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1. Deep MSA: build MSA from incremental 
sequence searching protocols

2. Triple coevolution features: covariance matrix, 
precision matrix, and pseudolikelihood 
maximization

3. ResNet: fully convolutional neural network with 
residual blocks 
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Step 1: Effect of MSA on contact prediction
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Step 2: Three feature matrices derived from MSA

1. COVariance matrix (COV) S:

2. PREcison matrix (PRE) θ:

3. Pseudo-Likelihood Maximization (PLM) 𝜎:



How do we convert L ⨉ L ⨉ 441 (=21 ⨉ 21) evolutionary coupling features to L ⨉ L ⨉ 1 
contact map?

● L1 norm (λ=1) or L2 norm (λ=2):

● Or just leave it to deep learning: ResTriplet/TripletRes
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Step 3: Predicting contact-map from features
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Step 3: ResTriplet neural network architecture
● First, train CNN models on COV, PRE and PLM features, separately.
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Freezing parameters

● First, train CNN models on COV, PRE and PLM features, separately.
● Second, stack 3 models with another dilated CNN model, with additional 

secondary structure features.

Step 3: ResTriplet neural network architecture
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Step 3: TripletRes neural network architecture
Train all CNN models together, in an end-to-end fashion.
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• Coevolution features + predicted 
secondary structure feature 

• Training 4 models separately
• Can be trained with 1 GPU

Step 3: ResTriplet vs TripletRes: neural network architecture

ResTriplet

TripletRes

• ONLY coevolution features 
• End-to-end training
• Requires 4 GPUs for training

ResTriplet components



T0955-D1
(ResTriplet: 0.561;
TripletRes: 0.585)

Result of ResTriplet/TripletRes on CASP13 Targets

T0955-D1 (designed protein;
single sequence in MSA)



Effect of Domain Partition on Contact Prediction

Before After
T0981 0.333 0.740

D1 0.616 0.616
D2 0.159 0.187
D3 0.172 0.823
D4 0.586 0.703
D5 0.504 0.795
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What went wrong?
T0957s2-D1: top L long range accuracy 
0.342 (ResTriplet) and 0.394 (TripletRes)

Incorrectly predicted long range contacts 
for the first helix of T0957s2-D1 caused 
mainly by long stretch of gaps in MSA.



Summary
What went right?

● DCA features (PRE and PLM) outperforms covariance feature (COV).

● Multiple feature fusion/ensemble with deep convolutional neural networks leads 
to highly accurate contact prediction.

● With the set of coevolutionary features, predicted one-dimensional features 
(secondary structure, sequence profile, solvent accessibility etc) is not strictly 
required for deep learning.

● Domain partition (even when domain boundary is not exact) improves precision.

● Combination of diverse multiple sequence alignment generation protocols
(search algorithms and sequence databases) improves contact prediction.

What went wrong?

● How to appropriately consider large gaps in MSA is still an open question.
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