Deep Learning distance, torsion and score predictions for de novo structure modelling

R.Evans, J.Jumper, J.Kirkpatrick, L.Sifre, T.F.G.Green, C.Qin, A.Zidek, A.Nelson, A.Bridgland, H.Penedones, S.Petersen, K.Simonyan, D.T.Jones ^[UCL], K.Kavukcuoglu, D.Hassabis, <u>A.W.Senior</u>

Group 043 / A7D / AlphaFold

Deep learning

- Neural networks are function approximators trained to optimize an objective
 - Parameters or weights trained by gradient descent
- Hugely successful in recent years, has revolutionized many domains
 - Speech recognition
 - Speech synthesis
 - Machine translation
 - Image recognition / segmentation
 - Agents
 - Playing games: Go, Chess, Atari
 - self-driving cars
- Capable of modelling complex data
 - Long range, subtle patterns, with redundancy, needing generalization
 - Structure of the network gives inductive bias to certain kinds of modelling

Why machine learning for protein structure modelling

- A complex problem
- Hard to model all the complex interactions in a long molecule
 - Local and long-range dependencies
- There is data thanks to experimental structure techniques
 - 146,000 PDB entries
 - highly redundant, not the scale of many problems
 - 10s of millions of utterances for speech
 - 15 million labelled images in ImageNet
- CASP assessment provides a benchmark with well-defined goals

Where have we applied machine learning in CASP13?

- Torsion prediction
 - End-to-end training:
 - $\blacksquare \quad {Sequence, MSA features} \rightarrow torsions$
 - As a generative model from which we can draw samples
 - Based on DRAW^{*}, a Variational Auto Encoder model
 - Used for fragment generation

• Scoring

DeepMind

- Score a decoy by predicting the GDT distribution
 - {Distance map, contact prediction, MSA features} \rightarrow score
- Residue distance prediction

*DRAW: A Recurrent Neural Network For Image Generation K.Gregor, I. Danihelka, A. Graves, D. J. Rezende, D. Wierstra arxiv.org/abs/1502.04623

Predicting inter-residue distances

- Much focus in recent years on predicting residue contacts
 - Contacts provide a strong constraint on non-sequence-local structure
 - DCA, CCMPred, MetaPSICov, Raptor-X, ...
 - Explosion in sequencing expands multiple sequence alignments and coevolution data
- Previous work has predicted distances, or contacts with various thresholds
- Distances are predictable not just from coevolutionary contact information
 - Local propagation of distance constraints
 - Secondary structure interactions

T0955 Native

Deep distance distribution network

- Train a large 2-dimensional dilated residual convolutional network to predict CB atom distances
 - For each i, j pair, output is a softmax probability distribution
 - Well-calibrated
 - Train to cross-entropy objective
 - 40 0.5Å bins from 2–22Å (later 64 bins)
 - \circ Distance histograms \rightarrow "distograms"
 - We predict the highly-correlated distance *marginals*, not a joint distribution
 - 2-dimensional throughout

eepMind

Residual network blocks with NxN representations

Data

- PDB 2018-03-15 / Uniclust30 2017-10
- Train on 29,400 CATH (2018-03-16) s_35 cluster representatives
- MSA features e.g.
 - HHBlits and PSIBLAST profiles
 - 2D features from Potts model fit in TensorFlow
 - Frobenius norm L x L x 1
 - **Raw parameters** L x L x 22 x 22
 - No Mutual Information

Repeat 1D features, tiling in x and y then concatenate with 2D features

Deep Learning for de novo structure modelling - Andrew Senior

Dilated convolutions

- Dilated convolutions skip pixels
 - Allow wide receptive fields with few parameters and low computation
- Propagate long range dependencies

Residual network

1 residual block Modifies a 64x64x128 representation from the previous block

Cropping

- Handling arbitrary protein length L leads to O(L²) memory usage
 - Consistent size helps distributed training
- Train on all 64x64 crops from proteins
 - Random offset
 - Including up to 32 residues off-edge
- For a crop (i, i+63)x(j, j+63)
 - Crop corresponding 2D input features
 - Tile corresponding (i, i+63) and (j, j+63) 1D parameters
 - Still allows modelling long range correlations from i to j
- Helps avoid overfitting
 - Data augmentation
 - Each protein leads to many different training examples
- Ensembling:
 - At test time weighted average across alternative offsets
 - Also average across 4 slightly different models

T0955 example TBM/FM 88.4GDT

Residue 29 true contacts

T0955

All predicted distributions for residue 29 to other residues Red line at true distance

Distograms for T0955 residue 29

T0955 / 5W9F

T0965 / 6D2V

T0954 / 6CVZ

T0954 / 6CVZ

Contact prob

T0990

Precisions at L/k

	L/1 long	L/2 long	L/1	L/2			Top 1
	+∆	+Δ	medium	medium	L/1 short	L/2 short	GDT +∆
T0990-D1	51.3 +14.5	68.4 +13.1	30.3	55.3	21.1	39.5	85.2 +17.1
T0990-D2	41.6 +8.3	55.7 +10.9	22.1	39.1	18.2	33.0	45.9 +16.1
T0990-D3	45.5 +15.0	67.9 +23.3	21.6	37.7	27.7	49.1	48.7 +29.5

Input

True distance

Mean prediction

Auxiliary losses

- We know the contact map encodes secondary structure
 - A distance network should be good at predicting it
- Auxiliary loss of secondary structure from 1D reductions for **both** (i, i+63) and (j, j+63)
 - Ensembled across all 2D crops
- Q3 Accuracy on CASP11 ~84%
 Dradicting accordery structure improves
- Predicting secondary structure improves contact prediction

Helix

Auxiliary losses: torsions

- For repeated gradient descent, we need torsion predictions •
 - From 1D reduction also predict a joint (phi, psi) Ramachandran probability 0 distribution for each residue (10 degree bins)
 - Again marginal distributions 0

Distogram performance on contact metrics

- Sum probability mass below 8 Ångstrom
- Roughly a 4% gain when data was refreshed from pre-CASP12 to latest

	CASP12 FM (27 domains) L long
Single model	50.7%
4-model ensemble	52.3%
Without MSA features	13.6%
Reference model (no AA-type, is_glycine only)	3.8%

CASP13 contact accuracies

Precisions

Set	Domains	L/1 long +∆	L/2 long +∆	L/1 medium	L/2 medium	L/1 short	L/2 short
FM	31	44.7 +0.0	57.9 +0.1	39.6	58.8	32.3	52.2
TBM/FM	12	58.1 -1.8	72.8 -0.4	44.1	65.5	41.9	63.7
Both	43	48.5	62.0	40.8	60.7	35.0	55.4

F scores

Set	Domains	L/1 long +∆	L/2 long +A	L/5 long	L/1 medium	L/2 medium	L/5 medium
FM	31	41.9 +0.8	36.9 +0.7	22.7	49.4	56.5	47.3
TBM/FM	12	55.1 +3.4	48.7 +3.4	31.4	56.4	62.4	47.0
Both	43	45.6	40.2	25.1	51.4	58.1	47.2

GDT vs Long range contact accuracy

Conclusions

What worked well?

- Deep learning!
- Distance prediction
 - Gives greater contact prediction accuracy
 - Is a richer source of information than contact prediction
 - Constructing a potential, with a reference that uses the whole distribution is very valuable
- Crops are effective for modelling even long-range contacts
- Avoiding domain segmentation

What doesn't work well?

- With few or no alignments accuracy is much worse
- T0961-D1 (-35 GDT, TBM Easy), T0966-D1 (-37.8, TBM Hard).....

