Protein complex structure prediction using GALAXY in CASP13

CASP13 Meeting, Dec 2018
Minkyung Baek, Taeyong Park, Hyeonuk Woo, and Chaok Seok
(Seok, Seok-assembly, Seok-naive_assembly)

Lab of Computational Biology and Biomolecular Engineering
Department of Chemistry, Seoul National University
Homo-oligomer structure prediction
GalaxyHomomer (Seok-assembly): Automated homo-oligomer structure prediction

All successful predictions came from template-based approach

GalaxyHomomer: Details on the template-based approach

Sequence → Oligomer state → Template-based initial model building → Oligomer model building

HHsearch on oligomer database → Rescoring & Template selection → Oligomer model building (GalaxyCassiopeia)

Final model → Complex structure refinement → ULR modeling

E_{\min} model → Short MD relaxation (GalaxyRefineComplex) → ULR modeling (GalaxyLoop)

GalaxyHomomer: Impact of model refinement tested on CASP11 targets

- Tested on the 20 CASP11-CAPRI30 targets

Ligand / Interface RMSD improvement by ULR modeling

Model quality improvement by overall refinement
GalaxyHomomer: Performances in CASP13

- Compared to Seok-naive_assembly (HHsearch + MODELLER)

T0979 (GalaxyHomomer detect better template by re-scoring)

GalaxyHomomer is worse than the naive approach in contact-based measure. Why?
GalaxyHomomer: Performances in CASP13

• Unfortunately, we found critical bugs in our code

• Some of inter-chain restraints were ignored for large complexes (n_res ≥ 1000)

• Symmetry constraint was ignored in side-chain sampling during overall refinement
GalaxyHomomer: Performance in CASP13 after debugging

- Compared to Seok-naive_assembly (HHsearch + MODELLER)

T0979
(GalaxyHomomer detect better template by re-scoring)

Improved in contact-based measure after bug-fix, but still a bit worse than the naive approach.
GalaxyHomomer:
Performance contribution of each refinement step

I-RMSD improvements

F1 improvements

Analysis on the targets having F1 > 0.3
GalaxyHomomer: What went right (T1016)

Metric = L-RMSD

- Init: 6
- ULR: 4
- Refine: 2

Metric = I-RMSD

- Init: -2
- ULR: 0
- Refine: 2

Metric = F1

- Init: 0.0
- ULR: 0.4
- Refine: 0.0

Crystal structure
Initial structure
Refined structure

ULR modeling

L-RMSD: 4.93 Å
I-RMSD: 5.04 Å
F1: 0.613

Overall refinement

L-RMSD: 4.24 Å
I-RMSD: 2.45 Å
F1: 0.489

Overall refinement

L-RMSD: 4.78 Å
I-RMSD: 2.41 Å
F1: 0.636
GalaxyHomomer:
What went wrong (T1004: multiple modeling units)

Metric = L-RMSD

Metric = I-RMSD

Metric = F1

CASP:
Images redacted
GalaxyHomomer: What went wrong (T1006: small interface)

Metric = L-RMSD
-改善度
- Init, ULR, Refine

Metric = I-RMSD
- 改善度
- Init, ULR, Refine

Metric = F1
- 改善度
- Init, ULR, Refine

Crystal structure
Initial structure
Refined structure

Overall refinement

L-RMSD: 4.50 Å
I-RMSD: 1.37 Å
F1: 0.870

L-RMSD: 7.87 Å
I-RMSD: 2.57 Å
F1: 0.593
Incorporating information in human prediction

- Made corrections to the server models
- Multiple modeling units, alignment errors, etc.
- Experiment results from literature search (e.g. low resolution EM map)
What went right, but could have been better
T0996: utilizing low-resolution EM data

- Very low resolution (~20 Å) EM map
- Each ring was modeled first, and the modeled rings were stacked by fitting into the EM map using UCSF Chimera

<table>
<thead>
<tr>
<th></th>
<th>Ligand RMSD</th>
<th>Interface RMSD</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0996 Model 1</td>
<td>9.81 Å</td>
<td>9.88 Å</td>
<td>0.357</td>
</tr>
</tbody>
</table>

CASP: Images redacted
What went wrong
T1018: failed to predict via \textit{ab initio} docking

Failed to predict correct binding pose because of inaccuracy of model structures at the interface
Hetero-oligomer structure prediction
Methods used in hetero-oligomer prediction

Template-based complex modeling
- Complex template search (HHsearch)
- Complex model building (GalaxyCassiopeia)
- ULR modeling (GalaxyLoop)

Subunit modeling
- GalaxyTBM or GalaxyHomomer
- TS server models

ab initio complex modeling
- Rigid-body docking (GalaxyTongDock)

Data assisted complex modeling
- Applying information extracted from data to rigid-body docking (GalaxyTongDock w/ data)
- Fitting to EM map

Overall refinement (GalaxyRefine Complex)

Final models

Only used in human prediction
Server protocol failed for all hetero-oligomer targets

- It was hard to model subunit structures for the most of targets
- Even when subunits were modeled relatively well, docking failed due to local inaccuracy of the subunit models
Information from template or experimental data enabled more accurate complex structure predictions

- All successful predictions came from human experts
 - by building complex structures based on complex templates
 - by utilizing experimental data in docking (e.g. low resolution EM map)
What went right
H0974: template-based complex modeling

- Using homo-dimer structure (1Y7Y) as a template

<table>
<thead>
<tr>
<th>Crystal structure</th>
<th>Template structure</th>
<th>Predicted model</th>
</tr>
</thead>
<tbody>
<tr>
<td>H0974</td>
<td>Ligand RMSD 4.94 Å</td>
<td>Interface RMSD 3.09 Å</td>
</tr>
</tbody>
</table>

CASP:
Images redacted
What went right, but could have been better
H1021: utilizing low-resolution EM data

Native

Server

Model 5
H1021
F1: 0.253
Conclusion

• *Ab initio* docking of model structures is still challenging due to local inaccuracy of models especially at the interface.

• Template-based approach is really powerful if proper template can be found.

 • Additional model refinement can improve model quality, but should be carefully applied.

• Experimental data like low-resolution EM map can assist oligomer modeling, but requires additional optimization.
Acknowledgement

Chaok Seok

Lab members (especially, Taeyong Park and Hyeonuk Woo)