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e DeepPotential

Predicting (long-range) pair-wise statistical potential terms for protein
structure prediction,
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e DeepPotential
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mewd  IVISA construction

Progressive collection of MSA increasing accuracy of contact prediction

HHblits Jackhmmer HMMsearch HMMsearch

Uniclust Uniref90 Metaclust
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me=d [\ISA selection

MSA selection based on confidence score outperforms based on Neff

» Select MSA based on mean of top-N DeepPotential contact probabilities (defined at the
threshold of d;, p(x < d;p))
e Use the prediction from the selected MSA
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Neff (10L, 82) (10L, 10A) (10L, 12A) Ideal
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(N, d¢p)
In CASP14, two confidence score configurations are considered:
« (N=10xL, dy, = 12A), Group name: TripletRes
« (N =10 X L, dy, = 8A), Group name: DeepPotential
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el Feature extraction

Co-evolutionary features:

* Couplings matrix J (J € RLXLX22%22) of pseudolikelihood maximization (PLM) NS
PLM

e Raw Mutual information matrix (M1): M (M € RL*LX22X22).
And their post-processing. (L X L X (4 + 4)) Residue i
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Residue j

Norm(J; ;) Norm(J; ;), Norm(/; j),

Excluding GAP Excluding GAP&X ~ Query sequence Parameter in J; ;

Raw features
$94Nn1e3} pPassato.d-1sod

Raw M; Norm(M; ;) Norm(M; ;), Norm(M; ;),

Excluding GAP Excluding GAP&X Query sequence Parameter in M;
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el [raining

Training data:
e 26,151 structures from PDB, by 11/12/2019
e Sequence identity cut-off of 35%
Maximum length of 1000
* Training MSA: HHblits against Uniclust only

Loss function
* Discretizing prediction terms into bins
* Neg-log likelihood of all prediction terms
+ Loss =—3%n_y Zi,thETWt log P(datay,(i, ))|J, M)
* n,i,j enumerates all residue pairs in the training set
 w; = 1forallt € {distance terms, orientation terms; Hbond terms}

Approximations: Independent distributed in

* p(data) = [I3=; p(datay) - . Samples
= ::11\{=1 [lierp(datay,) < * Prediction terms
= [Th=11lter [1; jp(datay,(i,j)) <~ * Residue pairs (pixels)
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Training

Generalization ability of the model

0.150 training set 0.150 training set
0.125 CASP14 targets 0.125 CASP14 FM targets
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Logarithm of alighed sequences in MSA Logarithm of alighed sequences in MSA

* Sub-sampling MSAs during the training
* Larger weights on shallow MSAs

The finale prediction is the ensemble of 15 diverse models, with
different combination of terms and thresholds
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Results in contact prediction on CASP13 targets

 Head-to-head comparison of long-range top-L precision on 27
CASP13 FM targets
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Results

N
1 . .
. . MAE = Nz |déxpectation - déxperimentall
Results of DeepPotential in CASP14 =

Contact precision (long range) Mean Absolute Error (long range)
MSA selection
Top L/10  Top L/5 Top L/2 Top L Top L Top 2L Top 5L
N =10 ¢ L 65.53 61.31 50.96 37.66 2.68 2.89 3.23
dth = 8A
N=10 XOL 62.67 59.01 48.16 36.59 2.69 2.87 3.25
1.0

0.8
T1093-D1, with domain partition, MSA selection score: 0.8178
T1093-D3, with domain partition, MSA selection score: 0.7756

T1093-D1, MSA selection score: 0.7412
,»A//T1093-D3, MSA selection score: 0.6814
®

Top-L/5 precision
N
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DeepPotential is capable of folding high-accuracy protein structures

T1037-D1, MAE=0.948 T1041-D1, MAE=0.760 T1042-D1. MAE=1.344 T1049-D1, MAE=1.561 T1061-D2, MAE=1.109
TM-score=0.680 TM-score=0.722 TM-score=0.730 TM-score=0.675 TM-score=0.527

B Native
L] Zhang-Server
(DeepPotential + I-TASSER)

MAE: Top-5L long range MAE

T1090-D1, MAE=1.157  T1094-D2, MAE=1.062  T1096-D1, MAE=1.189 T1096-D2, MAE=1.454
TM-score=0.656 TM-score=0.914 TM-score=0.835 TM-score=0.833




e SUMmary

What was working?

* More data help the training

e Constructing deeper MSA

* MSA selection by top-N contact scores

e Various prediction tasks

* Raw coevolution/multi-view feature fusion
What went wrong?

* Limited computational resources, trainable with single GPU (10GB)
* RAW Precision matrix (PRE in TripletRes (CASP13) ) was discarded
* Deeper/wider neural networks was not considered

* Tuning weight of distance term should help distance/contact accuracy

* Overconservative domain partition.
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