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Protein folding at DeepMind

DeepMind’s core mission is to develop advanced 
artificial intelligence and use it to solve important 
problems

Protein folding allows us to work on a central problem 
in biology that has clear goals and rich data

Major progress in protein folding should allow rapid 
advances in understanding protein interactions



Free modeling
● Our system is exclusively free-modelling system and does not use templates*

○ (*) except we adjusted a pair of domain segmentations by hand on strong 
templates

○ We ran TBM targets identically to FM targets
○ No use of stoichiometry information or server models

● Very minor human intervention
○ Two domain segmentations (especially on T0999)
○ We used human judgement when deciding whether two models were too similar to 

include both
○ We reordered predictions in one case because the second prediction had strictly 

more structure

● We use standard PDB (training) and UniClust (MSA generation) databases



System overview
Details of the distance and torsion prediction network will be in Andrew Senior’s 
talk in the AI session
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Key aspects of our system

● Use a very large number of distributional predictions from a neural network
○ Pij(distance) for all pairs
○ Pi(ϕ, ψ) for each residue

● Individual predictions are detailed, calibrated, and smooth

● Averaging the agreement scores over large numbers of distributional 
predictions (e.g. all distances) gives an accurate and smooth scoring function
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Using deep learning to construct a reference state

The outputs of the distance prediction network are analogous to raw counts in a 
tabular knowledge-based potential

To obtain a potential, we must apply a reference state correction

We train a neural network to produce reference state distance distributions
● Only input features are i, j, N, and is_glycine
● No other sequence or MSA information



Potential construction

The log ratio tends to be more convex 
than the distance predictions

Potential is score2 + distance 
potential

Alternatively, can train a scoring 
network to predict GDT



Optimizing the statistical potential

Two methods
● Simulated annealing with fragment insertion

○ Domain segmented
○ Generative model of protein fragments
○ Higher diversity

● Repeated gradient descent
○ Full chains
○ Lower diversity



Simulated annealing with fragment insertion

Lowest energy structures are 
periodically removed and run in 
Rosetta relax with the same 
pairwise energy.

Refragmentation helps with 
accuracy
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Generative model of fragments

End-to-end trained model of 32-residue 
fragments

Based on VAE (variational auto-encoder) with 
recurrent “canvas”

Cut into 9-residue fragments for fragment 
insertion
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Repeated gradient descent

With a smooth Rama, the potential 
minimizes using repeated gradient 
descent (initialize from corruptions of best 
results)

Instead of using fragments, we will use a 
Rama energy term smoothed to a single 
von Mises

No domain segmentation (except T0999)



Repeated gradient descent animation

T0869-D1 from Casp12
Approximately real time
Cherry-picked

http://www.youtube.com/watch?v=_S-StMGel7g


T0990-D3



Not our submission 
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Accuracy vs computational cost

Repeated gradient descent 

Using simple vdW instead 
of score2

Highly parallelizable

(for a subset of targets, on CPU nodes)



What went wrong

● T0999 broke our pipeline

● Repeated gradient descent was found to work midway through CASP

● False confidence (low diversity even when wrong)

● Currently cannot produce a cis proline



Conclusions

● Distance distributions are rich scoring distributions, and calibration of 
predictions makes combinations efficient

● Reference state correction matters

● Sampling is declining in importance relative to the initial network predictions

● Full chain folding can reduce errors



What’s next

● Still focused on fundamental improvements to structure prediction accuracy

● Will publish detailed methods in a paper

● Open to collaboration on applications

● No current plans to open source or put up a public server
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