The 13th CASP meeting - FEIGLAB

Protein Model Refinement

via **Iterative** Molecular Dynamics simulations

Lim Heo and Michael Feig

Department of Biochemistry and Molecular Biology Michigan State University

```
Numerically solving
Newtonian equation!
```

```
F = ma = -∇V(r)
```

Physical atomistic force field (CHARMM 36m)

Numerically solving Newtonian equation!

F = ma = -∇V(r) Physical atomistic force field (CHARMM 36m)

Numerically solving Newtonian equation!

 $\mathbf{F} = \mathbf{ma} = -\nabla \mathbf{V}(\mathbf{r})$

Physical atomistic force field (CHARMM 36m)

Numerically solving Newtonian equation!

F = ma = -∇V(r) Physical atomistic force field (CHARMM 36m)

Numerically solving Newtonian equation!

F = ma = -∇V(r)

Physical atomistic force field (CHARMM 36m)

Pre-study

Markov state modeling for refinement

10s µs MD simulations/target with c36m to identify "**refinement pathway**"

Pre-study

Native states have the lowest free energies

Target	Initial model RMSD [Å]	Native state RMSD [Å]	⊿⊿G [kcal/mol]	MFPT [µs]	# of transitions
TR816	2.53	0.80	-2.46	1.7	5
TR837	2.95	0.88	-2.60	43.4	7
TR854	2.27	1.04	-1.59	1.5	3
TR782	1.93	0.94	-0.65	39.6	5
TR872	5.59	1.97	-0.83	2.9	2
TR921	3.51	0.90	-0.85	637.9	15
TR769	1.74	1.14	-1.10	0.8	2
TR894	2.23	0.85	-1.71	6.0	5

Lim Heo and Michael Feig, *PNAS* (2018) https://www.pnas.org/content/early/2018/12/07/1811364115.

Pre-study

Partial unfolding and refolding is required

It has to be partially unfolded and refolded to get to the native.

FEIGLAB group CASP13 refinement protocol

- Main protocol (20 / 31 targets)
 - Iterative runs of MD simulations
 (2 µs/target; 94 GPU hrs on GTX1080Ti for R0949 (129 aa))
 - Flat-bottom harmonic restraints
 - **c36m** with modifications to accelerate sampling
 - Scoring with Rosetta, structure averaging, and locPREFMD
- Conservative protocol (11 / 31 targets)
 - Analogous to our previous protocol with reduced simulation time (250 ns; 23 GPU hrs on GTX1080Ti for R0949 (129 aa))

locPREFMD

Quickly resolves stereochemical problems

	Initial	Refined
MolP	2.00	0.91
Clash	23.27	0.11
Rotamer outlier	3.6%	1.1%
Rama outlier	2.0%	1.1%

Michael Feig, J. Chem. Inf. Model. (2016) 56(7): 1304-1312.

Error estimations

- Running 2 x 5 ns MD simulations without restraint for a model
- Residue-wise **RMSF** is highly correlated with residue-wise error!

CASP13 results with the current protocol

R0974s1 90 X R1004-D2 80 GDT-HA (model 1) R0986s1 70 60 Х ××× R1002-D2 50 40 30 60 70 80 40 50 90 30 **GDT-HA** (initial)

20/29 (69%) improved ∆GDT-HA = +3.99

What are improved?

Magenta: Initial Blue: Refined

<u>R0986s1</u> GDT-HA: 59.2 → 78.5 (+19.3) RMSD: 1.8 Å → 1.0 Å (-0.8 Å)

GDT-HA: 65.6 → 89.5 (+23.9) RMSD: 2.2 Å → 0.8 Å (-1.4 Å)

What are improved?

Magenta: Initial Blue: Refined

Secondary structure rearrangement Partial folding/unfolding of structure elements

<u>R098651</u> GDT-HA: 59.2 → 78.5 (+19.3) RMSD: 1.8 Å → 1.0 Å (-0.8 Å)

<u>R0974s1</u> GDT-HA: 65.6 → 89.5 (+23.9) RMSD: 2.2 Å → 0.8 Å (-1.4 Å)

What went wrong?

Magenta: Initial Blue: Refined

<u>R1002-D2</u> GDT-HA: 72.9 → 59.8 (-13.1) RMSD: 1.9 Å → 2.3 Å (+0.4 Å) <u>R0949</u> GDT-HA: 49.0 → 45.5 (-3.5) RMSD: 7.0 Å → 7.1 Å (+0.1 Å)

What went wrong?

Magenta: Initial Blue: Refined

Incorrect sequence alignment Too far from the native structure

<u>R0949</u> GDT-HA: 49.0 → 45.5 (-3.5) RMSD: 7.0 Å → 7.1 Å (+0.1 Å)

Summary

- Purely physics-based method
- Successes
 - Smaller targets via iterative MD sampling
 - Partial folding, unfolding, and rearrangement allowed by flat-bottom harmonic restraints
- Failures
 - Incorrect topology (fixing sequence alignment errors) because of insufficient sampling

Acknowledgements

 CASP participants, assessors, target providers, and organizers

- NIH fundings (R01 GM084953 and R35 GM126948)
- XSEDE computing resources (TG-MCB090003)