AlphaFold 2

*DeepMind, London, UK, ‡Seoul National University, South Korea
‡ Equal contribution
† Corresponding authors: John Jumper (jumper@google.com), Demis Hassabis (dhcontact@google.com)

© 2020 DeepMind Technologies Limited
Protein folding at DeepMind

- DeepMind is on a long-term mission to advance scientific progress
- We’re interested in solving fundamental scientific problems using AI
- Protein folding is such an important fundamental problem that is well-suited for AI
- We’re thankful that CASP is providing such an ideal experimental setup to evaluate progress
Presenting the work of the AlphaFold team

+ Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Martin Steinegger, Michalina Pacholska, David Silver, Oriol Vinyals, Koray Kavukcuoglu, Pushmeet Kohli, Demis Hassabis

& with help from many others from across DeepMind
Protein example: T1064 (ORF8)

T1064 / 7jtl
87.0 GDT
(ORF8, SARS-CoV-2)

Ground truth
Prediction

Protein example: T1044 (RNA Polymerase)

- Folding as a single long chain
- Long-chain-trained model trained after the submission

Individual domains

Inductive Bias for Deep Learning Models

Convolutional Networks (e.g. computer vision)
- data in regular grid
- information flow to local neighbours

Recurrent Networks (e.g. language)
- data in ordered sequence
- information flow sequentially

Graph Networks (e.g. recommender systems or molecules)
- data in fixed graph structure
- information flow along fixed edges

Attention Module (e.g. language)
- data in unordered set
- information flow dynamically controlled by the network (via keys and queries)
Putting our protein knowledge into the model

- Physical insights are built into the network structure, not just a process around it
- End-to-end system directly producing a structure instead of inter-residue distances
- Inductive biases reflect our knowledge of protein physics and geometry
 - The positions of residues in the sequence are de-emphasized
 - Instead residues that are close in the folded protein need to communicate
 - The network iteratively learns a graph of which residues are close, while reasoning over this implicit graph as it is being built
System Design
Inputs

Sequence databases

- UniRef90\(^6\) (JackHMMER\(^3\))
- BFD\(^5\) (HHblits\(^4\))
- MGNify clusters\(^2\) (JackHMMER\(^3\))

Structural databases

- PDB\(^1\) (training)
- PDB70 clustering (hhsearch\(^4\))

All publicly available data.

Visualisations:
The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.
Embedding

MSA

residues

sequences

Genetic search

pairing

templates

Trunk

sequence-residue edges

residues

Attention

Update pairs

Update seqs

residues

Attention

residues

residue-residue edges

Heads

Confidence score

High confidence

Structure module

Pairwise distances

3D structure

Low confidence

Template embedding

- 4 templates used (from PDB70 clusters, searched with HHsearch\(^1\,2\))
- Input features are sequences, side chains, and distograms
- Templates are processed in the same way as the residue-residue representation

Partial template:

Structure module

→ **End-to-end folding** instead of gradient descent

→ Protein backbone = gas of 3-D rigid bodies (chain is learned!)

→ **3-D equivariant transformer architecture** updates the rigid bodies / backbone
 ○ Also builds the side chains

Target: T1041

Image: Dcrjsr, vectorised Adam Rędzikowski (CC BY 3.0, Wikipedia)
Structure module

- **End-to-end folding** instead of gradient descent
- **Protein backbone** = gas of 3-D rigid bodies (chain is learned!)

3-D equivariant transformer architecture
- updates the rigid bodies / backbone
 - Also builds the side chains

Image: Dcrjsr, vectorised Adam Rędzikowski (CC BY 3.0, Wikipedia)
Structure module

- **End-to-end folding** instead of gradient descent

Protein backbone = gas of 3-D rigid bodies (chain is learned!)

- **3-D equivariant transformer architecture**
 updates the rigid bodies / backbone
 ○ Also builds the side chains

Image: Dcrjsr, vectorised Adam Rędzikowski (CC BY 3.0, Wikipedia)
Structure module

- **End-to-end folding** instead of gradient descent
- Protein backbone = gas of 3-D rigid bodies (chain is learned!)

3-D equivariant transformer architecture updates the rigid bodies / backbone
 - Also builds the side chains

Iteration 4

Target: T1041

Image: Dcrjsr, vectorised Adam Rędzikowski (CC BY 3.0, Wikipedia)
Structure module

- **End-to-end folding** instead of gradient descent
- Protein backbone = gas of 3-D rigid bodies (chain is learned!)

3-D equivariant transformer architecture updates the rigid bodies / backbone
 - Also builds the side chains

Image: Dcrjsr, vectorised Adam Rędzikowski (CC BY 3.0, Wikipedia)
Structure module

- **End-to-end folding** instead of gradient descent
- Protein backbone = gas of 3-D rigid bodies (chain is learned!)

![Diagram of protein backbone and side chains]

- **3-D equivariant transformer architecture** updates the rigid bodies / backbone
 - Also builds the side chains

Target: T1041

Image: Dcrjsr, vectorised Adam Rędzikowski (CC BY 3.0, Wikipedia)
Structure module

- **End-to-end folding** instead of gradient descent
- **Protein backbone** = gas of 3-D rigid bodies (chain is learned!)

![Diagram of protein structure](Image: Dcrjsr, vectorised Adam Rędzikowski (CC BY 3.0, Wikipedia))

- **3-D equivariant transformer architecture** updates the rigid bodies / backbone
 - Also builds the side chains

Target: T1041
Structure module

- **End-to-end folding** instead of gradient descent
- **Protein backbone** = gas of 3-D rigid bodies (chain is learned!)

- **3-D equivariant transformer architecture** updates the rigid bodies / backbone
 - Also builds the side chains

Image: Dcrjsr, vectorised Adam Rędzikowski (CC BY 3.0, Wikipedia)
Refinement in structure module

Improves both accuracy and stereochemical quality

Target: T1041

Iteration 8
Relaxation

- The end result of iterative refinement is not guaranteed to obey all stereochemical constraints.
- Violations of these constraints are resolved with coordinate-restrained gradient descent.
- We use the Amber ff99SB force field\(^1\) with OpenMM\(^2\).

Knowing where we are right

IDDT-Cα prediction from the last layer of the structure module

Confidence calibration on CASP14 chains
Median absolute error: 3.3 LDDT-Cα

Target: T1024

Five models per chain, coloured by chain
Excluding T1044 domains, T1088
How AlphaFold understands proteins
Biological context

- Computational structure prediction is typically underspecified
 - Oligomeric state, ligands, DNA-binding, experimental conditions, multiple conformations etc.
- Our networks implicitly models the missing context
- Uses a variety of physical and evolutionary information (e.g. profile-only is still pretty accurate)

T1056 (zinc binding)
AlphaFold / Experiment
TBM-hard, 98.2 GDT

T1080 (trimer)
AlphaFold (monomer prediction x3)
FM/TBM, 85.9 GDT
Experimental structure
Interrogating the Network

Predict distogram

Predict distogram

Predict distogram

Predict distogram

…
Model interpretability - T1038

6YA2: Bahat, Y., et al. First structure of a glycoprotein from enveloped plant virus. (To be published.)
Model interpretability - T1038

6YA2: Bahat, Y., et al. First structure of a glycoprotein from enveloped plant virus. (To be published.)
Model interpretability - T1038

6YA2: Bahat, Y., et al. First structure of a glycoprotein from enveloped plant virus. (To be published.)
Model interpretability - T1080

T1080: Not yet in PDB
Model interpretability - T1080

T1080: Not yet in PDB
Model interpretability - T1080

T1080: Not yet in PDB
Model interpretability - T1061

T1061: Not yet in PDB
3 copies of monomer prediction overlaid on crystal
Model interpretability - T1061

T1061: Not yet in PDB
3 copies of monomer prediction overlaid on crystal
Model interpretability - T1061

T1061: Not yet in PDB
3 copies of monomer prediction overlaid on crystal
Model interpretability - T1044

Model interpretability - T1044

Model interpretability - T1044

Manual interventions

We learned a lot during CASP14!

- **Domains arising from H1044 (RNA polymerase):**
 - Genetics search of full chain but folded in 4 parts
 - Resulting pieces were used as templates to build the full chain
 - Afterward, we fine-tuned our models to handle very long chains
 - Can now obtain this accuracy in a fully-automated way

- **T1064 (ORF8):**
 - Five additional sequences were added to the MSA using NCBI Protein BLAST
 - Tried more models to find a confident one

- **T1024 (Multidrug transporter):**
 - Clustered templates into different classes to get diversity of opening angle

- **Additional targets:**
 - Often the model diversity is low despite the error scores saying that there is error
 - We would try to put older models in later positions to increase diversity
What went badly

→ Manual work required to get a very high-quality Orf8 prediction
→ Genetics search works much better on full sequences than individual domains
→ Final relaxation required to remove stereochemical violations
What went well

- Building the full pipeline as a single end-to-end deep learning system
- Building physical and geometric notions into the architecture instead of a search process
- Models that predict their own accuracy can be used for model-ranking
- Using model uncertainty as a signal to improve our methods (e.g. training new models to eliminate problems with long chains)
Wrap up & future outlook

→ We have built a system that confidently predicts accurate structures for most proteins – and knows when it is wrong

→ As for CASP131,2, we’ll publish a peer-reviewed paper

→ We’re also working on providing broad access to our work

→ Demis Hassabis will be giving a keynote on Friday about *Using AI to accelerate scientific discovery*

→ Lots of exciting work ahead for the field: Complexes, conformational change etc

→ Thanks again to the CASP organizers, experimentalists and everyone on whose work we’re building
