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● DeepMind is on a long-term mission to 
advance scientific progress

● We’re interested in solving fundamental 
scientific problems using AI

● Protein folding is such an important 
fundamental problem that is well-suited 
for AI

● We’re thankful that CASP is providing 
such an ideal experimental setup to 
evaluate progress

Protein folding at DeepMind



 © 2020 DeepMind Technologies Limited

+ Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Martin Steinegger, Michalina Pacholska, 
David Silver, Oriol Vinyals, Koray Kavukcuoglu, Pushmeet Kohli, Demis Hassabis

& with help from many others from across DeepMind

Presenting the work of the AlphaFold team
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T1064 / 7jtl
87.0 GDT
(ORF8, SARS-CoV-2)

7JTL: Flower, T.G., et al. (2020) Structure of SARS-CoV-2 ORF8, a rapidly 
evolving coronavirus protein implicated in immune evasion. Biorxiv.

Ground truth
Prediction



 © 2020 DeepMind Technologies LimitedProtein example: T1044 (RNA Polymerase)

● Folding as a single long chain

● Long-chain-trained model trained 
after the submission

6VR4: Leiman, P.G., et al. Virion-packaged DNA-dependent RNA polymerase of 
crAss-like phage phi14:2 (CASP target). (To be published.)

T1041 T1042 T1043

Individual domains

Ground truth
Prediction
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Convolutional Networks 
(e.g. computer vision) 

● data in regular grid
● information flow to local neighbours

Attention Module (e.g. language)

● data in unordered set
● information flow dynamically controlled 

by the network (via keys and queries)

Graph Networks (e.g. recommender 
systems or molecules)

● data in fixed graph structure
● information flow along fixed edges 

Recurrent Networks 
(e.g. language)

● data in ordered sequence
● information flow sequentially

Inductive Bias for Deep Learning Models
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● Physical insights are built into the network structure, not just a process around it

● End-to-end system directly producing a structure instead of inter-residue distances

● Inductive biases reflect our knowledge of protein physics and geometry
○ The positions of residues in the sequence are de-emphasized
○ Instead residues that are close in the folded protein need to communicate
○ The network iteratively learns a graph of which residues are close, while reasoning 

over this implicit graph as it is being built

Putting our protein knowledge into the model

residues  

residues  



System Design
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Sequence databases

● UniRef906 (JackHMMER3)

● BFD5 (HHblits4)

● MGnify clusters2 (JackHMMER3)

Structural databases

● PDB1 (training)

● PDB70 clustering (hhsearch4)

All publicly available data.

Inputs

HMMER

[1] Berman et al., Nature Structural Biology (2003) doi:10.1038/nsb1203-980
[2] Mitchell et al., Nucleic Acids Research (2019) doi:10.1093/nar/gkz1035
[3] Potter et al., Nucleic Acids Research (2018) doi:10.1093/nar/gky448
[4] Steinegger et al., BMC Bioinformatics (2019) doi:10.1186/s12859-019-3019-7
[5] Steinegger et al., Nature Methods (2019) doi:10.1038/s41592-019-0437-4
[6] Suzek et al., Bioinformatics (2015) doi:10.1093/bioinformatics/btu739

Visualisations:
The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.
AS Rose, et al., Bioinformatics (2018) doi:10.1093/bioinformatics/bty419

https://doi.org/10.1038/nsb1203-980
https://doi.org/10.1093/nar/gkz1035
https://doi.org/10.1093/nar/gky448
https://doi.org/10.1186/s12859-019-3019-7
https://doi.org/10.1038/s41592-019-0437-4
https://doi.org/10.1093/bioinformatics/btu739
https://doi.org/10.1093/bioinformatics/bty419
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MSA picture inspired by: Riesselman, A.J., Ingraham, J.B. & Marks, D.S., 
Nature Methods (2018) doi:10.1038/s41592-018-0138-4

https://doi.org/10.1038/s41592-018-0138-4
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● 4 templates used (from PDB70 clusters, 
searched with HHsearch1,2)

● Input features are sequences, side chains, 
and distograms

● Templates are processed in the same way 
as the residue-residue representation

[1] Remmert, M., Biegert, A., Hauser, A., & Söding, J. (2012). HHblits: lightning-fast iterative protein 
sequence searching by HMM-HMM alignment. Nature Methods, 9(2), 173-175.
[2] Steinegger, M. et al. (2019). HH-suite3 for fast remote homology detection and deep protein annotation. 
BMC Bioinformatics, 20(1), 1-15.

Partial 
template:
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● End-to-end folding instead of gradient descent

● Protein backbone = gas of 3-D rigid bodies
(chain is learned!)

Structure module

● 3-D equivariant transformer architecture 
updates the rigid bodies / backbone
○ Also builds the side chains

Target: T1041
Image: Dcrjsr, vectorised Adam Rędzikowski (CC BY 3.0, Wikipedia)

https://en.wikipedia.org/wiki/Dihedral_angle#/media/File:Protein_backbone_PhiPsiOmega_drawing.svg
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● Improves both accuracy and stereochemical quality

Refinement in structure module

Target: T1041 Target: T1041



 © 2020 DeepMind Technologies LimitedRelaxation

● The end result of iterative refinement is not 
guaranteed to obey all stereochemical 
constraints

● Violations of these constraints are resolved 
with coordinate-restrained gradient descent

● We use the Amber ff99SB force field1 with 
OpenMM2

[1] Hornak, V. et al. (2006). Comparison of multiple Amber force fields and development of improved protein 
backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65(3), 712-725.
[2] Eastman, P. et al. (2017). OpenMM 7: Rapid development of high performance algorithms for molecular 
dynamics. PLoS Computational Biology, 13(7), e1005659.

Orange: pre-relax
Blue: post-relax

Steric violation



 © 2020 DeepMind Technologies LimitedKnowing where we are right

lDDT-Cα prediction from the last layer of the 
structure module

Confidence calibration on CASP14 chains
Median absolute error: 3.3 LDDT-Cα

Target: T1024

T1027

T1029

CASP14 chains (except T1044 domains, T1088)
Median absolute error: 3.3 LDDT-Cα

Five models per chain, coloured by chain
Excluding T1044 domains, T1088



How AlphaFold 
understands 
proteins
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● Computational structure prediction is typically underspecified 
○ Oligomeric state, ligands, DNA-binding, experimental conditions, multiple conformations etc.

● Our networks implicitly models the missing context

● Uses a variety of physical and evolutionary information (e.g. profile-only is still pretty accurate)

AlphaFold (monomer prediction x3) Experimental structure

T1080 (trimer)T1056 (zinc binding)

TBM-hard, 98.2 GDT FM/TBM, 85.9 GDT

AlphaFold / Experiment
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Interrogating the Network

Predict 
distogram

Predict 
distogram

Predict 
distogram

Predict 
distogram



 © 2020 DeepMind Technologies LimitedModel interpretability - T1038

●

T1038

6YA2: Bahat, Y., et al. First structure of a 
glycoprotein from enveloped plant virus. 
(To be published.)

Target

Prediction
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●

T1038

6YA2: Bahat, Y., et al. First structure of a 
glycoprotein from enveloped plant virus. 
(To be published.)
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 © 2020 DeepMind Technologies LimitedModel interpretability - T1080 T1080

T1080: Not yet in PDB Target

Prediction
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T1080: Not yet in PDB Target
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 © 2020 DeepMind Technologies LimitedModel interpretability - T1061 T1061

T1061: Not yet in PDB
3 copies of monomer prediction overlaid on 
crystal

Target

Prediction
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T1044

6VR4: Leiman, P.G., et al. Virion-packaged 
DNA-dependent RNA polymerase of crAss-like phage 
phi14:2 (CASP target). (To be published.)

Target

Prediction
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phi14:2 (CASP target). (To be published.)
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T1044

6VR4: Leiman, P.G., et al. Virion-packaged 
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phi14:2 (CASP target). (To be published.)
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 © 2020 DeepMind Technologies LimitedManual interventions

We learned a lot during CASP14!

● Domains arising from H1044 (RNA polymerase): 
○ Genetics search of full chain but folded in 4 parts
○ Resulting pieces were used as templates to build the full chain
○ Afterward, we fine-tuned our models to handle very long chains
○ Can now obtain this accuracy in a fully-automated way

● T1064 (ORF8)
○ Five additional sequences were added to the MSA using NCBI Protein BLAST
○ Tried more models to find a confident one

● T1024 (Multidrug transporter)
○ Clustered templates into different classes to get diversity of opening angle

● Additional targets:
○ Often the model diversity is low despite the error scores saying that there is error
○ We would try to put older models in later positions to increase diversity
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● Manual work required to get a very high-quality Orf8 prediction

● Genetics search works much better on full sequences than individual domains

● Final relaxation required to remove stereochemical violations
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● Building the full pipeline as a single end-to-end deep learning system

● Building physical and geometric notions into the architecture instead of a search process

● Models that predict their own accuracy can be used for model-ranking

● Using model uncertainty as a signal to improve our methods (e.g. training new models to 
eliminate problems with long chains)
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● We have built a system that confidently predicts accurate structures for most 
proteins - and knows when it is wrong

● As for CASP131,2, we’ll publish a peer-reviewed paper

● We’re also working on providing broad access to our work

● Demis Hassabis will be giving a keynote on Friday about Using AI to accelerate 
scientific discovery

● Lots of exciting work ahead for the field: Complexes, conformational change etc

● Thanks again to the CASP organizers, experimentalists and everyone on whose 
work we’re building

Wrap up & future outlook

[1] Senior, A. W., et al. "Improved protein structure prediction using potentials from deep learning." 
Nature 577.7792 (2020): 706-710.
[2] Senior, A. W., et al. "Protein structure prediction using multiple deep neural networks in the 13th 
Critical Assessment of Protein Structure Prediction (CASP13)." Proteins 87.12 (2019): 1141-1148.
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