Y. Ishida, N. Denissova, G. Liu, G. V. T. Swapna, G. T. Montelione,

G. Hura, S. Tsutakawa, J. Tainer

J. Moult

Chin-Hsien Emily Tai

K. Fidelis, A. Kryshtafovych

CASP Commons Overview (Guy) 3 min

CASP Commons Target Collection (Emily) 3 min

Modeling of CASP Commons Targets (Krzysztof) 6 min

Data Collection and Data Guided Prediction (Guy) 5 min

- Protein sample production
- NMR 3 proteins

Data Collection SAXS - 5 - 6 proteins (Greg) 5 min

- What is SAXS? 1 to 2 slides what is SAX
- Status of CASP Commons targets

How to Provide Data / Reports to the Nominators and Plan for Future Audience Discussion - lead by Guy, Emily, Greg, John Moult, John Tainer, and Krzysztof

8 min

- Is this a valuable activity for the CASP community?
- how to bring in new targets?
- how to obtain funding for experimental activities?

CASP Commons Overview

Guy 3 min

Vision Statement

Protein structures drive biology.

CASP Commons will engage the protein modeling community with the broader biological community to address important problems in biology and medicine.

Implementation of the Vision

To engage the CASP scientific community in both 'regular' and 'data-assisted' protein structure modeling on a large number of biomedicallyimportant proteins and complexes for which highresolution experimental structures are not available.

Example CASP Commons Activities

- Targets broadly nominated by the biology community
- Targets involved in a particular disease (e.g. cancer), organism, or biological process.

Targets and data are being generated by CASP Organizers

Proposed by high-impact biomedical research labs.

Range from 50 to 200 residues. May be monomers or oligomers.

No good templates can be identified for modeling.

Shallow multiple sequence alignments (N_{eff} / L < 2).

Structures to eventually be determined by CASP Organizers – may not have 3D structures for assessment for some years.

Assessment will be an ongoing activity.

CASP Commons Goals

Three key objectives:

- Structural models for biology
- Provide a bridge between the modeling and biological communities
- Drive methods for data-assisted modeling

Goal today: To gain input from, and engage, the CASP modeling community.

CASP Commons Target Collection

Emily 3 min

32 targets nominated from 26 labs worldwide

CASP Commons Targets

Modeling targets

lastname	firstname	institution	domain	length	HHsearch top templ	HHsearch prob	HHsearch
Abriata	Luciano	Lousanne Poly	DHHC6_SH3	81	2RQR_A	85.6	0.49
Abriata	Luciano	Lousanne Poly	COA6	125	5J4Z_BH	99.6	0.54
Best	Sonja	NIH/NIAID	LIM	206	1RUT_X	99.7	0.72
Folco	Hernan	NIH/NCI	SPAC17C9	94	5MRC_VV	26.1	0.55
Golden	Andy	NIH/NIDDK	EMB1	81	5A31_D	56.1	0.48
Harmer	Stacey	UC Davis	XAP5	187	5NSA_A	56.2	0.2
Jacobs	Dakota	NIH/NCI	NELF_Cterm200	202	2MR5_A	64.6	0.29
Jacobs	Dakota	NIH/NCI	NELF	532	2BL0_A	83	0.07
Kimura	Shioko	NIH/NCI	SCGB_3A2	93	1CCD_A	97.7	0.69
Koepnick	Brian	UW, Baker Lab	UW_engnr	80	3HF3_D	71.6	0.85
Liang	Jake	NIH/NIDDK	HBx	154	6EU1_N	19	0.12
Masison	Cynthia	NIH/NCI	P12C39A	99	2KIX_D	16.1	0.15
Maurizi	Michael	NIH/NCI	PinA	161	2QL2_B	65.3	0.14
Michelmore	Richard	UC Davis	BIRXLR3	141	2LC2_A	95.8	0.55
Mushegian	Arcady	NSF/MCB, Virginia	NP_062900	189	3PUN_B	53.9	0.48
Myrum	Craig	NIH/NIA/IRP	ARC_Nterm1-140	140	1TQG_A	43.7	0.16
Myrum	Craig	NIH/NIA/IRP	ARC	396	4X3X_A	100	0.22
Prosser	Gareth	NIH/NIAID	EFD57440	107	3HFE_A	32.4	0.13
Rein	Alan	NIH/NCI	EIAV	68	4K02_B	11.9	0.31
Robert	Hufnagel	NIH/NEI	PNPLA6	167	5FYA_B	99.9	0.98
Schneider	Thomas	NIH	RepA	286	1REP_C	99.5	0.7
Schwartz	Daniella	NIH/NIAMS	NBCe1-B	160	5JHO_A	99.9	0.48
Ten-Hagen	Kelly	NIH/NIDCR	NP_476718	74	2HNW_B	37.6	0.14
Wang	Qinglan	NIH	PPE_Mtb	181	1KRK	16.4	0.04
West	Jennifer	NIH/NIDDK	MotB	162	4YTK_A	28.6	0.25
Yang-Yen	Hsin-Fang	IMB, Taiwan	PRAP1	149	1Y0G_C	29.7	0.11
Yarden	Oded	Hebrew U of Jerusalem	SSP1	149	5GNA_A	53.7	0.15
Young	Howard	NIH/NCI	BAE31734	78	2AAZ_B	38.6	0.47
Zhang	Zhiyong	Rutgers U	Etglo4	216	2LVF_A	98.2	0.3
Zhang	Zhiyong	Rutgers U	Etglo1	216	1S6D_A	98.2	0.31
Zhang	Zhiyong	Rutgers U	Etglo2	258	1S6D_A	98.1	0.25
Zhang	Zhiyong	Rutgers U	Etglo3	290	1S6D_A	97.9	0.22

Proteins from phage, human and plant virus, mycobacterium, fungus, plants, mouse, and human

Functions include pathogen infection, host immunity, cell cycle, longterm memory, detoxification, oncoprotein, chaperones, drug targets, splicing.

Target size

15 targets selected for NMR trial experiments

Selection criteria:

- Size (50 ~ 200 residues)
- Template availability
- Shallow multiple sequence alignments (N_{eff} / L < 2)
- Number of cysteine in the sequence no more than 10

	domain	status (DQF)	CYS	length (60-180)
1	EIAV	1	0	68
2	PRAP1	1	1	149
3	EMB1	1	1	81
4	UW_engnr	2	0	80
5	MotB	2	2	162
6	BAE31734	2	2	78
7	PinA	2	3	161
8	BIRXLR3	2	3	141
9	ARC_Nterm1-140	2	4	140
10	PPE_Mtb	3	0	181
11	XAP5	3	0	187
12	NP_062900	3	2	189
13	SSP1	3	7	149
14	Hbx	3	10	154
15	EFD57440	4	0	107
10				1.00

Modeling of CASP Commons Targets

Krzysztof 7 min

$\left(\leftrightarrow \right) \rightarrow \mathsf{C} \ \mathbf{\hat{\omega}}$

Protein Structure Prediction Center

Menu

Home
PC Login
PC Registration
CASP_Commons (2018)
CASP Experiments
CASP13 (2018)
Home
Registration
My CASP13 profile
CASP12 (2016)
CASP11 (2014)
CASP10 (2012)
CASP9 (2010)
CASP8 (2008)
CASP7 (2006)
CASP6 (2004)
CASP5 (2002)

Success Stories From Recent CASPs

template-based modeling	ab initio modeling	contact prediction	help structural biologists	refinement	data-assisted modeling	П
/	Models base	ed on templates ide	ntified by sequence	e similarity remain	the most accurate	. Over the course
	of the CASP	experiments there	have been enorme	ous improvements	in this area. Howe	ver, the overall

CASP_Commons

Register for CASP Commons
Released Target List
Submit a prediction
Model Accuracy Estimates

Modeling targets

lastname	firstname	institution	domain	length	HHsearch top templ	HHsearch prob	coverage
Abriata	Luciano	Lousanne Poly	DHHC6_SH3	81	2RQR_A	85.6	0.49
Abriata	Luciano	Lousanne Poly	COA6	125	5J4Z_BH	99.6	0.54
Best	Sonja	NIH/NIAID	LIM	206	1RUT_X	99.7	0.72
Folco	Hernan	NIH/NCI	SPAC17C9	94	5MRC_VV	26.1	0.55
Golden	Andy	NIH/NIDDK	EMB1	81	5A31_D	56.1	0.48
Harmer	Stacey	UC Davis	XAP5	187	5NSA_A	56.2	0.2
Jacobs	Dakota	NIH/NCI	NELF_Cterm200	202	2MR5_A	64.6	0.29
Jacobs	Dakota	NIH/NCI	NELF	532	2BLO_A	83	0.07
				1 02020		and the second sec	

CAS rele In a deci prec rele part forn asse rour CAS res onli Dea all c lear

Mes

3)

lastname	firstname	institution	domain	length	HHsearch top templ	HHsearch prob	HHsearch coverage
Abriata	Luciano	Lousanne Poly	DHHC6_SH3	81	2RQR_A	85.6	0.49
Abriata	Luciano	Lousanne Poly	COA6	125	5J4Z_BH	99.6	0.54
Best	Sonja	NIH/NIAID	LIM	206	1RUT_X	99.7	0.72
Folco	Hernan	NIH/NCI	SPAC17C9	94	5MRC_VV	26.1	0.55
Golden	Andy	NIH/NIDDK	EMB1	81	5A31_D	56.1	0.48
Harmer	Stacey	UC Davis	XAP5	187	5NSA_A	56.2	0.2
Jacobs	Dakota	NIH/NCI	NELF_Cterm200	202	2MR5_A	64.6	0.29
Jacobs	Dakota	NIH/NCI	NELF	532	2BLO_A	83	0.07
Kimura	Shioko	NIH/NCI	SCGB_3A2	93	1CCD_A	97.7	0.69
Koepnick	Brian	UW, Baker Lab	UW_engnr	80	3HF3_D	71.6	0.85
Liang	Jake	NIH/NIDDK	HBx	154	6EU1_N	19	0.12
Masison	Cynthia	NIH/NCI	P12C39A	99	2KIX_D	16.1	0.15
Maurizi	Michael	NIH/NCI	PinA	161	2QL2_B	65.3	0.14
Michelmore	Richard	UC Davis	BIRXLR3	141	2LC2_A	95.8	0.55
Mushegian	Arcady	NSF/MCB, Virginia	NP_062900	189	3PUN_B	53.9	0.48
Myrum	Craig	NIH/NIA/IRP	ARC_Nterm1-140	140	1TQG_A	43.7	0.16
Myrum	Craig	NIH/NIA/IRP	ARC	396	4X3X_A	100	0.22
Prosser	Gareth	NIH/NIAID	EFD57440	107	3HFE_A	32.4	0.13
Rein	Alan	NIH/NCI	EIAV	68	4K02_B	11.9	0.31
Robert	Hufnagel	NIH/NEI	PNPLA6	167	5FYA_B	99.9	0.98
Schneider	Thomas	NIH	RepA	286	1REP_C	99.5	0.7
Schwartz	Daniella	NIH/NIAMS	NBCe1-B	160	5JHO_A	99.9	0.48
Ten-Hagen	Kelly	NIH/NIDCR	NP_476718	74	2HNW_B	37.6	0.14
Wang	Qinglan	NIH	PPE_Mtb	181	1KRK	16.4	0.04
West	Jennifer	NIH/NIDDK	MotB	162	4YTK_A	28.6	0.25
Yang-Yen	Hsin-Fang	IMB, Taiwan	PRAP1	149	1Y0G_C	29.7	0.11
Yarden	Oded	Hebrew U of Jerusalem	SSP1	149	5GNA_A	53.7	0.15
Young	Howard	NIH/NCI	BAE31734	78	2AAZ_B	38.6	0.47
Zhang	Zhiyong	Rutgers U	Etglo4	216	2LVF_A	98.2	0.3
Zhang	Zhiyong	Rutgers U	Etglo1	216	1S6D_A	98.2	0.31
Zhang	Zhiyong	Rutgers U	Etglo2	258	1S6D_A	98.1	0.25
0							

CASP_Commons

Register for CASP Commons
Released Target List
Submit a prediction
Model Accuracy Estimates

Modeling targets

lastname	firstname	institution	domain	length	HHsearch top templ	HHsearch prob	coverage
Abriata	Luciano	Lousanne Poly	DHHC6_SH3	81	2RQR_A	85.6	0.49
Abriata	Luciano	Lousanne Poly	COA6	125	5J4Z_BH	99.6	0.54
Best	Sonja	NIH/NIAID	LIM	206	1RUT_X	99.7	0.72
Folco	Hernan	NIH/NCI	SPAC17C9	94	5MRC_VV	26.1	0.55
Golden	Andy	NIH/NIDDK	EMB1	81	5A31_D	56.1	0.48
Harmer	Stacey	UC Davis	XAP5	187	5NSA_A	56.2	0.2
Jacobs	Dakota	NIH/NCI	NELF_Cterm200	202	2MR5_A	64.6	0.29
Jacobs	Dakota	NIH/NCI	NELF	532	2BLO_A	83	0.07
				1 02020		and the second sec	

CAS rele In a deci prec rele part forn asse rour CAS res onli Dea all c lear

Mes

3)

Accuracy Estimates

CO	001 (EIAV)	~													
				local score scale:	(0.8	; 1.0)	(0.6; 0.8)	(0.4; 0.6)	(0.2;	0.4)	(0.0; 0.2)			
#	♦ Model	10	20	30	40	50	60	¢ProQ3	10	20	30	40	50	60	♦ QAcons.
1	<u>C0001TS305_2</u>							0.434							0.373
2	C0001TS305_4							0.418							0.330
3	C0001TS258_2							0.403							0.365
4	C0001TS001_3							0.395							0.414
5	C0001TS258_3						-	0.369							0.375
6	C0001TS308_3			-				0.351							0.327
7	C0001TS373_3							0.330							0.397
8	C0001TS001_2							0.329							0.396
9	C0001TS373_4							0.326							0.402
10	C0001TS305_5							0.317							0.341
11	C0001TS258_5							0.313						_	0.358
12	C0001TS258_4							0.313							0.381
13	C0001TS305_3							0.312							0.330
14	C0001TS308_1							0.311							0.331
15	C0001TS258_1							0.311							0.370
16	C0001TS305_1							0.304							0.359
17	C0001TS005_1							0.304							0.390
18	C0001TS308_2							0.284							0.337
19	<u>C0001TS230_4</u>							0.284							0.323
20	C0001TS005_5							0.276							0.389
21	<u>C0001TS373_5</u>							0.274							0.404
22	C0001TS230_2							0.267							0.332

local score (0.6; 0.8) (0.4; 0.6) (0.2; 0.4) (0.8; 1.0) scale: # \$Model 10 40 50 60 80 90 100 110 120 130 1 \$ProQ3 10 20 60 110 120 130 1 \$QAcons. 20 30 70 30 40 50 70 80 90 100 1 C0009TS258_2 0.591 0.274 2 C0009TS305 2 0.216 0.568 3 <u>C0009TS258_5</u> 0.560 0.262 4 <u>C0009TS258_3</u> 0.557 0.278 5 <u>C0009TS258_4</u> 0.540 0.281 6 <u>C0009TS373_1</u> 0.526 0.302 7 <u>C0009TS373_5</u> 0.522 0.290 8 <u>C0009TS305</u>4 0.518 0.192 9 <u>C0009TS373 2</u> 0.511 0.233 10 <u>C0009TS258_1</u> 0.510 0.281 11 <u>C0009TS102_1</u> 0.481 0.244 12 C0009TS005 3 0.480 0.291 0.480 13 <u>C0009TS001_1</u> 0.289 14 C0009TS001_5 0.458 0.306 0.453 15 <u>C0009TS305_3</u> 0.186 16 C0009TS005 4 0.447 ... 0.285 17 <u>C0009TS373_3</u> 0.440 0.224 18 C0009TS305_5 0.424 0.192 19 <u>C0009TS005_5</u> 0.423 0.285 20 <u>C0009TS001_4</u> 0.418 0.283 21 <u>C0009TS305_1</u> 0.416 . . . 0.219

Target: C0009 (ARC_Nterm1-140) ~

Target: C0009 (ARC_Nterm1-140) ~

local score (0.8; 1.0) (0.6; 0.8) (0.4; 0.6) (0.2; 0.4) (0.0; 0.2)

#	Model		10	20	30	40	50	60	70	80	90	100	110	120	130	1	ProQ3	10	20	30	40	50	60	70	80	90	100	110	120	130	QAcons.
1	C0009TS258	2														0	.591														0.274
2	C0009TS305	2														0	.568														0.216
3	C0009TS258	5														0	.560														0.262
4	C0009TS258	3														0	.557														0.278
5	C0009TS258	4														0	.540														0.281
6	C0009TS373	1														0	.526														0.302
7	C0009TS373	5														0	.522														0.290
8	C0009TS305	4														0	.518														0.192
9	C0009TS373	2														0	.511														0.233
10	C0009TS25						Mod	lel C00	009TS2	258_2						0	.51					Mode	el C0009	OTS305	5_2						0.281
11	C0009TS10															0	.48														0.244
12	C0009TS00															0	.48														0.291
13	C0009TS00															0	.48														0.289
14	C0009TS00															0	.45														0.306
15	C0009TS30															0	.45														0.186
16	C0009TS00															0	.44														0.285
17	C0009TS37															0	.44														0.224
18	C0009TS30				0											0	.42													-	0.192
19	C0009TS00			0	l	6										0	.42														0.285
20	C0009TS00			C	7		11									0	0.41						_	2							0.283
21	C0009TS30				2	AA	-4	1								0	.41						ス)	_	6					0.219
						A	1.	2													2	-6	1	CE		N) I					
							1	L	7											/	ノ	1L		3	M	y \					
								n	ta-	0	20									ſ	R		10	S)	VV						
									" AS	M	\mathcal{A}										20	>-A	JT	0	\bigtriangleup						
									6	21	20	-1									73	$\underline{}_{k}$	\sim	\sim							
										2	Ŋ J											K	\mathfrak{I}	Y	5						
											>											6	2	17							
																						- 1		<u> </u>							

Targ	get: C0017 (S	SCGB_3A2)	~																			
						local s scal	score le:	(0.8; 1.0)	((0.6; 0.8)	(0.4; 0.6	5)	(0.2; 0).4)	(0.0) 0.2)						
#	♦ Model	10	20	30	40	50	60	70	80	90	♦ ProQ3		10	20	30	40	50	60	70	80	90	¢QAcons.
1	C0017TS305_4										0.685											0.372
2	C0017TS308_4										0.685											0.372
3	C0017TS258_1										0.658											0.342
4	C0017TS258_3										0.657											0.303
5	C0017TS305_1										0.649											0.354
6	C0017TS308_1										0.644											0.354
7	C0017TS258_2										0.629											0.341
8	C0017TS305_3										0.615											0.318
9	C0017TS308_3									-	0.590											0.318
10	C0017TS305_5										0.577											0.363
11	C0017TS308_5										0.577											0.363
12	C0017TS258_4										0.554											0.319
13	C0017TS258_5										0.538											0.312
14	C0017TS308_2										0.481											0.360
15	C0017TS305_2										0.478											0.360
16	C0017TS005_1										0.471											0.388

Target: C0017 (SCGB_3A2) \sim local score (0.6; 0.8) (0.4; 0.6) (0.2; 0.4) (0.8; 1.0) scale: 10 20 40 50 60 40 30 70 80 90 10 20 30 50 60 70 80 90 # Model **♦ProQ**3 **♦**QAcons. 1 <u>C0017TS305_4</u> 0.685 0.372 2 <u>C0017TS308_4</u> 0.372 0.685 0.342 3 C0017TS258_1 0.658 4 C0017TS258_3 0.657 0.303 5 0.649 0.354 C0017TS305_1 6 C0017TS308_1 0.644 0.354 7 Model C0017TS308 4 C0017TS258 0.629 0.341 Model C0017TS305 4 8 <u>C0017TS305</u> 0.615 0.318 0.318 9 <u>C0017TS308</u> 0.590 0.577 0.363 10 <u>C0017TS305</u> 11 <u>C0017TS308</u> 0.577 0.363 12 C0017TS258 0.554 0.319 13 <u>C0017TS258</u> 0.538 0.312 14 C0017TS308).481 0.360 15 <u>C0017TS305</u> 0.478 0.360 0.471 0.388 16 <u>C0017TS005</u>

Model Accuracy Estimates

Target: C0017 (SCGB_3A2) ~

							local sc	score ale:	(0.8; 1.0)	()	0.6; 0.8)	(0.4;	0.6)	(0.2;	0.4)	(0.0) 0	2)						
#	♦ Model		10	20	30	40	50	60	70	80	90	¢ProQ3		10	20	30	40	50	60	70	80	90	¢QAcons.
1	C0017TS305_4	-					-				-	0.685	-			-			-			_	0.372
2	<u>C0017TS308_4</u>											0.685											0.372
3	C0017TS258_1											0.658											0.342
4	C0017TS258_3											0.657											0.303
5	C0017TS305_1											0.649											0.354
6	C0017TS308 1				Madal	C0017TS	205 4					0.644					Madal	0017752	08 4				0.354
7	C0017T				Model	001/13	303_4					0.629					Model	.001/155	08_4				.341
8	<u>C0017T</u>											0.615											.318
9	C0017T											0.590											.318
10	<u>C0017T</u>											0.577											.363
11	<u>C0017T</u>				/)						0.577											.363
12	<u>C0017T</u>				· .	Q						0.554					-		0				.319
13	<u>C0017T</u>					\Box		5				0.538						s l	S				.312
14	<u>C0017T</u>			ļ	<u>`</u>	\sim		2				0.481						$\gamma \sim$.360
15	<u>C00171</u>						$ \rightarrow$	5				0.478					6	7	6				.360
16	<u>C001713</u>					31		/				0.471					05			>			.388
					0	L		$\overline{}$									«۲	Z	1 7				
					Y	° 7		\prec									5	4	\sim				
						. <											-)	>	\checkmark				
							> c	7									<u>ر</u>	\leq	ر				
						12	27	2										~					
					(5					
						6																	
						"	5																

Data Collection and Data Guided Prediction

Guy 5 min

CASP Commons Data-Assisted Prediction

- CASP Commons Protein Targets for
 - 80 180 residues
 - solicited from biomedical research community
 - no good templates; shallow sequence alignments
- 15 targets selected for sample production
 - Gene synthesis, expression, purification
 - Oligomer state by Analytical Gel Filtration with Static Light Scattering
 - ¹⁵N-HSQC spectrum
 - Proteins provided to LBL for SAXS
- Samples are then prepared with ¹³C,¹⁵N isotope-enrichment for NMR studies
- Data to be provided to predictors
 - Backbone resonance assignments
 - Backbone dihedral angles from Talos
 - Ambiguous contacts from ¹⁵N-edited NOESY (no RDC data).
- Reference structures will be completed by NMR and/or X-ray crystallography

http://www-nmr.cabm.rutgers.edu/bioinformatics/disorder/dismeta_results/ARC_Nterm-DXwc/ARC_Nterm-DXwc_predictResults.htm

Small Scale Expression and Solubility Screening

Yojiro Ishida

Genes synthesized and expressed with N-terminal His6-TEV-tag

			LB/17	°C/o/n	MJ9/1	7°C/o/n
			Т	S	Т	S
1	EIAV	10.46 / 4564.42	3	2	3	1
2	EIAVfl (precipitates)	10.24 / 7882.21	3	0	3	0
3	PRAP1	4.55 / 14,700	3	5	5	5
4	EMB1	5.76 / 9310.49	1	3	2	1
5	UW_engnr	5.12 / 9539.65	3	5	3	5
6	MotB (no expression	9.23 / 18217.19	2	0	4	0
7	BAE31734	9.00 / 4256.82	2	0	1	0
8	PinA (precipitate)	4.48 / 18816.14	2	0	5	5
9	BIRXLR3	6.67 / 13949.97	1	0	3	3
10	ARC_Nterm1-140	9.78 / 13778.94	2	0	4	0
11	PPE_Mtb some prec	4.35 / 17502.62	1	0	3	1
12	XAP5	8.18 / 19222.72	3	1	3	1
13	NP_062900	9.46 / 20356.63	1	0	3	0
14	Hbxfl some precipitat	8.58 / 16565.26	3	0	3	0
15	Hbx	8.63 / 11807.75	1	0	1	0
16	EFD57440 (Carlie)	5.82 / 11519.86	2	0	2	0

27

J Biomol NMR (2012) 52:303–313 DOI 10.1007/s10858-012-9610-0

ARTICLE

Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility

Hiroshi Kobayashi · G. V. T. Swapna · Kuen-Phon Wu · Yuliya Afinogenova · Kenith Conover · Binchen Mao · Gaetano T. Montelione · Masayori Inouye

Small Scale Expression and Solubility Screening

VAIIRA		LB/17 ⁴	°C/o/n	MJ9/1	7°C/o/n	17C/PST	solubility with PST	NMR samples	NMR quality	SAXS	
		Т	S	Т	S	Т	S	Yes or No	Good or ba	c comments	
1 EIAV	10.46 / 4564.42	3	2	3	1	5	5			sent	
2 EIAVfl (precipitates)	10.24 / 7882.21	3	0	3	0	5	5			sent	
3 PRAP1	4.55 / 14,700	3	5	5	5	n/a	n/a	Yes	done	yes	
4 EMB1	5.76 / 9310.49	1	3	2	1	5	5			yes	
5 UW_engnr	5.12 / 9539.65	3	5	3	5	n/a	n/a	Yes	done	yes	
6 MotB (no expression	9.23 / 18217.19	2	0	4	0	2	5	Yes	bad	need more	work
7 BAE31734	9.00 / 4256.82	2	0	1	0	5	5	Yes	good	sent	
8 PinA (precipitate)	4.48 / 18816.14	2	0	5	5	5	5	Yes		sent	
9 BIRXLR3	6.67 / 13949.97	1	0	3	3	5	5				
10 ARC_Nterm1-140	9.78 / 13778.94	2	0	4	0	0	0	N/A	N/A	N/A	
11 PPE_Mtb some prec	4.35 / 17502.62	1	0	3	1	5	5			sent	
12 XAP5	8.18 / 19222.72	3	1	3	1	5	5	Yes	good	sent	
13 NP_062900	9.46 / 20356.63	1	0	3	0	5	0			sent	
14 Hbxfl some precipita	8.58 / 16565.26	3	0	3	0	5	5				
15 Hbx	8.63 / 11807.75	1	0	1	0	5	2				
16 EFD57440 (Carlie)	5.82 / 11519.86	2	0	2	0	5	5			sent	

Current Status on Sample Production

Produced for ¹⁵N-NMR

- No Tag PRAP1, UW_eng
- His₆-tag MotB, BAE31734, PinA, XAP5
- S-tag EIAV, EIAV_fl, EMB1, MotB, BAE31734, PinA, BIRXLR3, PPE_Mtb, XAP5, Hbl_fl, HBX, EFD57440

Produced for SAX

No Tag

PRAP1, EMB1, UW_eng

With S- tag EIAV, EIAV_fl, EMB1, BAE31734, PinA, PPE_Mtb, XAP5, EFD57440

First CASP COMMONS Structure De novo Design by Citizen Scientists Brian Koepnick, et al., submitted

Gaohua Liu

1.0 Å rmsd between medoid conformer and design structure

SAXS in CASP COMMONS

Greg Hura 5 min

Coupling Synchrotron X-rays with Robotics SAXS Data is Collected in High Throughput

100 wells in 2 hours with 4 fold improvement expected this year

SIBYLS collects data for 100 groups per year (all would benefit from good predictions)

CASP Commons 4– Analysis 7/26/18

No HT-SAXS. Dmax hard to assign

	N.
L	-

Flexibly linked dimer

Sample: Commons 4						
Variable	Value	Error +/-	Units			
Rg	23.6	1	Angstroms			
Porod Exponent	2.0		Scale (2-4)			
Mass SAXS	18	5	kDa			
Max Dimension	73	3	Angstroms			
Radius of Cross Section	11.78	1	Angstroms			
Volume	100,000	5,000	Cubic Angstroms			
Real Space Rg	24.03	3	Angstroms			

MALMYPFHVAQPPLNWSEHLWVSEVSPAKESFITTICEHRQAQWDNQDLLRHLQDSVAILTREDQRH VNAVHAAANMPANP Mass 9.3kDa

Audience Discussion

Emily Tai, Greg Hura, John Tainer, John Moult, and Krzysztof Fidelis

How to Provide Data / Reports to the Nominators

- Predicted structures and reliability metrics
- Expression plasmids
- Atomic coordinates by NMR or X-ray Crystallography
- Consulting discussions

Plan for Future

- Is this a valuable activity for the CASP community?
- What is the incentive for a predictor? For a data provider?
- Can we require the nominating biologist to test the CASP models? How can we get feedback from the biologists?
- How to bring in new targets? Biological focus areas?
- Value of production and characterization of fusion proteins.
- How to obtain funding for these experimental activities?
- Consortium of commercial groups?

PRAP1 Nominator: Yang-Yen IMB Taiwan-China

No HT-SAXS. Large Variation in max dimension

Largely flexible

CASP Commons 3– Analysis 7/26/18

Sample: Commons 3						
Variable	Value	Error +/-	Units			
Rg	36.7	1	Angstroms			
Porod Exponent	1.7		Scale (2-4)			
Mass SAXS	23	5	kDa			
Max Dimension	113-143	3	Angstroms			
Radius of Cross Section	17.2	1	Angstroms			
Volume	160,000	5,000	Cubic Angstroms			
Real Space Rg	35.3	3	Angstroms			

GAAPAHQVPVKTKGKHVFPEQETEKVWDTRALEPLEKDNQLGPLLPEPKQKPAAAEEKRPDAMTWVETEDILSHLRSPLQGPELDLDSIDH PMSDDVQDEEVPQSRPILYRQVLQGPEEDLDHLAHSMEDS Mass 15kDa

EMB1 Nominator: Andy Golden NIH / NIDDK

No HT-SAXS. Dmax hard to assign

Flexibly linked dimer

Sample: Commons 4						
Variable	Value	Error +/-	Units			
Rg	23.6	1	Angstroms			
Porod Exponent	2.0		Scale (2-4)			
Mass SAXS	18	5	kDa			
Max Dimension	73	3	Angstroms			
Radius of Cross Section	11.78	1	Angstroms			
Volume	100,000	5,000	Cubic Angstroms			
Real Space Rg	24.03	3	Angstroms			

CASP Commons 4– Analysis 7/26/18

MALMYPFHVAQPPLNWSEHLWVSEVSPAKESFITTICEHRQAQWDNQDLLRHLQDSVAILTREDQRHVNAVHAAANMPANP Mass 9.3kDa

UW_engnr / foldit3 / CASP n1008 Nominator: Brian Koepnick, David Baker UW

No HT-SAXS.

CASP Commons 5- Analysis 7/26/18

Sample: Commons 5						
Variable	Value	Error +/-	Units			
Rg	14.8	1	Angstroms			
Porod Exponent	3.9		Scale (2-4)			
Mass SAXS	10	5	kDa			
Max Dimension	39-43	3	Angstroms			
Radius of Cross Section	11.8	1	Angstroms			
Volume	17,000	5,000	Cubic Angstroms			
Real Space Rg	13.7	3	Angstroms			

TDELLERLRQLFEELHERGTEIVVEVHINGERDEIRVRNISKEELKKLLERIREKIEREGSSEVEVNVHSGGQTWTFNEK Mass 9.5kDa