CASP14 : InterDomain Performance

R. Dustin Schaeffer, Lisa Kinch, Nick Grishin
Full-length results suggest the future contains fewer EVUs

- Prediction of domain position in multidomain targets was challenging
- EVUs can belong to multiple assessment categories
- Performance in individual assessment categories suggested full-length predictions worthy of independent assessment
Selection of Domain Interaction Targets

<table>
<thead>
<tr>
<th>Split Target Domains</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1024</td>
<td>2</td>
</tr>
<tr>
<td>T1100</td>
<td>2</td>
</tr>
<tr>
<td>T1092</td>
<td>2</td>
</tr>
<tr>
<td>T1096</td>
<td>2</td>
</tr>
<tr>
<td>T1047s2</td>
<td>3</td>
</tr>
<tr>
<td>T1050</td>
<td>3</td>
</tr>
<tr>
<td>T1093</td>
<td>3</td>
</tr>
<tr>
<td>T1070</td>
<td>4</td>
</tr>
<tr>
<td>T1091</td>
<td>4</td>
</tr>
<tr>
<td>T1030</td>
<td>2</td>
</tr>
<tr>
<td>T1053</td>
<td>2</td>
</tr>
<tr>
<td>T1058</td>
<td>2</td>
</tr>
<tr>
<td>T1086</td>
<td>2</td>
</tr>
<tr>
<td>T1094</td>
<td>2</td>
</tr>
<tr>
<td>T1101</td>
<td>2</td>
</tr>
<tr>
<td>T1038</td>
<td>2</td>
</tr>
<tr>
<td>T1052</td>
<td>3</td>
</tr>
<tr>
<td>T1061</td>
<td>3</td>
</tr>
<tr>
<td>T1085</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Conformation change

Template conformations

T1091

2. Little Interaction dictated by complex

3. Mainly Oligomeric
CASP 14 InterDomain targets
What about T1044?

Very few submitted models / calculated scores

Interdomain scores for submitted models are mostly poor:

- e.g. F1 score

T1044 – 9 EVUs + one previously published region excluded from individual consideration

T1044 was excluded from the PCA+heatmap interdomain analysis due to lack of data
BAKER-Experimental outperforms on T1044

1281 contacts, F1 56.0
T1044 Morph Movie
CASP14 interdomain scores repurposed from assembly analysis

Iface-check
- Precision - % of correct interdomain contacts over total model interdomain contacts
- Recall - % of correct interdomain contacts over total native interdomain contacts
- **Jacc. Coefficient** – Shows the similarity of model and target interfaces given the residues participating in interdomain interfaces in the model
- **F1** – Harmonic mean of the precision and recall

QS
- QS (Contact Agreement Score) – Fraction of correctly modeled interface contacts over the maximum of either correct (target) or predicted (model) interface contacts
- Global.RMSD – RMSD over all domains based on the lowest RMSD domain matching
- Iface.RMSD – RMSD of the superposition based on the alignment of interface residues

Chose 3 prediction Center contact scores for overall interdomain ranking

PMID: 28874689

PMID: 29071742
Interdomain Top Performance Similar to Domain Category

- Analysis on model 1
- Top Group: 427
- Top Server: 209
- Top5: 427, 403, 420, 473, 339

<table>
<thead>
<tr>
<th>Gr. #</th>
<th>Group</th>
<th>SumZ(>0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>427</td>
<td>AlphaFold2</td>
<td>35.30</td>
</tr>
<tr>
<td>403</td>
<td>BAKER-experimental</td>
<td>15.71</td>
</tr>
<tr>
<td>420</td>
<td>MultiCom</td>
<td>8.98</td>
</tr>
<tr>
<td>473</td>
<td>BAKER</td>
<td>8.75</td>
</tr>
<tr>
<td>339</td>
<td>ProQ3D</td>
<td>8.54</td>
</tr>
<tr>
<td>334</td>
<td>FEIG-R3</td>
<td>8.17</td>
</tr>
<tr>
<td>209</td>
<td>BAKER-ROSETTASERVER</td>
<td>7.84</td>
</tr>
</tbody>
</table>

What is the sensitivity of these rankings to different parameters?
Comparison of ranking schemes show ranks of top groups insensitive to chosen scores/weights/sum, some sensitivity to model selection...

![Comparison of ranking schemes](image)
What methods did you use?

• PCA
 • pcaMethods implementation of NIPALS PCA

• Heatmap clustering
 • pheatmap() R implementation

• Repurposed interchain assembly scores for interdomain analysis
 • QS
 • Iface-check
Interdomain Scores – Filter Missing Values

- Selected model: 1st
- Scores: Jacc.Coeff., F1, Qsb100
- Manually scaled to 0-100
- 99/135 groups were considered

Number of non-NA scores per Group for InterDomain Targets
10 targets * 3 scores

9-10 targets submitted

Selected groups compared by heatmap
Contact Z-scores for Interdomain Targets for Selected Groups

Branches weighted by performance

Score converted to Z-scores over selected groups/scores/models. 1.3% missing data imputed
Contact Z-scores for Interdomain Targets for Selected Groups

Scaled data over selected groups/scores/models
Contact Z-scores for Interdomain Targets for Selected Groups

Sum over contact Z-scores for each target, then cluster by target.
SumZ of selected contact scores cluster groups by well-predicted domain interfaces
SumZ of selected contact scores shows clustering by target domain count.
SumZ of selected contacts scores

Targets in which AlphaFold2, Baker groups outperformed on InterDomain targets
T1094: Two domains that look like 3

AlphaFold (427), F1 = 68.3
SumZ(contact) = 10.5

BAKER-Experimental (403), F1 = 50
SumZ(contact) = 5.36

1127.3 Å²
interface area

PISA PMID: 17681537
Comparison of 2-domain/EVU contact score annotated by interface buried ASA quartile
T1038: Interdomain interactions in the presence of multimeric interaction

AlphaFold2 (427_1), SumZ(contact) = 7.77, GDT_TS = 86.7

BAKER-Experimental (403_1), SumZ(contact) = -3.29, GDT_TS = 26.4

Inter-domain interface area

733.5 Å²

Inter-chain interface area

943.9 Å²

T1038 w/ dimer partner
PCA – InterDomain target / scores (w427)

- Scaling = prescaled raw contact scores
- Centered
- NIPALS imputation (1.3 % missing data)
- 30 variables (scores*models)
- 99 samples (groups)

AlphaFold2 distinct from manual and server clusters
PCA – Interdomain targets / contact scores (no427)

Baker also distinct from manual cluster removed from PCA

MultiCom and ProQ3D distinct from server cluster removed from PCA

JCF1/Qsb InterDomain targets

PC1 (46.8%) PC2 (10.5%)

BaseS manual server server Top5 TopS

427 AlphaFold2
403 BAKER-experimental
420 MultiCom
473 BAKER
339 ProQ3D
209 BAKER-ROSETTASERVER
Sum of General Z-scores (GDT/IDDT) on Interdomain targets

Can InterDomain targets by assessed by structural Scores?

Rank SumZ(>0) for top20 InterDomain groups (general scores)
Weights: GDT_TS/IDDT = 1
Performance between Interdomain and general targets correlates

<table>
<thead>
<tr>
<th>Group</th>
<th>#</th>
<th>Ri</th>
<th>Rg</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlphaFold2</td>
<td>427</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BAKER-experimental</td>
<td>403</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MULTICOM</td>
<td>420</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>BAKER</td>
<td>473</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>ProQ3D</td>
<td>339</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>FEIG-R3</td>
<td>334</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>BAKER-ROSETTASERVER</td>
<td>209</td>
<td>9</td>
<td>26</td>
</tr>
</tbody>
</table>
Conclusions

• Groups which perform well on Interdomain targets perform well on general targets
 • AlphaFold clearly top performer, scores well even by GDT
 • Baker clear second, top T1044 prediction

• 2-domain targets are being predicted well and above baseline by many groups
 • Targets with multiple domain interfaces are still not being predicted well
Thank You!

Collaborators
Nick Grishin (UTSW)
Lisa Kinch (UTSW)
Jimin Pei (UTSW)
Andriy Kryshtafovych (Prediction Center)

CASP Assessors
Andrei Lupas (High Accuracy Models)
Alfonso Valencia (Contacts)
Daniel Rigden (Refinement)
Ezgi Karaca (Assembly)
Chaok Seok (Model Accuracy)
Sandor Vajda (Function)

CASP Organizing Committee
John Moult, CASP chair and founder; IBBR, University of Maryland, USA
Krzysztof Fidelis, founder, University of California, Davis, USA
Andriy Kryshtafovych, University of California, Davis, USA
Torsten Schwede, University of Basel, Switzerland
Maya Topf, Birkbeck, University of London, UK