Protein complex structure prediction using GALAXY in CASP13

CASP13 Meeting, Dec 2018 <u>Minkyung Baek</u>, Taeyong Park, Hyeonuk Woo, and Chaok Seok (Seok, Seok-assembly, Seok-naive_assembly)

Lab of Computational Biology and Biomolecular Engineering Department of Chemistry, Seoul National University

Homo-oligomer structure prediction

GalaxyHomomer (Seok-assembly): Automated homo-oligomer structure prediction

All successful predictions came from *template-based* approach

Baek, M., Park, T., Heo, L., Park, C., & Seok, C. (2017). GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. *Nucleic acids research*, 45(W1), W320-W324.

GalaxyHomomer: Details on the template-based approach

Baek, M., Park, T., Heo, L., Park, C., & Seok, C. (2017). GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. *Nucleic acids research*, 45(W1), W320-W324.

GalaxyHomomer: Impact of model refinement tested on CASP11 targets

Tested on the 20 CASP11-CAPRI30 targets

Model quality improvement by overall refinement

2 3 4 5

7

Before refinement

9

2 3 4 5 6 7

Before refinement

GalaxyHomomer: Performances in CASP13

• Compared to Seok-naive_assembly (HHsearch + MODELLER)

GalaxyHomomer is worse than the naive approach in contact-based measure. Why?

GalaxyHomomer: Performances in CASP13

- Unfortunately, we found critical bugs in our code
 - Some of inter-chain restraints were ignored for large complexes (n_res ≥ 1000)
 - Symmetry constraint was ignored in side-chain sampling during overall refinement

GalaxyHomomer: Performance in CASP13 after debugging

• Compared to Seok-naive_assembly (HHsearch + MODELLER)

GalaxyHomomer: Performance contribution of each refinement step

GalaxyHomomer: What went right (T1016)

GalaxyHomomer: What went wrong (T1006: small interface)

Incorporating information in human prediction

- Made corrections to the server models
 - Multiple modeling units, alignment errors, etc.
- Experiment results from literature search (e.g. low resolution EM map)

Seok (human) What went right, but could have been better T0996: utilizing low-resolution EM data

- Very low resolution (~20 Å) EM map
- Each ring was modeled first, and the modeled rings were stacked by fitting into the EM map using UCSF Chimera

CASP: mages redacted			
mages redacted			

Seok (human)

What went wrong T1018: failed to predict via *ab initio* docking

Failed to predict correct binding pose because of inaccuracy of model structures at the interface

Hetero-oligomer structure prediction

Methods used in hetero-oligomer prediction

Only used in human prediction

Server protocol failed for all hetero-oligomer targets

90

- It was hard to model subunit structures for the most of targets
- Even when subunits were modeled relatively well, docking failed due to local inaccuracy of the subunit models

CASP: Images redacted		
Images redacted		

Seok (human)

Information from template or experimental data enabled more accurate complex structure predictions

- All successful predictions came from human experts
 - by building complex structures based on complex templates
 - by utilizing experimental data in docking (e.g. low resolution EM map)

Seok (human) What went right H0974: template-based complex modeling

• Using homo-dimer structure (1Y7Y) as a template

Seok (human)

What went right, but could have been better H1021: utilizing low-resolution EM data

Subunit 1 Subunit 2 Subunit 3

Conclusion

- *Ab initio* docking of model structures is still challenging due to local inaccuracy of models especially at the interface
- Template-based approach is really powerful if proper template can be found
 - Additional model refinement can improve model quality, but should be carefully applied.
- Experimental data like low-resolution EM map can assist oligomer modeling, but requires additional optimization

Acknowledgement

Chaok Seok

Lab members (especially, Taeyong Park and Hyeonuk Woo)