMM4 relaxation. 

Input data 

Given a query sequence, we prepared co-evolution information(MSA) in 4 different ways, 3 with 
traditional database query and 4th with our MSA Generation tool MEGA-EvoGen: MSA 1 was 
searched using MMseqs2 (with default settings from ColabFold5). MSA 2 was generated by 
filtering MSA 1 by HHfilter6 (with 95 percent identity and 50 percent coverage filters). For MSA 
3, we searched MSA by Jackhmmer and HHblits following standard AF2 protocol, whose result 
was then combined with MSA 1 and as MSA 3. For MSA 4, the MEGA-EvoGen was applied to 
improve the quality of MSA 3, and 8 groups of MSA were generated using different hyper-
parameters. All the 4 MSAs were fed into HHSearch individually to generate templates. 

Protein Structure Prediction 

mailto:liusirui@cpl.ac.cn,
mailto:gaoyq@pku.edu.cn
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Server 122 For this server, we used MEGA-Fold to infer structures with checkpoint trained 
on our own dataset. We used the MSA 1/2/3 + template as input. For each query sequence, 
multiple models together with their confidence were predicted. We submitted the model with 
highest confidence as MODEL 1 of server 122. We then selected four most diversified models 
from the remaining models(confidence higher than 0.7) according to their mutual lDDT and TM-
score and submitted as MODEL 2/3/4/5. 

Server 123 For this server, we adopted MSA generation with MEGA-EvoGen as input and 
still used MEGA-Fold for inference. The selection method was the same as server 122 except 
that results of server122 and server123 were merged together as the candidate pool. 

Server 124 For this server, first, we replaced one of the templates in MEGA-Fold with the 
structures predicted by server 122, while keeping other inputs the same as server 122, called 
server 122’. we then selected four best models from server 122 and the server 122’ by AF2Rank7, 
These models were submitted as MODEL 1/2/3/4 respectively. Then we selected the best model 
of server 122’ according to pLDDT confidence as MODEL 5. 

Server 125 The protocol of this server was the same as server 122, except that homo-
oligomer was processed in multimer-like protocol: the MSA for single query sequence was 
repeated and placed block diagonal-wisely to simulate multimeric MSA. the query sequence was 
also repeated corresponding times in the predicted structure. We predicted confidence for each 
copy separately and saved the copy with highest confidence as the resulting model. We selected 
the most confident model from all resulting models predicted and submitted it as MODEL 5 of 
server 125, while keeping MODEL 1/2/3/4 the same as server 122. 

Server 126 The model selection protocol was the same as server 122, but it took all unique 
models from server 122 and 124 (also unique models in server 123 when MSA depth <128) into 
consideration. 

Manual interventions 

Most query sequences were processed with an automatic pipeline, except for 3000+ length 
targets T1165 and T1169, due to the memory limitation of hardware (Ascend910-32GB). For 
T1165, we predicted all models with our own checkpoint from MEGA-fold with jax on GPU 
A100-80GB. For T1169, we predicted models with our own checkpoint with jax on GPU A100-
80GB for server 122/123/124/126, and standard AlphaFold2 for server 125. We are working on 
improving memory efficiency on Ascend. 

 

Availability 

The proposed method MEGA-Protein is developed based on MindSPONGE computational 
biology/chemistry package and MindSpore AI framework. The MEGA-Protein package is 
available at our gitee or github page. 

 

1. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with 
AlphaFold. Nature, 2021, 596(7873): 583-589. 

https://gitee.com/mindspore/mindscience/tree/master/MindSPONGE
https://www.mindspore.cn/
https://gitee.com/mindspore/mindscience/tree/master/MindSPONGE/applications/MEGAProtein
https://github.com/mindspore-ai/mindscience/tree/master/MindSPONGE/applications/MEGAProtein
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The approach to build up MSA in Alphafold2 has room to be improved. In our method, we 
attempt to predict better structures by improving the quality of multiple sequence alignment 
(MSA) . For each target, we used several best available distant homolog searching methods such 
as Hhblits, jackhmmer and MMseqs2 to search a wide range of sequence database at the same 
time to form multiple MSAs. Then we filtered MSAs according to coverage and identity. When 
the depth of MSAs are not enough, we tried to merged some/all generated MSAs. We further 
filtered the MSAs through MSA plots, only MSAs passed the previous filters were used as the 
input of Alphafold2 framework. Finally, pLDDT was used to rank all models.  

 

Methods 

For each target, we used the same prediction method. Our prediction method of protein structures 
is based on Alphafold21. Everything is the same as the Alphafold2 except for the MSA 
generation section. PDB70 was used as the template database, and AMBER2 was used for 
refinement after model generation. The deep learning part is exactly the same as Alphafold2, 
without any changes. The pLDDT was used to rank all models. Instead of targeting specific sets 
of proteins, our approach works on all proteins. 

For MSA search on BFD, Uniclust30 and MetaShanghaiTech (a homemade metagenome 
database), we used HHblits from hh-suite v.3.0-beta.3 release 14/07/20173. For MSA search on 
Uniref90, MGnify, IMG/VR34 (a virus metagenome database), PSDB (a homemade virus 
metagenome database), we used jackhmmer from HMMER v.3.35. For Uniref30 and 
ColabFoldDB, we used MMseqs26,7. We will generate a plot for each MSA, which includes the 
number of homologs, as well as the identity and coverage compared to the query. Based on the 
plot, we then decided which MSAs to filter on identity and coverage, and/or to combine with 
other good MSAs after filtering and realign to get some new MSAs. For realignment, we used 
Kalign28. The identity and coverage when filtering, and the gap open penalty and gap extension 
penalty when realigning, were decided by us based on the actual situation of each target. All the 
good MSAs would be sent to Alphafold2 framework for model prediction. 
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Results 

Based on the pLDDT, more than half of the results are better than the CASP-Hosted Server 
Predictions. By observing the results of MSA plot and pLDDT, we found that using MMseqs2 to 
search Uniref30 or ColabFoldDB database with reference to Colabfold often had better results. 

 

Availability 

The parameters of several methods for searching homologs are detailed in their respective software. 
The homologs databases: Uniref90, https://ftp.ebi.ac.uk/pub/databases/uniprot/previous_releases/ 
release-2020_01/uniref/;  MGnify, 
http://ftp.ebi.ac.uk/pub/databases/metagenomics/peptide_database/ 2019_05/; Uniclust30, 
https://uniclust.mmseqs.com/; BFD, https://bfd.mmseqs.com/; Uniref30, 
https://uniclust.mmseqs.com;  colabfoldDB, https://colabfold.mmseqs.com/; IMGVR3, 
https://genome.jgi.doe.gov/portal/IMG_VR/IMG_VR.home.html; The homemade database PSDB, 
MetaShanghaiTech and steps for filtering and merging MSAs are not available yet. The template 
database: PDB70, https://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/. The 
MSA plot code and pLDDT code refers to the corresponding section of ColabFold python code, 
https://github.com/sokrypton/ColabFold/blob/main/beta/colabfold.py. Except for the MSA 
generation section, please refer to the Alphafold2 code for other parts 
(https://github.com/deepmind/alphafold). 
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ShanghaiTechFold is a hybrid multi-model deep learning network. The whole architecture 
includes Data Processing, Feature Embedding, Evoformer, Structure Module and Structure 
Refinement. To obtain diverse multi-sequence alignments (MSA) and get MSA features, we 
build a large metagenomic database. According to different training configurations, a total of 15 
sets of models were obtained and we get hundreds of predictions with different combinations of 
models and MSA searching/generation methods. Finally, we leverage averaged predicted local 
distance distribution test (pLDDT) value to rank multiple predictions. 
 
Methods 
The whole architecture of ShanghaiTechFold includes Data Processing, Feature Embedding, 
Evoformer, Structure Module and Structure Refinement.  

In Data Processing part, we downloaded hundreds of TB sequence data from NCBI and 
Mgnify and used plass to assemble them. Then, we built our customized datasets by a similar 
pipeline of BFD. Because of the limitation of memory and speed, we split assembled proteins 
into many small parts and used GPU-accelerated techniques to build large MSA databases that 
can be searched by hhblits. These databases are about 20x larger than the BFD database so we 
can get enough homologs for each query sequence. Also, we tried different operations to search 
MSA, such as filtering by coverage, combination and realignment, and random mutations. For 
each target, we can get many kinds of MSA that are used in the Naive MSA Embedder of 
Feature Embedding part. 

In Feature Embedding part, we construct representations from Residue Embedder and 
MSA Embedder. For MSA Embedder, we combined three different Embedders to get the final 
MSA features including Naive MSA Embedder, Pseudo MSA Embedder, and protein Language 
Model (pLM) Embedder. In Naive MSA Embedder, we search MSA from metagenomic data. In 
Pseudo MSA Embedder, we first generate pseudo MSA from pre-trained MSA generative model, 
then we use the same pipeline as Naive MSA Embedder. In pLM Embedder, we output MSA 
features directly. By different combinations of the above MSA Embedders, we got 15 kinds of 
MSA features. Finally, we combine Residue Embedder features and MSA features to build MSA 
representations and pair representations. 
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In Evoformer and Structure Module part, we used the same architecture as alphafold21. 
For all self-attention layers, we used dynamic axial parallelism technique to save GPU memory 
and accelerate forwarding and backpropagation speed. In structure refinement, we used 

OPENMM2 with CUDA platform. We got several hundred models for each target with different 
MSA features and models and rank them by averaged pLDDT value, then we select top 5. 

Results 
For most of CASP targets, we can get reliable predictions based on pLDDT values.  

 
 

1. Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with 
AlphaFold. Nature 596, 583–589 (2021). 

2. Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang LP, 
Simmonett AC, Harrigan MP, Stern CD, Wiewiora RP, Brooks BR, Pande VS. OpenMM 7: 
Rapid development of high performance algorithms for molecular dynamics. PLoS Comput 
Biol. 2017 Jul 26;13(7):e1005659. 
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Although models submitted by BAKER_SERVER and Alpha2 have very little atom-atom 
overlap between residues separated by more than 5 amino acids, the energy of interactions for 
nearby residues frequently appears to be higher than that expected from high resolution x-ray 
structures.  The sum of overlap between atoms I to i+1 and atoms I to i+2-5 is often significantly 
larger and the statistics of phi, psi, and chi1 angles in monomeric, dimeric and trimeric segments 
are often outside the ranges found in real proteins. Disregard of these local energy terms may 
lead, all things being equal, to small errors in chain direction, potentially allowing conformations 
which are energetically forbidden to the real protein. In other words, very low global energy 
without optimization of these local terms is not necessarily an indication of successful 
refinement of a model. 

Method 

Our group has spent the past 20 years working on fragment replacement methods using a genetic 
algorithm and Monte Carlo search strategies that focus on improving these local energies. 
Fragments with roughly the same secondary structure are selected from the PDB based on 
scoring with multiple Ramachandran statistical potentials and absence of excessive atom overlap 
after side-chain replacement.  At this stage, all other energy terms are ignored. After randomly 
joining these fragments of length 3 to 5 residues to generate several thousand crude, full length 
models or “decoys”, one round of 4 generations using the genetic algorithm is applied to sets of 
25 of these decoys, with the full set serving as a library of varying length segments. Heavy 
selective pressure for reduced local atom overlap and improved Ramachandran energies are the 
major terms emphasized, with only modest pressure applied to reduce backbone overlap between 
residues separated by 10 and 30 percent of full length.   

 In the first round of model refinement, a combined pool of all AF2 and all 
BAKER_SERVER models serves as a starting population and large segments of these models 
are forcibly replaced by segments from refined decoys. Subsequently, extensive fragment 
replacement proceeds using fragments randomly drawn from all the refined decoys, selecting 
primarily for local energy terms. No direct structural information (CA-CA distance matrix error ) 
from the guide model was needed to generate models converging toward the guide model. 
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 In the subsequent 2 to 5 genetic refinement rounds (4 generations each), scoring for 
improved global energies was slowly added to the survival function, along with pressure from 
the CA-CA distance matrix calculated over increasing residue separations.   To reduce the loss of 
structural diversity, which is a major problem for genetic algorithms in general, the principle 
tactics employed were: (1) selection with replacement rather than children competing with parent 
(i.e., no expansion of the population); (2) one function selects for successful fragment swaps plus 
a different survival function that picks one structure generated during the second half of the 
trajectory to replace the starting structure; (3) Alternating the selection function and survival 
functions between the weighted sum of 5-12 composite pseudo-energy terms versus the weighted 
sum of the z-scores of these same terms. 

 As refinement progresses, more emphasis is given to the standard global energy terms, 
such as atom-atom statistical potentials, solvation, and hydrogen bonds and relatively less to 
local energetics. In parallel, pressures for native-like packing density and atom-atom separation 
statistics are also applied. Our experience is that conventional statistical potentials for atom-atom 
interactions do not reproduce the statistics of atom-atom distances observed in high resolution x-
ray models. 

Results 

In summary, the refinement method described above was used for all attempts at model 
refinement. Inspection indicated that the best model seldom deviated by more the 1 A in CA 
RMSD from the BAKER_SERVER_TS1 model. This may or may not indicate serious 
limitations in the conformational search, which possibly only accesses a subset of new structures 
very similar to the starting models. 

Availability 

The author will provide information or code from all reasonable requests. 
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AlphaFold2 is changing the paradigm of computational biology research by mining protein 
sequences from genetic databases and using the evolutionary information between sequences to 
model protein tertiary structures1. It provides a great initial structure for many classical 
computational methods that based on force fields or energy functions, such as molecular 
dynamics (MD) simulations, Monte Carlo simulations, and molecular docking. In CASP15, we 
integrate the above simulation methods with AlphaFold2 to explore their potential in accurately 
predicting the tertiary and quaternary structures of biomacromolecules.  

 
Methods 
The AlphaFold methods1,2 were used to predict the protein structures for all targets, including 
those from ColabFold, local-deployed AlphaFold, and structures downloaded from the Elofsson 
lab. The prediction models were ranked by pLDDT, model confidence, and structural diversity 
and the top models were selected for further optimization. 

For regular targets, the conformation of side chains was predicted by sampling 
orientations and global energy minimization was conducted by applying Prime protein structure 
refinement of Schrödinger3. Combining the per-residue pLDDT scores provided by AlphaFold, 
the protein reliability report generated by Maestro GUI of Schrödinger packages, and the expert 
experiences, the quality of the structures was evaluated and the rank of models was adjusted. The 
protein reliability report contained the rationalization of backbone and side chain dihedral angles, 
polar encapsulation and solvent exposure. If needed, DeepRefiner4 or MD simulation were used 
for further optimization, especially for some flexible fragments of proteins. 

For the ligand binding prediction targets, we first predicted 3D structure of target 
sequence using AlphaFold1,2 and then searched for homologous templates in the Protein Data 
Bank (PDB) to determine the binding pockets of ligands, metal ions and co-factors. After that, 
the ligands were docked to the ligand-binding pocket on the target protein by Glide5 program of 
Schrödinger packages.  
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For assembly targets, protein complex structures were predicted using AlphaFold-
Multimer2 to generate different conformations, then we utilized a Monte Carlo simulation of 
Prime module3 of Schrödinger packages or a relax6 program of Rosetta packages to optimize the 
backbone structure and refine the side chain conformations. For each conformation, the interface 
Molecular Mechanics/Generalized Born Surface Area (MMGBSA) binding free energy was 
calculated by the prime module3 of Schrödinger, and a biological dimer reliability score was 
estimated by ClusPro-DC7. Taking both MMGBSA binding free energy and ClusPro-DC 
reliability score into consideration, we ranked the conformations of protein-protein complexes. 

In particular, for antigen-antibody targets, we applied two methods to build the antibody 
structures: DeepAb8, a deep learning-based method; and Antibody Structure Prediction9 of 
Schrödinger packages, a method derived from homology modeling and loop modeling. Because 
of the high identity of antigens from CASP15 with current solved proteins, the structures of 
antigens were built by Advanced Homology Modeling of Schrödinger packages. Subsequently, 
the global docking using ClusPro10,11 in antibody mode or HADDOCK12, was performed to 
generate antigen-antibody binding modes. As with other assembled targets, antigen-antibody 
complex models were ranked using MMGBSA, ClusPro-DC reliability score, and expert 
experiences. 

RNA targets modeling involves four steps: secondary structure prediction, 3D structure 
modeling, ARES scoring, and energy minimization. Specifically, a rough secondary structure 
was predicted by RNAfold13,14 and MXfold15. All the stem-loop structures in the predicted 
secondary structure were then used for the template searching in the nucleic acid database16. The 
obtained template structures, together with the predicted second structures, were utilized for 
RNA 3D structure modeling using FARFAR217. All the predicted structures were subsequently 
scored by ARES18. The top 20 structures were refined by Prime module3,6 of Schrödinger 
packages. In addition, for the RNA-Ligand system, the template structure with the same ligand 
was used for RNA modeling. Glide docking19 embedded in Schrödinger was then engaged in 
adjusting the ligand poses. And we adopted energy minimization embedded in Schrödinger 
2021-1 to refine the final structure. For the RNA-Protein complex, the protein dimer or trimer 
structures were modeled by AlphaFold1, and the RNA structure was constructed as previously 
described. The relative positions between RNA and protein were determined by homologous 
templates. 
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The accurate prediction of the 3-dimensional RNA structure from the nucleotide sequences is 
critically important for understanding the key functions of RNA in cellular processes. Here we 
present the approach we used in the CASP15 experiment, that consists in the integration of 
different and complementary methodologies, to predict the structure of RNA molecules. We 
begin by considering the information that is available for the RNA target such as the structure of 
homology templates, the secondary structure prediction and/or the multiple sequence alignment 
of homologous RNA sequences. From all this data, we extract spatial constraints which are then 
enforced in the 3D modeling step. It consists in building three-dimensional coarse-grained 
structures at nucleotide-level resolution and then refining them towards an all-atom 
representation. In the last step of our approach, we screen all generated structures and manually 
select the best five candidates based on energy, symmetry and geometry considerations. 

Methods 

(A) Collecting RNA data for structural modeling 

We consider different sources of information as input of our pipeline. The type of information 
used clearly depends on the RNA target input: 

 

RNA 2D structure. Given the RNA sequence we predict its secondary structure using the 
well known tool RNAfold1. This has been done for all RNA targets in CASP15.  

Homology template. In the case in which there is an homologous RNA sequence with a 
known 3D structure deposited in the PDB2, we use the template for extracting the nucleotide- 
nucleotide distance constraints that are used in the 3D modeling. In this competition, we used 
PDB 7LYF and 3Q50 for the modeling of the R1116 and R1117 target, respectively, and 
fragments from PDB 5OB3 and 7EOP for R1136.  

Multiple Sequence Alignment. In the case in which the target sequence matches one of 
the RFAM families3 with a good score, we re-align it using ClustalW4 and employ 
coevolutionary approaches from pydca5 to identify nucleotide pairs that coevolve and thus are 
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likely to be in spatial proximity in the 3D RNA structure. In CASP15, we used the MSA 
constructed from the CPEB3 ribozyme family (RF00622) as input for targets 1107 and 1108.   

Base-pair complementarity. We manually search for kissing loop structures that result 
from base-pairing between hairpin of internal loops. We use this approach for different synthetic 
targets in CASP15 (R1126, R1128, R1136, R1138). Note that we also complemented the manual 
identification of kissing loops by using the IPKnot6 package.  

All information retrieved in this step was used in the form of spatial constraints to guide 
the 3D structure modeling.  

 
(B) 3D RNA structure modeling  

The tertiary structure modeling was performed using two methods : SimRNA7 and SPQR8.  
SimRNA is a nucleotide-level coarse-grained model of RNA, developed in the group of J. 

M. Bujnicki  which uses Monte Carlo method for sampling the conformational space and a 
statistical potential to identify the lowest energy conformations. It was employed for exploring 
the conformation space, clustering the low-energy structures and obtaining a final set of a few 
hundreds all-atom structures. 

SPQR is a nucleotide-level coarse-grained model of RNA for building models by 
fragment assembly as done in larger structures9, and locally exploring the conformation space 
and minimizing the energy, with structural restraints for secondary structure and tertiary contacts 
imposed as a harmonic ERMSD restraint9. The all-atom structures were generated by placing an 
atomistic template on each nucleotide, which in some cases was minimized through a short MD 
simulation, using the parameters of previous works10. 
 
(C) Structure selection and refinement 
 
In the previous steps we generated a pool of structures from which we selected manually the best 
five candidates. Note that small variations of the procedure were applied on each puzzle. Here 
we list the different criteria to select the candidates:  

Energy evaluation. From the structures generated via SimRNA, we collect the 1% with 
the lowest energy and cluster them. Additionally, we employ SPQR for rescoring the SimRNA 
structures and select either those with the lowest SPQR energy or the most populated SimRNA 
cluster representative. We use this approach for the large majority of CASP15 targets. For the 
structures generated with SPQR, we only used the SPQR energy. 

Radius of gyration (Rg). We evaluate Rg and use it as an additional criteria for the 
choice of the final predicted structure. More compact structures are preferred with respect to 
extended ones.  

Symmetric properties. We did a visual inspection of the 3D RNA structure to verify its 
symmetric properties and use it as another selection criteria.  
 
Finally, the proposed all-atom models chosen are refined using QRNAS11 or MD relaxation10. 
 
Availability 
SPQR code is freely available at https://github.com/srnas/spqr.  
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We used our developed protein structure prediction (PSP) method, called 3DIGARS-PSP, for the 
prediction of protein complex structure (or assembly prediction) in CASP15. 3DIGARS-PSP 
uses an effective statistical energy function called 3DIGARS and an advanced search algorithm 
called KGA. We refer to our assembly prediction method as 3DIGARS-PSP-ASSEMBLY. For 
the conformational sampling of the protein folding process, the 3DIGARS-PSP method uses a 
memory-assisted genetic algorithm (GA) which is an extension of the KGA. We design GA 
using two important operators: memory-assisted crossover and mutation. These operators 
perform the important function of angle rotation and segment translation to support careful 
sampling. In order to aid in the search process, we also utilize the propensities of secondary 
structure and torsion angle. The memory-assisted GA-based sampling generates a large-scale 
ensemble of decoys to minimize the statistical energy function. Finally, we select the top five 
models for each CASP15 assembly target by clustering the ensemble of decoys, and 
consequently, these models are submitted to CASP15. 
 
Methods 
The assembly targets have multiple subunits in CASP15, each of which has a corresponding 
fasta sequence. To create a single fasta sequence, we first combine the fasta sequences of the 
subunits by inserting 20 Glycine (GLY or G) amino acids in between each fasta sequence. 
Glycine amino acid is used to combine the fasta sequences of the subunits because of its smallest 
side chain size among 20 standard amino acids. Then we use the AlphaFold2 1 tool to obtain the 
predicted models using the combined fasta sequence. The prediction of the 3D structure of the 
assembly target starts by initializing some of the chromosomes of the GA population with the 
cartesian coordinates of the backbone atoms of the models obtained from AlphaFold2 1. The rest 
of the chromosomes are filled by single point torsion angle changes (rotation). To make a guided 
change of the torsion angles (Φ or Ψ), the occurrence frequency of 20 standard amino acids with 
different Φ-Ψ angle pairs are constructed from the 4,332 high-resolution experimental structures 
extracted in our previous work 2. The Φ and Ψ angle range is divided into 120 bins with an 
interval of 3 degrees, and the frequencies of the bins are updated based on the value of the Φ and 
Ψ angles of every amino acid in the protein to obtain the frequency of distribution of 20 standard 
amino acids. By examining the cluster of frequency values, we further classify the frequency 
distributions into zones. Then, the most probable torsion angle (namely, pΦ or pΨ) of the zone is 
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extracted using the roulette wheel selection method, and a random angle around this angle is 
selected as a new torsion angle.  

Moreover, the propensities of secondary structure (SS) types of amino acids are also 
extracted from the same experimental structures used above by running the DSSP program to 
guide the torsion angle rotation. The SS types given by DSSP are broadly categorized into four 
different SS types (H, G, and I = H; E and B = E; T and S = T; and U). The torsion angle pair 
and SS types of the amino acids in protein are used to obtain the SS distribution. Later, this 
distribution of SS is used such that the SS type, which has the largest frequency count, is 
assigned to the given amino acid having a certain Φ-Ψ angle. Furthermore, the Φ-Ψ angle pairs 
corresponding to the H and E types are grouped into helix and beta groups and are consequently 
used to update the Φ or Ψ angle that results in a clash within the structure. 

The chromosomes (models) for the next generation of GA are obtained by two different 
types of structural change operators: i) angle rotation and ii) segment translation. The mutation in 
GA involves torsion angle rotation, and crossover involves segment translation followed by 
torsion angle rotation at the crossover point. The torsion angle rotation technique is based on the 
principle of rotation about an arbitrary axis. On the other hand, crossover in GA performs 
segment translation where all the amino acid indexes that are not SS type E or B are considered 
as possible crossover points. This is done to avoid random changes in the beta-sheet region and 
make more appropriately guided changes during the mutation operation. The children's structures 
in the crossover process are generated from two parent structures and a structure with the best 
fitness saved in the memory 3.  

The decoys generated by the conformational change through memory-assisted GA guided 
by the statistical energy function are then converted into the all-atom level by using Oscar-star 
software 4. The large-scale pool of decoys are clustered into five different cluster groups, at least 
5Å apart from each other based on the average root-mean-square deviation (RMSD). Then, we 
select the top five models in different clusters based on the 3DIGARS energy score ranking. The 
subunits of the top five models are further refined using the ModRefiner 5 software. Then, we use 
the ResQ 6 method to add B-factors to the subunits of the top five models. Finally, the models of 
the subunits are combined together in the CASP15 assembly format before submission. 

 
Availability 
Source code, manual, and example data of 3DIGARS-PSP for Linux are freely available, for 
non-commercial use, at http://cs.uno.edu/~tamjid/Software/ab_initio/v2/PSP.zip. 
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In CASP15, we evaluate our proposed novel ab initio protein structure prediction (PSP) method, 
called 3DIGARS-PSP. 3DIGARS-PSP method utilizes an advanced search algorithm called 
KGA and an effective statistical energy function called 3DIGARS. It uses a memory-assisted 
genetic algorithm (GA) derived from KGA to overcome the critical search process. GA employs 
two effective operators: memory-assisted crossover and mutation, which are decorated with 
angle rotation and segment translation features. Likewise, dihedral angle distribution and 
secondary structure propensities are utilized to guide the conformational search. The GA-based 
sampling generates a large decoy pool to minimize the statistical energy function. Finally, we 
cluster the ensemble of decoys to identify the top five models for each CASP15 target and then 
submit these models to CASP15. 

 
Methods 
Protein structure is primarily represented by backbone atoms N, Cα, C, and O in 3DIGARS-PSP. 
For each CASP15 target, we first obtain the predicted models from AlphaFold2 [1]. Then, the 
method starts by initializing some of the chromosomes of the GA population with the Cartesian 
coordinates of the backbone atoms of the models from AlphaFold2 1. Next, the remaining 
chromosomes are initialized by single-point torsion angle changes (rotation). We utilize the 
frequency of occurrence of 20 different amino acids with different Φ-Ψ angle pairs for an 
informed change of the torsion angles (Φ or Ψ). The frequency of occurrence is calculated from 
the 4,332 high-resolution experimental structures extracted in our previous work 2. The range of 
both Φ and Ψ angles for every amino acids are divided into 120 bins with an interval of 3 
degrees, and the frequencies of the bins are updated based on the value of the Φ and Ψ angles. 
By examining the cluster of the frequency values, it is possible to further categorize the 
frequency distribution for each amino acid into zones. Then, to select the most probable torsion 
angles (namely, pΦ or pΨ) belonging to the zone, the roulette wheel selection approach is 
applied. Next, a random Φ or Ψ (say, rΦ or rΨ) between pΦ-3 and pΦ or pΨ and pΨ+3 is 
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selected, and rotation of the current torsion angle is performed to achieve a new torsion angle, rΦ 
or rΨ.  

In addition, the change of the torsion angles is further guided by the propensities of 
secondary structure (SS) types of the amino acids extracted from the 4,332 high-resolution 
experimental structures by running the DSSP program. The eight different SS types (E, B, H, G, 
I, T, S, and U) given by DSSP are broadly categorized into four different SS types (H, G, and I = 
H; E and B = E; T and S = T; and U). The Φ-Ψ angle pair and SS types are used to obtain the 
index in the SS frequency table and increase the frequency count of the cell in the table by one. 
Next, the SS type, which has the largest frequency count, is assigned to the given amino acid 
having a certain Φ-Ψ angle. Furthermore, we collect the Φ-Ψ angle pairs belonging to the H and 
E types and group them into helix and beta groups. We utilize the Φ-Ψ angle pairs belonging to 
the helix or sheet group to update the Φ or Ψ angle that results in the clash within the structure. 

We apply two types of conformational change operators i) angle rotation; and ii) segment 
translation, to generate new chromosomes (structural samples) for the next generation of GA. 
The mutation operation involves phi or psi angle rotation, and the crossover operation involves 
segment translation followed by phi or psi angle rotation at the crossover point. The rotation of 
phi and psi angles is based on the idea of rotation about an arbitrary axis. For segment 
translation, a set of possible crossover points are selected based on the secondary structure 
information. All amino acid indexes except the amino acids belonging to the beta-sheet 
secondary structure type (either E or B) are considered as possible crossover points. This is done 
to preserve beta-sheet regions in the structure from random changes during the crossover 
operation and perform more controlled changes to this region while performing mutation 
operations. We generate four child structures from two parent structures using the crossover 
process and a structure with the best fitness saved in the memory 3.  

Decoys are generated by minimizing the potential energy using associated memory GA 
discussed above using the statistical energy function. Each decoy generated by 3DIGARS-PSP is 
then converted into the all-atom level by using Oscar-star software 4. Then a single-model based 
model quality assessment program Qprob 5, which predicts a model’s quality by estimating the 
error of structural, physiochemical, and energy-based features using probability density 
distributions, is used to rank the decoys. Next, the MUFOLD-CL 6 method is used to cluster the 
decoys. Then, we select the top five models in different clusters based on their Qprob rankings. 
The top five models are further refined using ModRefiner 7 software. Then, we use the ResQ 8 
method to add B-factors to the top five models before submission. 

 
Availability 
Source code, manual, and example data of 3DIGARS-PSP for Linux are freely available for non-
commercial use at http://cs.uno.edu/~tamjid/Software/ab_initio/v2/PSP.zip. 
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All-Atom Conditioned Self-Avoiding Walk (AA-CSAW) has been used in predicting protein 
structures since CASP9 (Group name: sun@tsinghua). It is an ab initio protein folding 
simulation model based on Langevin equation and Monte-Carlo (MC) method1,2. There are no 
other modeling methods used as integral part of AA-CSAW method. AA-CSAW is the same 
method for all predictions. We did not perform any manual intervention and no templates, MSA 
or CASP-hosted servers have been used. The dihedral angle distribution for three-residue 
fragment has been used in choosing torsion angles. Monte-Carlo tree searching is tested in the 
prediction, but no advanced (deep learning) machine-learning methods were used. We did not 
use any methods for ranking predictions. We only used AA-CSAW energy function for the 
refinement, is constructed by considering hydrophobic effect, desolvation effect and hydrogen 
bonding interaction3. 

Methods 

The protein chain is regarded as a series of rigid cranks connected by covalent bonds. Bond 
lengths and bond angles are obtained from chemical structures of 20 amino acids. Protein 
structure is determined by backbone and sidechain dihedral angles. An unfolded protein structure 
is generated as initial structure. The residue in protein chain is pivoted by setting dihedral angles 
to certain values. In the pivot algorithm, the backbone dihedral angles for each residue are 
chosen in Ramachandran plot according to a probability distribution derived from 3-residue 
fragment set. The effective energy of protein structure is constructed by considering hydrophobic 
effect, desolvation effect and hydrogen bonding interaction. An appropriate three dimensional 
structure is accepted with a probability according to Metropolis scheme. A ratio of secondary 
structure content to radius of gyration is proposed to evaluate the predicted structures as a 
supplement to the energy evaluation criteria.  

 Based on atom locations in each residue crank and the dihedral angles between every two 
cranks, the main chain and sidechain atom coordinates are determined. The sidechain rotamer 
distribution is used to provide sidechain structures with low energy. The hydrophobic energy is 
estimated based on two factors: the solvent accessible surface area (SASA) and residue types. A 
residue with more neighbors is buried in protein and has less SASA. In addition, if the 
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surrounding residues are all hydrophobic residues, the residue has high hydrophobic energy. A 
pair of residues are considered in contact based on Atom Distance criteria (ADC) model4,5. We 
introduce a scheme to decrease the hydrophobic energy when the aggregation of hydrophobic 
residue grows to large size. This method provides more chances to open the hydrophobic core, 
which is essential for misfolded intermediate structures. The DSSP 6 method is used as HB 
criterion. The total number of hydrogen bonds is a measurement of HB energy. An optimal HB 
strength parameter is used to account for the stability of hydrogen bond at different locations. In 
order to prevent the formation of tight hydrophobic core without hydrogen bonding, we 
introduce a penalty to buried NH, CO groups without hydrogen bonds. 

Monte Carlo Tree Search (MCTS) is tested in predicting protein structures. In GO game, 
subsequent possible child nodes are searched through MCTS. In AA-CSAW, the current state of 
protein structure is determined by the amino acid sequence and the corresponding dihedral 
angles. The subsequent state towards folded structure is searched by MCTS. Note that there is no 
way to strictly define the "win or loss" like in GO game. So an upper limit number of pivot 
iteration and the energy convergence (energy drop between every two pivots is less than one 
percent of the original energy) is used as the termination of the MCTS searching. 

The AA-CSAW is now a parallel code and can produce a bunch of candidate structures at 
the same time. 

Results 

All results, intermediate data files, and performance analysis documents are available on the web 
at https://www.researchgate.net/profile/Weitao-Sun-4.  

Availability 

The AA-CSAW software is written in C++ and have been compiled and tested on both Windows 
and LINUX systems. The software is available by sending email to sunwt@tsinghua.edu 
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We participated in the assembly category of CASP15. We predicted both homo- and hetero- 
oligomeric protein structures according to the oligomeric state in the CASP15 target list. 

Methods 

 Structure Preparation: We generated protein structure models (25 models) using 
AlphaFold-Multimer1 for assembly target. We also used AlphaFold-Multimer models (25 
models) by Arne Elofsson's group (http://duffman.it.liu.se/casp15/). 

 Template Search: To obtain monomeric and oligomeric templates, we carried out two-
step template search2. Firstly, templates were searched by HHblits3 against UniRef30 and PDB70 
database. Secondly, to search templates more widely, we ran PSI-BLAST4 on PDBaa using 
HHblits hits as inputs. 

 Additional model construction: We visually inspected structure models, and compared 
them with templates obtained by two-step template search. When models were unfolded, we 
constructed structure models additionally using AlphaFold-Multimer based on the information of 
domains, monomeric and oligomeric templates with human intervention. 

 Assessment of model quality: For dimeric complex, we used our original quality 
assessment method based on learning to rank approach5. Our original ranking method was 
developed for predicting the model ranking based on DockQ6 score. In this method, SOAP-PP7 
score, VoroMQA8 score and Rosetta9 score were used as input features into learning to rank with 
LightGBM10. For other multimeric complex, we used the model confidence score from 
AlphaFold-Multimer for ranking. Clash information at the interface was considered manually, if 
necessary. 
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2. Kiyota Y, Kobayashi S, Harada Y, Takeda-Shitaka Y. CASP14 abstract book. (2020). p266-

227. 
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annotation. Bioinformatics. 20, 473. 
4. Altschul SF, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein 

database search programs. Nucleic Acids Res. 25, 3389-3402. 
5. Harada Y. Kitasato University, thesis, (2022). 
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In CASP15 we applied TRFold and TRComplex for the modeling of single-chain protein and 
assembly targets respectively. For single-chain targets known to be part of an assembly their 
structures were directly parsed from the complex rather than being modeled separately as 
monomers. TRFold-single which uses only the target’s sequence as input was developed during 
CASP experiments and subsequently applied. 

 

Methods 

Input features: TRFold and TRComplex utilize both multiple sequence alignment (MSA) 
and template information for structure prediction. Latest UniRef30, UniRef90, and metagenomic 
database colabfold_envdb are searched and sequences found are concatenated to construct 
target’s MSA. The component from colabfold_envdb is further filtered to limit its size. 
Templates are found by HHsearch through latest PDB70 downloaded in April. TRFold-single 
does not use MSA but the target’s sequence is first embedded through a transformer-based 
language model pre-trained on UniRef sequences and used as input. 

Single-chain protein modeling: TRFold is a transformer-based neural network that takes 
a target’s sequence, MSA and templates as input and outputs predicted distance matrix, torsion 
angles, coordinates and associated TM-score. The network was first trained on a non-redundant 
set of high-resolution single-chain proteins from the Protein Data Bank and then finetuned on 
both native and predicted structures of a non-redundant subset of UniRef30. The predicted set 
was fed progressively and several parameter settings were tried during finetuning. For every 
monomeric target the five highest scoring decoys were submitted. As we noticed, very early on 
in this CASP experiment, significant conformational difference between assembly component 
chain predictions and its corresponding monomeric decoys, all single-chain targets that are 
known to be part of an assembly were parsed directly from the complex structure. Coordinate-
constrained relaxation was done using Amber force fields to further reduce clash.      

Assembly modeling: instead of training a multimer model from scratch, we applied 
spatial cropping on single-chain proteins at the finetuning stage to simulate inter-chain 
interactions. MSAs for assembly targets were constructed by concatenating MSAs of individual 
chains without pairing. A total of 50 decoys were generated for each target and the five highest 
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scoring ones were submitted. For large assemblies, the largest substructure that could fit onto our 
GPU was predicted and submitted through TRFold group whereas whole structure prediction 
was tried on CPUs and submitted through trComplex group if completed before the deadline.    

Manual intervention: templates were manually grouped and selected for several targets 
including T1109, T1110, T118, T1158, T1162, T1162, T1195, T1196 and T1197. MSAs were 
also manually filtered to produce alternative conformations for targets T1195 to T1197. Higher 
number of recycles were applied for orphan targets such as T1130. Aside from predicted scores, 
visual inspection and selection based on literature information was carried out on antigen-
antibody complex targets. Unrelaxed predictions were submitted for several large assemblies as 
relaxation caused substantial backbone conformation changes.  

 Development during CASP: TRFold-single, a target sequence-only model was trained 
seeing the release of single-point mutants T1109 and T1110, and subsequently one of the five 
submissions was from TRFold-single regardless of its predicted TM-score. By introducing 
memory saving techniques, the total foldable length increased from ~1400 amino acids to ~3500 
on our in-house 24G GPU after target H1137. A model with higher weights on clash and bond 
length violation loss was trained and preferred for large assemblies.  

 

Results 

Earlier version of TRFold trained on pre-CASP14 PDB data was tested on all CASP14 targets by 
back-rolling sequence and template databases to that of April 2020 and achieved an average TM-
score of 0.902. TRFold-single was tested on a set of de novo designed proteins recently 
deposited in the PDB and achieved an average TM-score of 0.862, ~4% higher than that of 
AlphaFold2.   

 

Availability 

All methods and algorithms applied in CASP15 are available on our AI-directed protein design 
workbench at https://xlab.tianrang.com, where structure prediction, protein design, property 
analysis and optimization algorithms are hosted in an all-in-one platform.  
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Overcoming the limitation of extremely little trainable data and highly flexible geometry for 
deciphering RNA 3D structure, we present OpenComplex-RNA, a deep-learning model that 
jointly incorporates multiple sequence alignment (MSA) encoder and atomic structural decoder 
with optimized functional scores in CASP15. Its successive feature enables capturing detailed 
coordinates of RNA base not limited to the complex sequence length, the sophisticated multimer 
interaction, and the distinct ligands. In short, OpenComplex-RNA predicts accurate RNA 
structures in diverse application scenarios. 

Methods 

Feature extraction: By given query sequence, their potential MSAs, structural templates, 
and secondary structures were fully explored together with relevant published experimental data 
(Figure 1B). Briefly, (i) MSA was generated using rMSA1 by querying genetic databases 
including Rfam, RNAcentral, and nt databases. (ii) Local structural templates and RNA-ligand 
complex templates were collected from the PDB database after searching RNA sequence data 
and SMILES of ligands. (iii) From the Rfam and RNAcentral databases, secondary structural 
information was gleaned. For specific cases, secondary RNA structures were indirectly retrieved 
from the published word and then modified manually. For targets that lack experimental 
secondary structure, we jointly combined three RNA secondary structure prediction techniques 
(RNAfold,2 MXfold,3 and E2Efold4) as their consensus predictions. 

RNA tertiary structures generation: Using the retrieved information, we created two 
parallel pipelines to generate RNA tertiary structure (Figure 1A). (i) For each target, the 
secondary structure and starting pose created by RNAcomposer5 were fed into FARFAR26 and 
simRNA7 to build tens of thousands of tertiary structures. As an alternate input for some targets, 
local structure templates were employed. (ii) The secondary structure and MSA were utilized as 
inputs for the MSA encoder in OpenComplex-RNA to build both single and pair representations, 
which direct the structure module to generate tertiary structures. 

Model selection: To comprehensively examinate the quality of generated structures, we 
ranked all the predicted tertiary structures according to their ARES8 scores and physical-based 
Rosetta9 ratings with specified local and global structure qualities (Figure 1D). By using the 
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Rosetta suite,10 we additionally estimated the secondary pairings of candidate models as 
alternative quality measures. In light of those targets that have accessible homologous structures, 
candidate structures were further identified by their structural similarity compared to the 
templates. 

Docking: We performed RNA-RNA docking using the HNADOCK server,11 which 
specifically designed an intrinsic scoring system for evaluating nucleic acid interaction (Figure 
1C). While RNA-ligand docking was conducted along with the information of RNA-ligand 
templates that were extracted from the PDB database. Besides, RNA-protein docking was 
calculated by the HDOCK.12 The human-optimized RNA-protein docking was viewed as the 
potential benchmark for downstream application. 

Availability 

The code and models will be made available to the public shortly. 

 

Figure 1: The Pipeline Overview. 
A) Model architecture of candidate structure generation. Arrows indicate the information flow 
that connects the consecutive computational module. The rectangle with the dashed line 
represents the core data feature, while the one with the solid line represents the computational 
module. The reported algorithm was denoted with an asterisk. B) Relevant features were 
extracted from various databases for the downstream model prediction unit. C) Hyper-
interaction related to multi-ligand was conducted along with RNA-RNA docking, RNA-protein, 
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and RNA-ligand docking accordingly. D) Final models were ranked according to the specified 
rules of ARES and the rosetta score. 
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The UM-TBM server used in CASP15 is designed for modeling regular protein targets 
(monomer protein) based on a fully automated combination of the extension pipeline of 
DeepMSA1, LOMETS2, AlphaFold23, and I-TASSER4; 5. The pipeline contains five steps: (i) 
MSA construction by DeepMSA2, (ii) multi-domain template detection by LOMETS32, (iii) 
initial models and spatial geometric restraints prediction by AlphaFold23 and other deep learning 
predictors, (iv) I-TASSER Replica-Exchange Monte Carlo (REMC) simulation for model 
construction, and (v) atomic-level model refinement by MD simulation. 

Methods 
We generate the multiple sequence alignments needed by later stages of our pipeline using 
DeepMSA2, which contains two sub-methods (dMSA and qMSA) to generate seven candidate 
multiple sequence alignments (MSAs). Here, dMSA is our previous MSA construction program 
(DeepMSA1) developed during CASP13, where HHblits6, Jackhmmer7 and HMMsearch7 are 
used to search the query sequence against the Uniclust308, UniRef909 and Metaclust10 
databases in three stages (labeled stage 1 – stage 3 in the order listed above). qMSA is an 
extended version of dMSA with a new search added between stage 2 and stage 3 of dMSA, 
where HHblits is used to search the BFD11 metagenomic database. In addition, a new iteration 
stage (stage 4) is added in qMSA to search the query through the Mgnify12 metagenomic 
database. Thus, five different MSAs are generated by stages 1-3 of dMSA and by stages 3-4 of 
qMSA. Furthermore, the MSA from qMSA stage3 (obtained from the BFD database) is used as 
the starting point for HMMsearch to search through the IMG/M13, Tara14 and MetaSource15  
metagenome databases, which contain more sequences than the Metaclust, BFD, and Mgnify 
databases. The resulting sequence hits are converted into a sequence database. This sequence 
database is then used as the target database for dMSA stage 3 and qMSA stage 4 to generate two 
additional MSAs. As an additional filtering step, the seven MSAs from DeepMSA2 are used as 
inputs for separate AlphaFold2 (1-embedding) runs to predict seven sets of models and the 
associated spatial geometric restraints, and the MSA associated with the highest pLDDT score 
from the AlphaFold2 models is selected as the final output of DeepMSA2.  
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 The final MSA of DeepMSA2 is used for AlphaFold2 (8-embedding), AttentionPotential, 
and DeepPotential16 for the predictions of residue-residue contact maps, distance distributions, 
inter-residue torsion angles, and hydrogen-bond networks. Those deep learning-predicted 
restraints are utilized to guide the REMC folding simulation with the same set of restraints 
calculated from templates detected by LOMETS3. AttentionPotential is an extended pipeline 
from DeepPotential, which utilizes an MSA transformer17. The full sets of predicted restraints 
from AttentionPotential and DeepPotential are later fed into DeepFold, an L-BFGS folding 
system, to get ten full-length models. Those ten models, the five models generated by 
AlphaFold2, and the LOMETS3 full-chain level threading templates, are used as initial 
conformations in the REMC folding simulation.  

 The MSA generated from the DeepMSA2 is also used to produce sequence profiles or 
profile Hidden Markov Models (HMM) for six profile-based threading methods used by 
LOMETS3. The contact maps and distance distributions predicted from AlphaFold2, 
AttentionPotential and DeepPotential are used by five contact and distance-based threading 
methods in LOMETS3. Different from previous versions of LOMETS, LOMETS3 can 
automatically handle the multi-domain protein threading problem by adding domain partition 
and domain assembly modules. FUpred18 and ThreaDom19 are used as domain boundary 
prediction methods in LOMETS3, and DEMO20 is used for assembling domain-level templates 
to full-chain level templates guided by distance restraints from AlphaFold2, AttentionPotential 
and DeepPotential. Finally, 110 (10 templates from each component threading method) full-
chain level templates are collected by LOMETS3, and then used as initial conformations 
associated with the models constructed by AlphaFold2 and DeepFold in REMC simulation.  

For target proteins with lengths of less than 300 residues, an I-TASSER-based REMC simulation 
is utilized for generating 10,000 decoy conformations. The REMC simulation is guided by 
residue-residue contact maps, distance distributions, inter-residue torsion angles, and hydrogen-
bond networks that are predicted by deep learning predictors and calculated from LOMETS3 
threading templates. The decoys are later clustered by SPICKER21 to obtain five clusters for 
final model selection. For the targets with lengths of greater than 300 residues, the top five 
ranked AlphaFold2 models are directly used in the next MD refinement. 

The five cluster centroids (for target with length<300AA) or the five top ranked AlphaFold2 
models (for target with length≥300AA) are further refined by FG-MD22 to remove steric clashes 
and refine the local structure packing, resulting in the final models. 

 

1. Zhang, C., Zheng, W., Mortuza, S. M., Li, Y. & Zhang, Y. (2020). DeepMSA: constructing 
deep multiple sequence alignment to improve contact prediction and fold-recognition for 
distant-homology proteins. Bioinformatics 36, 2105-2112. 

2. Zheng, W., Wuyun, Q., Zhou, X., Li, Y., Freddolino, P. L. & Zhang, Y. (2022). LOMETS3: 
integrating deep learning and profile alignment for advanced protein template recognition 
and function annotation. Nucleic Acids Research 50, W454-W464. 

3. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., 
Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. 



239 

A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., 
Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., 
Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., 
Kohli, P. & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. 
Nature 596, 583-589. 

4. Zheng, W., Zhang, C., Li, Y., Pearce, R., Bell, E. W. & Zhang, Y. (2021). Folding non-
homologous proteins by coupling deep-learning contact maps with I-TASSER assembly 
simulations. Cell Reports Methods 1, 100014. 

5. Zheng, W., Li, Y., Zhang, C., Zhou, X., Pearce, R., Bell, E. W., Huang, X. & Zhang, Y. 
(2021). Protein structure prediction using deep learning distance and hydrogen-bonding 
restraints in CASP14. Proteins: Structure, Function, and Bioinformatics 89, 1734-1751. 

6. Remmert, M., Biegert, A., Hauser, A. & Söding, J. (2012). HHblits: lightning-fast iterative 
protein sequence searching by HMM-HMM alignment. Nature Methods 9, 173-175. 

7. Potter, S. C., Luciani, A., Eddy, S. R., Park, Y., Lopez, R. & Finn, R. D. (2018). HMMER 
web server: 2018 update. Nucleic Acids Research 46, W200-W204. 

8. Mirdita, M., von den Driesch, L., Galiez, C., Martin, M. J., Söding, J. & Steinegger, M. 
(2017). Uniclust databases of clustered and deeply annotated protein sequences and 
alignments. Nucleic Acids Research 45, D170-D176. 

9. Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B., Wu, C. H. & UniProt, C. (2015). 
UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity 
searches. Bioinformatics (Oxford, England) 31, 926-932. 

10. Steinegger, M. & Söding, J. (2018). Clustering huge protein sequence sets in linear time. 
Nature Communications 9, 2542. 

11. Steinegger, M., Mirdita, M. & Söding, J. (2019). Protein-level assembly increases protein 
sequence recovery from metagenomic samples manyfold. Nature Methods 16, 603-606. 

12. Mitchell, A. L., Almeida, A., Beracochea, M., Boland, M., Burgin, J., Cochrane, G., Crusoe, 
M. R., Kale, V., Potter, S. C., Richardson, L. J., Sakharova, E., Scheremetjew, M., 
Korobeynikov, A., Shlemov, A., Kunyavskaya, O., Lapidus, A. & Finn, R. D. (2020). 
MGnify: the microbiome analysis resource in 2020. Nucleic Acids Research 48, D570-D578. 

13. Chen, I. M. A., Chu, K., Palaniappan, K., Pillay, M., Ratner, A., Huang, J., Huntemann, M., 
Varghese, N., White, J. R., Seshadri, R., Smirnova, T., Kirton, E., Jungbluth, S. P., Woyke, T., 
Eloe-Fadrosh, E. A., Ivanova, N. N. & Kyrpides, N. C. (2019). IMG/M v.5.0: an integrated 
data management and comparative analysis system for microbial genomes and microbiomes. 
Nucleic Acids Research 47, D666-D677. 

14. Wang, Y., Shi, Q., Yang, P., Zhang, C., Mortuza, S. M., Xue, Z., Ning, K. & Zhang, Y. 
(2019). Fueling ab initio folding with marine metagenomics enables structure and function 
predictions of new protein families. Genome Biology 20, 229. 

15. Yang, P., Zheng, W., Ning, K. & Zhang, Y. (2021). Decoding the link of microbiome niches 
with homologous sequences enables accurately targeted protein structure prediction. 
Proceedings of the National Academy of Sciences 118, e2110828118. 

16. Li, Y., Zhang, C., Zheng, W., Zhou, X., Bell, E. W., Yu, D.-J. & Zhang, Y. (2021). Protein 
inter-residue contact and distance prediction by coupling complementary coevolution 
features with deep residual networks in CASP14. Proteins: Structure, Function, and 
Bioinformatics 89, 1911-1921. 

17. Rao, R., Liu, J., Verkuil, R., Meier, J., Canny, J. F., Abbeel, P., Sercu, T. & Rives, A. (2021). 
MSA Transformer. bioRxiv, 2021.02.12.430858. 



240 

18. Zheng, W., Zhou, X., Wuyun, Q., Pearce, R., Li, Y. & Zhang, Y. (2020). FUpred: detecting 
protein domains through deep-learning-based contact map prediction. Bioinformatics 36, 
3749-3757. 

19. Xue, Z., Xu, D., Wang, Y. & Zhang, Y. (2013). ThreaDom: extracting protein domain 
boundary information from multiple threading alignments. Bioinformatics 29, i247-i256. 

20. Zhou, X., Hu, J., Zhang, C., Zhang, G. & Zhang, Y. (2019). Assembling multidomain protein 
structures through analogous global structural alignments. Proceedings of the National 
Academy of Sciences 116, 15930. 

21. Zhang, Y. & Skolnick, J. (2004). SPICKER: a clustering approach to identify near‐native 
protein folds. Journal of computational chemistry 25, 865-871. 

22. Zhang, J., Liang, Y. & Zhang, Y. (2011). Atomic-Level Protein Structure Refinement Using 
Fragment-Guided Molecular Dynamics Conformation Sampling. Structure 19, 1784-1795. 

 

  



241 

UNRES 

Protein structure prediction in CASP14 with the coarse-grained UNRES model 

M. Maszota-Zieleniak1, K.K. Bojarski2, E.A. Lubecka2, M. Marcisz1, A. Danielson1, 
Ł. Dziadek1, M. Gaardløs1, A. Gieldon1, A. Liwo1, S.A. Samsonov1, R. Slusarz1, K. Zieba1, 

A.K. Sieradzan1,*, C. Czaplewski1 
1- University of Gdańsk, Wita Stwosza 63, Gdańsk; 2- Technical University of Gdańsk, ul. G. Narutowicza 11/12, 

Gdańsk 

adam.sieradzan@ug.edu.pl 

Key: Auto:N; CASP_serv:N; Templ:Y; MSA:N;Fragm:N; Cont:N; Dist:N; Tors:N; DeepL:N; 
EMA:N; MD:Y 
 
We tested, with the CASP15 targets, our methodology for protein-structure prediction, which is 
based on the UNRES heavily coarse-grained physics-based model.1 In UNRES the only 
interaction sites are united backbone peptide groups and united side chains, the alpha-carbon 
atoms serving to define backbone geometry.  

Methods 

Both monomeric and oligomeric targets were treated and the models of oligomeric targets were 
submitted both to CASP and tp CAPRI. The UNRES group used the consensus-fragment 
restraints derived from the server models and the models generated by the in-house installation 
of iTASSER and AlphaFold2. For oligomeric targets, the HHpred server was used to obtain hints 
as to the possible structures of oligomers. The prediction procedure consisted of the following 
stages2 (i) running restrained multiplexed replica-exchange (MREMD) simulations of the targets 
with UNRES to explore the conformational space, (ii) determining the analysis temperature 
(before the unfolding-transition temperature), and determining the probabilities of the 
conformations by using weighted histogram analysis method (WHAM), (iii) dissecting the 
simulated conformations into 5 (CASP) or 10 (CAPRI) families by minimum-variance clustering 
and selecting the conformations closest to cluster means for further processing, ranking 
following cluster free energy (iv) conversion of the coarse-grained structures to all-atom 
structures to obtain the candidate predictions which were submitted to CASP/CAPRI. MREMD 
simulations were started from the server models. The recent extension of UNRES enabled us to 
run simulations for very large targets and DNA/protein targets.  

Results 

As the official CASP15 results had not been published at the time the poster was created, only 
the results of comparison of the predictions of the UNRES group with the corresponding 
experimental structures that had been released in the PDB at that time are presented.  

Availability 

The software is available at unres.pl and git distribution.  
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In CASP15 our group participated in predicting 3D structures of protein assemblies, protein-
RNA complexes and large multidomain single-chain proteins as well as in estimating accuracy 
of assemblies and intersubunit interfaces.  

Methods 
The general workflow for 3D structure prediction consisted of two major stages: (1) construction 
of an ensemble of multiple diverse structural models and (2) selection of the best models using a 
newly developed accuracy estimation protocol. Accuracy estimation procedures were based on 
both new and previously developed contact-area based scoring functions.  

Construction of 3D models. Initial ensembles of protein complexes were constructed 
using both AlphaFold-PTM1 and AlphaFold-Multimer-v22 versions available either as the 
ColabFold3 or the original DeepMind’s implementation. The DeepMind’s AlphaFold modeling 
pipeline included full databases for multiple sequence alignment generation and PDB templates. 
The ColabFold-based AlphaFold modeling pipeline employed a variety of different parameters 
and conditions so as to achieve extensive structure sampling. These variations included the 
choice of sequence databases, the construction and pairing of multiple sequence alignments as 
well as the number of AlphaFold recycles. If AlphaFold failed to generate the complex (assembly 
was too large to handle or subunits did not form a complex), structural models were obtained 
using docking. Docking models were also added if the resulting AlphaFold models had poor self-
estimated accuracy (pLDDT, pTM, ipTM) or did not show structural consensus. Docking was 
performed using established rigid-body docking tools. FTDOCK4 and HEX5 were used for 
generating heterodimers, whereas SAM6 was used for generating symmetric homomers. In 
several cases, when closely related templates were available as identified by PPI3D7, Modeller-
based homology models were constructed as well8. Large monomeric multidomain proteins were 
modeled using AlphaFold and ColabFold using similar pipeline as for protein complexes. 
Protein-RNA complexes were constructed as follows. Models for protein subunits were obtained 
using AlphaFold, whereas CASP server models were used to represent the RNA moiety. The 
ensembles of protein-RNA complexes were obtained using exhaustive docking. Once sets of 3D 
structures for protein-protein, protein-RNA or mutidomain monomers were obtained, the top five 
models were selected as described below. 

Model ranking and selection. Model ranking and selection was done using a newly 
developed VoroIF-jury (Voronoi-based InterFace jury) procedure. VoroIF-jury resembles EMA-
jury, developed previously for assessing the models in a recent CASP-commons experiment 
focused on SARS-CoV-29. Given a set of models, VoroIF-jury (a) computes multiple rankings 
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using different interface-focused scores (most of them based on the VoroMQA interface energy10; 
(b) pools the top 1, top 2, .... , top N models selected by each EMA ranking into N corresponding 
supersets; (c) for every model in each superset calculates the VoroIF-jury interface consensus 
score, that is an average of the interface CAD-score11 values derived by comparing a given 
model with other models in the superset; (d) ranks models by the best achieved VoroIF-jury 
score; (e) removes redundant models from the final ranking using the interface CAD-score-based 
clustering. For docking models VoroIF-jury was applied in two stages: (1) selecting top 300 from 
all the docking models, often exceeding 100 000; (2) after relaxing those 300 models using 
OpenMM12 to remove clashes, selecting the final top five models. 

VoroIF-jury included two newly developed interface scoring methods. The first one, a 
generic interatomic contact area-based energy potential, applicable for scoring of not only 
protein-protein, but also protein-nucleic acids interfaces, was derived from the protein-protein 
VoroMQA potential10. The second one, VoroIF-GNN, a graph neural network-based method, was 
developed for predicting the residue-level interface accuracy in models of protein-protein 
complexes. VoroIF-GNN is based on a graph attention network (GAT) that accepts a Voronoi 
tessellation-derived graph of inter-chain interface contacts. The network was trained using 
heterodimeric models produced by rigid body redocking of complexes from PDB. The ground 
truth interface quality scores were calculated by comparing the models with the corresponding 
experimental structures using interface CAD-score11. 

Analysis of the available structural data. In addition to automatically generated models, 
available information on the target proteins was also considered, starting with the UniProt 
database. Available structural data for homologous proteins were queried using HHpred13, 
COMER14 and DALI15 servers. Multimeric templates were identified using the PPI3D7 server, 
and the oligomeric states of structurally resolved homologs were additionally checked using the 
RCSB PDB Advanced search16. If multimeric structural templates were available, homology 
models were generated using the PPI3D web server. Disordered regions were predicted by 
DISOPRED317. All the available information was used in manual model selection and re-ranking 
for harder targets. 

Accuracy estimates for multimeric complexes and inter-subunit interfaces. The VoroIF-
jury method was also used by the “Venclovas” group to derive accuracy estimates in the EMA 
category. Among two other EMA groups, “VoroIF” used the newly developed VoroIF-GNN 
method. “VoroMQA-select-2020” used the same tournament-based scoring procedure that was 
used by the "Venclovas" group in CASP148. 
 
Availability 
The methods developed in our laboratory (PPI3D, VoroMQA, CAD-score, COMER) are 
available at https://bioinformatics.lt/software/. 
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In this CASP we utilized a modified version of AlphaFold1 with improved sampling capability 
that has demonstrated good performance for peptide-protein structure modeling2. The method is 
completely automated, but was run as a manual server to allow for more computational time. 

Methods 

Improved sampling using AlphaFold was achieved by activating the dropout layers at inference 
and generating at least 200 models with a different random seed per neural network weight set. 
For the monomer case both the original five network weights, model_[1,2,3,4,5], as well as the 
updated ptm weights, model_[1,2,3,4,5]_ptm, were used. For the multimer case, version 1 weight 
set, model_[1,2,3,4,5]_multimer, and version 2 weights, model_[1,2,3,4,5]_multimer_v2, were 
both used.  

Additional models were also generated without template information and without template 
information and also an increased number of recycles.. Thus, for each target the goal was to 
generate 6,000 models (5x2x200x3), for some large targets this was too time consuming, but for 
most targets it was not a problem.  

 In addition, if the best score for any of the 6,000 models was <0.70, more models were 
generated. For some targets up to 30,000 models were made.The model with the highest score 
was always submitted as TS1, but to avoid submitting five identical models, a filter was applied 
to submit the model with the highest score but at least 2Å RMSD or lower than 0.8 MMalign3 
from a previously submitted model for monomer, and multimers, respectively.   

 Multiple sequence alignments provided at http://duffman.it.liu.se/casp15/ for the CASP 
community were used to facilitate straight comparison to the baseline AlphaFold versions. 

1. Jumper, J. et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 
1–11 doi:10.1038/s41586-021-03819-2. 
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AlphaFold-Multimer using Forced Sampling. Front. Bioinform. doi: 
10.3389/fbinf.2022.959160 
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The emergence of AlphaFold1 has elevated the accuracy and robustness of data-driven 
predictions for protein structures, yet the predictions for multimers and protein-ligand complexes 
have been severely limited by the lack of well-curated structure datasets. In CASP15, we applied 
multiple strategies towards different modeling categories to predict and refine structures. Starting 
from the initial structures obtained by AlphaFold or RoseTTAFold2, we analyzed the binding 
sites and interactions by a synergy of template-based, machine learning-based, and a priori 
knowledge-based approaches. Specifically, we captured the ambiguous binding poses of 
complexes inspired by information from literature, such as homologous structures, biochemical 
experiments and bioinformatic analysis. Finally, all-atom explicit solvent molecular dynamics 
(MD) simulations were employed to refine whole structures.  

Methods  

Tertiary structure prediction. We obtained the initial conformations from AlphaFold 
(v2.2.0) in monomer mode for single proteins or in multimer mode (AlphaFold-Multimer3) for 
the assembly targets whose sequence length was less than 1200. The AlphaFold structures are 
refined by classical MD simulations with the CHARMM36m4 force field. System setup was 
performed with CHARMM5. MD simulations were carried out using OpenMM6 with force-
switch scheme for van der Waals (vdW) interaction and particle-mesh Ewald (PME) method for 
long-range electrostatic interaction. For each target, 50-100 ns MD simulations were performed 
and 5 conformations from approximate converged trajectories with RMSD fluctuation < 4 Å 
were selected as the final submitted results. If a simulation was hard to converge, we would 
adjust the initial structure states based on previous studies. One example was WhiB6 in subunit 2 
of target H1151. AlphaFold predicted the structure of the holo state binding with Fe4S4, but 
experiments suggested two more disulfide bonds on apo WhiB6 compared with the holo state, 
which might significantly affect the secondary structures7. This observation was consistent with 
our MD simulations after adding these two disulfide bonds. We also considered the effect of 
post-translational modifications (PTMs) on protein fold and stability. For instance, target T1154 
was a highly glycosylated protein and MD simulation quickly converged if we added 
oligosaccharide chains on the glycosylated sites identified by experiments8 and sequence model 
inference9, while it kept divergent without glycosylation. 
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 Protein-ligand complex. Our prediction pipeline consisted of four steps. Firstly, 100 ns 
MD simulation was performed to refine the apo structures predicted by AlphaFold. Then, 
templates were searched by hmmsearch and hmmbuild from HMMER suite (v3.3.2) on PDB 
dataset and the conserved binding residues were selected for docking based on literature. In case 
no binding site can be identified with template searching, EquiBind10 was utilized for blind 
docking and the centroid coordinate of ligand pose was assigned as the docking center. The 3D 
conformation of the ligand was generated by energy minimization operation in Molecular 
Operating Environment (MOE). The third step was to predict the poses of protein-ligand by the 
two approaches, MOE and EDock11. The induced fit docking of MOE was performed based on 
physical energy. To obtain protein-ligand structure by REMC simulation, we also run a modified 
version of EDock. In this modified EDock, the energy term for ligand-receptor atomic distance 
profile was constructed by searching the pocket-ligand complex templates from BioLiP12 dataset 
using PPS-align13 and LS-align14. Finally, 100 ns MD simulation was performed to refine the 
docking poses predicted by MOE and EDock. We considered the binding poses were stable and 
submitted in CASP 15 if the RMSD fluctuation of ligand structures was less than 4 Å. If not, the 
steps 2-4 were repeated. 

 Assembly. For homologous multimer assembly, such as H1115, the single chain structure 
was predicted by AlphaFold and was split into the individual domains. We predicted the 
assembly of an individual domain by AlphaFold-Multimer15, which usually resulted in the 
assembly framework of the target. Then, the single chain structure was repeated and aligned to 
the single-domain assembly framework by TM-align16 to construct the complete structure. For 
heteromers, using the interaction information predicted by Pesto17, we truncated the targets as the 
interacting domains within 1200 residues, such that they can be predicted and constructed by 
AlphaFold-Multimer. Then, the single chain structure for each subunit was aligned to the 
interacting domains to obtain the full-length structure. Finally, 100 ns MD simulations were 
performed to refine the final structures. 

 
1. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... & Hassabis, 

D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-
589.  

2. Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., ... & Baker, 
D. (2021). Accurate prediction of protein structures and interactions using a three-track 
neural network. Science, 373(6557), 871-876.  

3. Feinberg, E. N., Joshi, E., Pande, V. S., & Cheng, A. C. (2020). Improvement in ADMET 
prediction with multitask deep featurization. Journal of medicinal chemistry, 63, 8835-8848.  

4. Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., De Groot, B. L., ... & MacKerell, 
A. D. (2017). CHARMM36m: an improved force field for folded and intrinsically disordered 
proteins. Nature methods, 14, 71-73.  

5. Brooks, B. R., Brooks III, C. L., Mackerell Jr, A. D., Nilsson, L., Petrella, R. J., Roux, B., ... 
& Karplus, M. (2009). CHARMM: the biomolecular simulation program. Journal of 
computational chemistry, 30, 1545-1614.  



251 

6. Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K. A., ... & 
Pande, V. S. (2017). OpenMM 7: Rapid development of high performance algorithms for 
molecular dynamics. PLoS computational biology, 13, e1005659. 

7. Alam, M. S., Garg, S. K., & Agrawal, P. (2009). Studies on structural and functional 
divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv. The FEBS 
journal, 276, 76-93.  

8. Peyfoon, E., Meyer, B., Hitchen, P. G., Panico, M., Morris, H. R., Haslam, S. M., ... & Dell, 
A. (2010). The S-layer glycoprotein of the crenarchaeote Sulfolobus acidocaldarius is 
glycosylated at multiple sites with chitobiose-linked N-glycans. Archaea, 2010.  

9. Sigrist, C. J., Cerutti, L., Hulo, N., Gattiker, A., Falquet, L., Pagni, M., ... & Bucher, P. 
(2002). PROSITE: a documented database using patterns and profiles as motif 
descriptors. Briefings in bioinformatics, 3, 265-274.  

10. Stärk, H., Ganea, O., Pattanaik, L., Barzilay, R., & Jaakkola, T. (2022, June). Equibind: 
Geometric eep learning for drug binding structure prediction. In International Conference on 
Machine Learning (pp. 20503-20521). PMLR. 

11. Zhang, W., Bell, E. W., Yin, M., & Zhang, Y. (2020). EDock: blind protein–ligand docking 
by replica-exchange monte carlo simulation. Journal of cheminformatics, 12, 1-17.  

12. Yang, J., Roy, A., & Zhang, Y. (2012). BioLiP: a semi-manually curated database for 
biologically relevant ligand–protein interactions. Nucleic acids research, 41, D1096-D1103.  

13. Hu J, Zhang  Y. PPS-align.  https://zhanglab.dcmb.med.umich.edu/PPS-align/. 
14. Hu, J., Liu, Z., Yu, D. J., & Zhang, Y. (2018). LS-align: an atom-level, flexible ligand 

structural alignment algorithm for high-throughput virtual screening. Bioinformatics, 34, 
2209-2218.  

15. Evans, R., O'Neill, M., Pritzel, A., Antropova, N., Senior, A. W., Green, T., ... & Hassabis, D. 
(2021). Protein complex prediction with AlphaFold-Multimer. BioRxiv.  

16. Zhang, Y., & Skolnick, J. (2005). TM-align: a protein structure alignment algorithm based on 
the TM-score. Nucleic acids research, 33, 2302-2309.  

17. Krapp, L. F., Abriata, L. A., Rodriguez, F. C., & Dal Peraro, M. (2022). PeSTo: parameter-
free geometric deep learning for accurate prediction of protein interacting interfaces. bioRxiv. 

 
  

https://zhanglab.dcmb.med.umich.edu/PPS-align/


252 

Yang, Yang-Server, Yang-Multimer, bench 

Protein and RNA structure prediction with trRosettaX2, trRosettaRNA and AlphaFold2 

Wenkai Wang1,#, Hong Wei1,#, Chenjie Feng2,#, Zongyang Du1, Zhenling Peng2 and  
Jianyi Yang2,* 

1 - School of Mathematical Sciences, Nankai University, Tianjin 300071, China, 2 - Ministry of Education Frontiers 
Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, 

Shandong University, Qingdao 266237, China. 
#co-first authors, *corresponding author: yangjy@sdu.edu.cn 

Key: Templ:Y; MSA:Y.MetaG; Dist:Y; Tors:Y; DeepL:Y;MD:N 
 
In CASP15, we submitted predictions for protein and RNA structures based on trRosettaX2 1 and 
trRosettaRNA 2, respectively. The predicted structures were fed into COACH-D 3 to predict 
protein-ligand complex structures. 
 
Methods 
 

Monomer structure (Yang-Server, Yang) was predicted by trRosettaX2, an improved 
version of trRosettaX 4 and trRosetta 5, 6. The AlphaFold2 7 prediction was considered in case the 
trRosettaX2 prediction was not satisfactory. In trRosettaX2, we adopt the attention-based 
network (i.e., Evoformer) from AlphaFold2 to improve the prediction of inter-residue distance 
and orientations. The second step of structure realization by energy minimization is the same as 
in trRosetta. Multiple MSAs were generated based on HHblits and MMseqs2 against the 
UniRef30 and the Mgnify metagenome databases. For targets (especially virus targets) with 
limited homologous sequences, additional sequences from manual searching against the NCBI 
sequences and other virus databases are included in the MSA. 

Multimer structure (Yang-Multimer, Yang) was predicted based on a revised version of 
AlphaFold-Multimer 8. Two major changes: the template searching was replaced by HHsearch; 
MSA pairing was disabled. 

Protein-ligand complex structure was predicted by the template-based approach 
COACH-D. Starting from the predicted receptor structures, homologous templates from the 
BioLiP database 9 are obtained by structure and sequence alignment. The binding information 
from the template is transferred to the query receptor structure and molecular docking was 
applied to dock the query ligand against the receptor structure. 

RNA structure was predicted by trRosettaRNA, which is the development of trRosetta 
for RNA structure prediction. In trRosettaRNA, structural geometries are predicted by a network 
(RNAformer) inspired by AlphaFold2’s Evoformer. The predicted structural geometries are used 
to fold the 3D structure by energy minimization, similar to trRosetta. 
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Results 
Benchmark tests show that trRosettaX2 is comparable to AlphaFold2 and outperforms 
RoseTTAFold 10 on the CASP14 datasets. trRosettaRNA outperforms other methods on the 
RNA-Puzzles targets.   
 
 
Availability:  
https://yanglab.nankai.edu.cn/trRosetta/  
https://yanglab.nankai.edu.cn/trRosettaRNA 
https://yanglab.nankai.edu.cn/COACH-D 
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The protein multimer structure prediction of the Zheng human group in CASP15 is based on a 
pipeline combining DeepMSA2 with AlphaFold2-Multimer. The procedure is fully automated 
but the running time for some large protein complexes required more than three days. Thus, 
Zheng only participated in the human group.   
 
Methods 
The full pipeline contains three steps: (i) multiple sequence alignment (MSA) generation for the 
individual constituent proteins of the complexes by DeepMSA2 (manuscript in preparation), (ii)  
MSA selection for each constituent, and (iii) complex model construction and ranking by 
AlphaFold2-multimer1 pipeline with DeepMSA2 constituent MSAs as input. 

For the constituent proteins in the complexes, DeepMSA2 provides two sub-methods 
(dMSA and qMSA) that were utilized to generate seven multiple sequence alignments (MSAs). 
Here, dMSA is our previous MSA construction program (DeepMSA2) developed during 
CASP13, where HHblits3, Jackhmmer4 and HMMsearch4 are used to search the query sequence 
against the Uniclust305, UniRef906 and Metaclust7 databases in three stages (labeled stages 1, 2, 
and 3, in the order noted above). qMSA is an extended version of dMSA with a new search 
added between the second and third stages of dMSA, where HHblits is used to search the BFD8 
metagenomics database. In addition, a new iteration stage (stage 4) is added in qMSA to search 
the query through the Mgnify9 metagenomics database. Thus, five different MSAs are generated 
by stages 1-3 of dMSA and stages 3-4 of qMSA. Furthermore, the MSA from qMSA stage 3 (the 
MSA from the BFD database) is used as the starting point for HMMsearch to search through the 
IMG/M10, Tara11 and MetaSource12 metagenome databases that contain more sequences than the 
Metaclust, BFD, and Mgnify databases. The resulting sequence hits are converted into a 
sequence database. This sequence database is then used as the target database for dMSA stage 3 
and qMSA stage 4 to generate two additional MSAs. At the end of this process, seven MSAs are 
generated by the DeepMSA2 method for each constituent protein. 

The seven MSAs thus obtained for each constituent protein of the complex modeling 
target are fed into AlphaFold2 monomer modeling pipeline to get seven models with associated 
pLDDT scores. The seven MSAs are then ranked by the associated pLDDT scores. For homo-

mailto:zhengwei@umich.edu
mailto:wuyunqiq@msu.edu
mailto:petefred@umich.edu
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oligomer complexes, all seven MSAs are utilized for generating paired MSAs using a modified 
AlphaFold2-multimer pipeline. However, for heteromeric complexes, an additional selection 
procedure was used to generate an optimal set of paired MSAs based on combinations of the 
individual constituent MSAs. The top N ranked MSAs for each constituent protein were selected 
for generating potential paired MSAs. Each selected MSA for one constituent protein can be 
paired with the MSA of another constituent. Thus, for a heteromeric complex containing M 
different constituent proteins, NM distinct paired MSAs are generated and evaluated. To 
guarantee that AlphaFold2-multimer modeling with NM set of paired MSAs could be completed 
within three weeks, N is selected as the maximal value to satisfy NM≤100. For example, if a 
complex contains three different protein components, then N would be set to 4. 

In the final step of complex model generation, the selected NM sets of MSAs are used as 
input to a modified AlphaFold2-multimer pipeline. For each set of MSAs, 25 models are 
generated. Finally, the resulting 25NM complex models are ranked by the predicted TM-scores13, 
and the top five complex models are selected as the final set of models. 

 
1. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., 

Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. 
A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., 
Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., 
Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., 
Kohli, P. & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. 
Nature 596, 583-589. 

2. Zhang, C., Zheng, W., Mortuza, S. M., Li, Y. & Zhang, Y. (2020). DeepMSA: constructing 
deep multiple sequence alignment to improve contact prediction and fold-recognition for 
distant-homology proteins. Bioinformatics 36, 2105-2112. 

3. Remmert, M., Biegert, A., Hauser, A. & Söding, J. (2012). HHblits: lightning-fast iterative 
protein sequence searching by HMM-HMM alignment. Nature Methods 9, 173-175. 

4. Potter, S. C., Luciani, A., Eddy, S. R., Park, Y., Lopez, R. & Finn, R. D. (2018). HMMER 
web server: 2018 update. Nucleic Acids Research 46, W200-W204. 

5. Mirdita, M., von den Driesch, L., Galiez, C., Martin, M. J., Söding, J. & Steinegger, M. 
(2017). Uniclust databases of clustered and deeply annotated protein sequences and 
alignments. Nucleic Acids Research 45, D170-D176. 

6. Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B., Wu, C. H. & UniProt, C. (2015). 
UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity 
searches. Bioinformatics (Oxford, England) 31, 926-932. 

7. Steinegger, M. & Söding, J. (2018). Clustering huge protein sequence sets in linear time. 
Nature Communications 9, 2542. 

8. Steinegger, M., Mirdita, M. & Söding, J. (2019). Protein-level assembly increases protein 
sequence recovery from metagenomic samples manyfold. Nature Methods 16, 603-606. 

9. Mitchell, A. L., Almeida, A., Beracochea, M., Boland, M., Burgin, J., Cochrane, G., Crusoe, 
M. R., Kale, V., Potter, S. C., Richardson, L. J., Sakharova, E., Scheremetjew, M., 
Korobeynikov, A., Shlemov, A., Kunyavskaya, O., Lapidus, A. & Finn, R. D. (2020). 
MGnify: the microbiome analysis resource in 2020. Nucleic Acids Research 48, D570-D578. 



256 

10.  Chen, I. M. A., Chu, K., Palaniappan, K., Pillay, M., Ratner, A., Huang, J., Huntemann, 
M., Varghese, N., White, J. R., Seshadri, R., Smirnova, T., Kirton, E., Jungbluth, S. P., 
Woyke, T., Eloe-Fadrosh, E. A., Ivanova, N. N. & Kyrpides, N. C. (2019). IMG/M v.5.0: an 
integrated data management and comparative analysis system for microbial genomes and 
microbiomes. Nucleic Acids Research 47, D666-D677. 

11. Wang, Y., Shi, Q., Yang, P., Zhang, C., Mortuza, S. M., Xue, Z., Ning, K. & Zhang, Y. 
(2019). Fueling ab initio folding with marine metagenomics enables structure and function 
predictions of new protein families. Genome Biology 20, 229. 

12. Yang, P., Zheng, W., Ning, K. & Zhang, Y. (2021). Decoding the link of microbiome niches 
with homologous sequences enables accurately targeted protein structure prediction. 
Proceedings of the National Academy of Sciences 118, e2110828118. 

13. Zhang, Y. & Skolnick, J. (2004). Scoring function for automated assessment of protein 
structure template quality. Proteins: Structure, Function, and Bioinformatics 57, 702-710. 

 
  



257 

Zou_lab 

A template-guiding and docking strategy for protein-ligand binding mode prediction in 
CASP15 

Xianjin Xu†, Rui Duan†, Xiaoqin Zou* 
Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, 
Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States 

†equal contribution; *corresponding author: zoux@missouri.edu 

 
A novel template-guiding strategy1,2 was employed for protein-ligand complex structure 
predictions in CASP15, which allows for the use of both similar and dissimilar ligands as 
templates via a newly developed intercomparison method, followed by local optimization and 
ranking with a hybrid scoring function, in addition to the standard docking protocol. Specifically, 
for each query target, the protein structure was built with AlphaFold v2.2.0 3 and an ensemble of 
ligand 3D conformers were generated from the SMILES string using the OMEGA2 program 
(Version 3.0.1.2, OpenEye Scientific Software, Santa Fe, NM, USA. http://www.eyesopen.com) 
4,5. Then, the Protein Data Bank 6 was searched for template structures containing the target 
protein or its homologies. If a template structure contains one or more co-bound ligands, the 
target protein structure was superimposed onto the protein structure in the template with the 
MatchMaker tool in UCSF Chimera 7 and the conformers of the query ligand were matched to 
the co-bound ligands in the template using a 3D molecular similarity measurement program, 
SHAFTS 8. Then, the superimposed protein structure and the matched ligand conformers were 
combined, and local minimization was performed by AutoDock Vina 9 (with option 
“local_only”). After that, the predicted complex structures were ranked by a hybrid scoring 
function 1, which combines a protein-ligand binding score (the AutoDock Vina score) and a 3D 
similarity score (SHAFTS score, characterizing the 3D similarity between the query ligand and 
the co-bound ligand in the template). Finally, the top 10 predicted complex structures were 
manually inspected for electrostatic, polar, and nonpolar interactions, and 5 models were selected 
for further optimization (as described at the end).  

For the cases in which either no templates or only low-quality templates (i.e., the co-
bound ligands shared low similarity with the query ligands below the cutoff threshold) were 
found, a standard molecular docking strategy was employed. First, the binding site information 
about the query ligand was searched from the homologous proteins in the Protein Data Bank. 
Local dockings were performed with AutoDock Vina [9] (using the default parameters) for the 
cases with known binding sites. For the cases without any information about the binding 
location, global docking was performed using AutoDock Vina by increasing the 
exhaustiveness value (e.g., from the default 8 to 100 independent runs). For both local and global 
dockings, the protein structure was treated as a rigid body, and the ligand structure was treated to 
be fully flexible. Finally, the top 10 binding modes were generated and manually examined, and 
5 models were selected for further optimization. 

mailto:zoux@missouri.edu
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For both the template-guiding method and the molecular docking method, the final 5 selected 
models were further optimized with a simple force-field minimization of the energy in Maestro, 
Version 12.9.137 (Schrödinger, LLC) 10, and then submitted to CASP15. 
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The Continuous Automated Model Evaluation (CAMEO1) platform presents results of protein 
structure predictions from hosted structure prediction servers for prelease sequences in the 
Protein Data Bank (PDB)2. We have developed a method to evaluate the quality of structural 
models available through CAMEO based on their abilities to have SeqFEATURE functional site 
predictions like those at corresponding sites in the reference structures3.  

Methods 

The ResiRole algorithm calculates the average difference scores per structure prediction 
technique and per structure model4. Each difference score is defined as the absolute difference in 
cumulative probability of functional site prediction in the reference structure versus that at the 
corresponding site in the structure model. Difference scores are averages across the results 
obtained using different functional site prediction models. 

 

Results 

Results are accessible according to defined intervals in which models and reference structures 
have been made available in CAMEO and the PDB, respectively. Results are further delineated 
based on target difficulty according to lDDT score ranges. To expand the utilities of the ResiRole 
server, we are developing automated routine updates to evaluate models in CAMEO as they 
become available on a weekly basis. We have further applied the ResiRole algorithm to SARS-
CoV-2 protein targets in CASP14 5 and we found that the ResiRole method has the capability to 
detect differences in quality estimations for the first and second attempts by the same structure 
prediction group. Further, the average quality estimates for structure predictions made by the 
different structure prediction groups provides a means to further estimate average accuracy of the 
structure prediction methods. Average lDDT scores and difference scores for the different 
structure prediction methods were found to correlate, and possible outliers help to demonstrate 
the utility of the difference score measure.    
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Figure 1. The figure depicts a scatter plot of the average difference scores compared to the average 
LDDT scores across all SeqFEATURE models for all protein model submission attempts. Each point 
corresponds to a unique protein prediction group (not all group names shown). Average difference score 
(ADS) is calculated as |Probmodel − Probtarget|. Note the descending values of the x-axis, with a lower 
ADS corresponding to a better model. Three relative outlier group names are shown. 

 

Availability 

The ResiRole server is available at the URL https://protein.som.geisinger.edu/ResiRole/.  
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Quantum Computing at Davis 
 

Finding effective folds is most effectively done for a variety of solvents using molecular 
dynamics, and specifically combined Quantum Mechanics / Molecular Mechanics (QM/MM) 
methods that utilize both classical force fields and quantum electronic basis sets. However, 
scaling these solutions for effective, real-time folding determination can be time consuming, with 
CP2K requiring 14ps/day to complete dynamics for a 1536 atomic box1. Quantum devices could 
potentially improve these values by being able to complete large quantum stage operations in a 
smaller time frame2. Here, we develop a framework for protein structure determination utilizing 
quantum devices combined with STO-3G basis sets and GROMACS CHARMM27 classical 
modeling; this has allowed us to develop hybrid quantum compute runtimes for molecular 
dynamics on commercially-available GPUs. 

Methods  
 The method used here is a separated QM/MM process, wherein all MM precede QM. 
Monomers are created from FASTA using OpenBabel 2.4.1’s FASTA to PDB conversion. Then, 
classical molecular dynamics is completed with GROMACS running CHARMM27 with TIP5P.  
Next, the user decides which of two processing pathways to implement this quantum mechanics 
modeling that is to be completed on the GROMACS output: it is either transformed using Givens 
rotations to directly map STO-nG basis sets onto qubits3, or it is transformed using phase 
changes from a Quantum Fourier Transform (QFT)4 running on qubits to approximate STO-nG 
basis sets. All code is written in Pennylane with Tensorflow as the backend in order to promote 
easy testing on NVIDIA GPUs, Xanadu quantum photonic devices, and other superconducting 
quantum devices. Finally, Fast Fourier Transform (FFT) in Tensorflow transforms the 
coordinates of each protein, for which the energy from the outputs of VQE/QFT are input to this 
FFT-transformed structure (i.e., energy gradient?), and inverse Fast Fourier Transform (IFFT) 
transforms these energy changes into coordinates and places them into PDBs using Biopython. 
Final PDBs can compare a distance-based metric TM Score using the Zhang Group server 
(https://zhanggroup.org/TM-score/) and a topological metric (Betti numbers) that can be 
evaluated using Ripser++ (https://github.com/simonzhang00/ripser-plusplus). 

 

Results 
Results for the entire pipeline are still forthcoming. Current updates can be found at 
https://github.com/QC-at-Davis/ProFold/.  
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Recent advances in protein structure prediction provide models with accuracies that rival models 
generated directly from experimental data1-8. We have previously described a metric based on 
information retrieval statistics, the RPF-DP score9,10, for assessing protein structure models 
against experimental NMR NOESY and chemical shift data.  Models generated without sample-
specific experimental data using advanced deep learning methods, such as AlphaFold (AF), often 
exhibit RPF-DP scores, residual dipolar coupling (RDC) quality scores, and other structure 
quality scores similar to, and sometimes even better than, models reported by experimental NMR 
groups using standard structure generation methods1,4,8. This is observed even without the use of 
homologous protein structure templates, and for proteins not available in the machine leaning 
training data. 

Methods  
We have developed structure analysis metric related to the RPF-DP score, which we call 
“comparative recall” (CR) analysis.  The CR metric assesses a pair of protein structure models 
against experimental NOESY peak list and chemical shift data, and identifies NOESY peaks 
that, considering any possible NOESY peak assignment consistent with the chemical shift data, 
can be explained by the model.  In this analysis, “recall violations” for a given model are the 
experimental NOESY data that are inconsistent with the model, as previously described9,10. 
Comparing a pair of structures (e.g. an AF model and an experimental NMR model), the CR 
analysis allows identification of the experimental NOESY data supporting both models, and the 
specific data supporting only one or the other model.  The CR analysis identifies the locations in 
the models where the data better fit one model rather than the other, and can provide evidence for 
cases where both models are represented by the solution NMR data; e.g. conformations in 
dynamic conformational equilibria. 

 

Results  
Here we demonstrate the application of CR analysis in multiple scenarios.  In the first case, CR 
analysis reveals that the NMR data equally-well fit NMR, X-ray crystal, and AF models of a 
target protein structure. This is by far the most common scenario encountered in our studies.  In 
the second case, the CR analysis reveals that the NMR data equally-well support the AF and 
experimental NMR models, but is partially violated by the corresponding X-ray crystal structure.  
Detailed structural analysis suggests that the underlying structural differences may be attributed 
to the differences in pH used in the NMR and X-ray crystallography studies. In a third case, the 
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NMR data better support an AF model of a target structure rather than the corresponding 
experimental NMR structure.  In a fourth case, the experimental data are not fully consistent with 
either the AF or experimentally-reported NMR model, but rather suggest a dynamic 
conformational exchange between these two conformations in solution.  The “comparative 
recall” analysis provides an important tool in our ongoing efforts to use protein structure 
prediction to guide analysis of experimental NMR data in terms of protein structure and 
dynamics. 

 

Availability:  https://github.rpi.edu/RPIBioinformatics/ComparativeRecall 
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