CASP 13

Chemical crosslink assisted modeling

Albert Einstein College of Medicine
Assessor: András Fiser
Department of Systems and Computational Biology
Department of Biochemistry

DeepMind claims early progress in AIbased predictive protein modelling

T0954 / 6CVZ

T0965 / 6D2V

T0955 / 5W9F

ion	Sport	Culture	Lifestyle	More

obal development Football Tech Business Environment Obituaries

Google's DeepMind predicts 3D shapes of proteins

AI program's understanding of proteins could usher in new era of medical progress

most viewed in US

David Attenborough: collapse of civilisation is on the
horizon

Skin in the game: is live artistic nudity more than titillation?

Trump absent again as
Kennedy Center Honors pay
tribute to Bush

Trump takes on General
Motors (guess who wins?)
Robert Reich

DeepMind Starts To Show How AI Can Be Used To Solve Scientific Problems

I cover artificial intelligence and Google DeepMind.

Deepmind's AlphaFold wins CASP13 proteinfolding competition

KYLE WIGGERS @KYLE_L_WIGGERS DECEMBER 3, 2018 7:20 AM

Background 1/4

Experimental workflow of a cross-linking experiment

The workflow resembles a conventional proteomics experiment, with some modifications

Sample preparation and cross-linking reaction

Sample work-up: enzymatic digestion, clean-up, enrichment/fractionation (optional)

LC-MS/MS analysis

Cross-linked peptides that need to be identified

Different products from a XL experiment

Data analysis using specialized software

Background 2/4

Cross-linking chemistries

Cross-linking of primary amines (Lys, N-terminus) using succinimide esters, e.g. DSS, BS ${ }^{3}$

- Most widely used chemistry in XL-MS
- Side-reactions with Ser/Thr/Tyr possible

Background 3/4

Cross-linking chemistries

Cross-linking of carboxyl groups (Asp, Glu, C-terminus) and of primary amines with carboxyl groups (without spacer)

- Combined reaction will yield two different reaction products
- Lower reaction yields, success depends more on target protein (complex)

Background 4/4

How to calculate actual distance restraints?

Practically, larger distances are observed, e.g. up to 30 Å and more (for proteins with known 3D structure)
Note that ZL cross-links bridge shorter distances, but by only approx. 5 Å!

Groups, targets, performance

- Targets: 29 domains/subunits + full complexes in total.
- 14 groups predicted between 3 and 27 targets out of 29
- Number of groups that provided models both with and without Xlink ranges: 3-6 per target

14 groups in total
 (but only 6 submitted more than 20 predictions)

\#	$\stackrel{\Delta}{\text { code }}_{\text {GR }}^{\text {col }}$	$\stackrel{\rightharpoonup}{\text { name }}_{\mathrm{GR}}^{\text {nR }}$	-Domains Count	$\stackrel{\text { SUM Zscore }}{\text { SU-2.0) }}$	$\psi_{(>-2.0)}^{\text {Rank SUM Zscore }}$	$\stackrel{\text { AVG Zscore }}{\text { AV-2.0) }}$	$\stackrel{\rightharpoonup}{*}_{\substack{\text { Rank AVG Zscore }}}^{(>-2.0)}$	$\stackrel{\rightharpoonup}{*}_{(>0.0)}^{\text {SUM Zscore }}$	$\underset{(>0.0)}{\text { Rank SUM Zscore }}$	$\stackrel{\text { AVG Zscore }}{(>0.0)}$	$\underset{(>0.0)}{\text { Rank AVG Zscore }}$
1.	105	-	27	10.0907	3	-0.3670	10	7.7168	5	0.2858	9
2.	208	-	26	31.1427	1	0.5055	8	13.5818	3	0.5224	8
3.	492	-	26	3.5963	4	-0.5540	11	0.9136	11	0.0351	11
4.	288	-	26	-1.2892	6	-0.7419	12	0.9080	12	0.0349	12
5.	196	-	23	25.7938	2	0.5997	7	15.2116	1	0.6614	6
6.	122	-	21	-9.6615	9	-0.8410	14	0.5377	13	0.0256	13
7.	000	-	12	1.5362	5	0.9614	3	13.7047	2	1.1421	1
8.	135	-	9	-6.9519	7	1.0053	2	9.0481	4	1.0053	3
9.	359	-	9	-8.5049	8	0.8328	4	7.4951	6	0.8328	4
10.	117	-	8	-16.9087	10	0.1364	9	2.1001	9	0.2625	10
11.	329	-	7	-25.6654	13	-0.8093	13	0.1439	14	0.0206	14
12.	207	-	5	-18.5062	11	1.0988	1	5.4938	7	1.0988	2
13.	364	-	5	-20.5567	12	0.6887	5	3.4433	8	0.6887	5
14.	271	-	3	-26.1149	14	0.6284	6	1.8851	10	0.6284	7

Single best 3D model vs single best assisted model for each single chain target within group of assisted predictors only. (Groups do not need to match!)

Do the Crosslink data make sense ?

- Check if Xlink data is valid (within $30 \AA$ on the surface of the solvent accessible area between two linked residue)
- Check if crosslink data is informative (connecting residues 50 or more positions apart)

Valid crosslinks (single chains)
 Distribution of crosslinks as a function of SASD between residues

Solvent Accessible Surface Distance (SASD)

Number of informative crosslinks in each group

Overall numbers of valid and informative crosslinks

Set	All crosslinks	Valid	Informative	Valid+Info	Valid+info/ informative
smallX	1184	859	471	277	58.8%
bigX	272	145	163	73	44.8%

Can confidence scores help to enrich valid crosslinks?

Crosslinks in BigX group

Usefulness of confidence scores for crosslinks in BigX group

Crosslinks in smallX group

Usefulness of Confidence scores for crosslinks in smallX group

Distribution of crosslinks in smallX group by confidence score

All

	All	Percent valid
All (80\% and up)	1184	39.00%
$>=90 \%$ confidence	901	42.81%
95% confidence	768	43.4%

Informative

	All	Percent valid
All $(80 \%$ and up)	471	58.8%
$>=90 \%$ confidence	336	67.0%
95% confidence	282	70.6%

All targets (single chains)

Targets with at least one valid+informative crosslink,

 (sorted by valid+inf/informative)| Target | All | Valid | Informative | Valid-Inf | valid-inf/ inform |
| :---: | :---: | :---: | :---: | :---: | :---: |
| x0957S1D1 | 73 | 66 | 6 | 2 | 33.3\% |
| X0999 | 97 | 42 | 80 | 30 | 37.5\% |
| X0999D3 | 8 | 3 | 5 | 2 | 40.0\% |
| X0999D2 | 10 | 5 | 7 | 3 | 42.9\% |
| X0987 | 66 | 28 | 37 | 16 | 43.2\% |
| X0985 | 37 | 21 | 19 | 9 | 47.4\% |
| X0985D1 | 38 | 22 | 19 | 9 | 47.4\% |
| X0987 | 539 | 362 | 248 | 140 | 56.5\% |
| X0981 | 25 | 15 | 14 | 8 | 57.1\% |
| X0999D1 | 12 | 10 | 5 | 3 | 60.0\% |
| x0975 | 272 | 192 | 144 | 90 | 62.5\% |
| x0975D1 | 272 | 192 | 144 | 90 | 62.5\% |
| x0957S1 | 144 | 116 | 41 | 26 | 63.4\% |
| x0987D1 | 147 | 108 | 29 | 20 | 69.0\% |
| X0975 | 19 | 14 | 10 | 7 | 70.0\% |
| X0975D1 | 19 | 14 | 10 | 7 | 70.0\% |
| X0987D1 | 15 | 9 | 4 | 3 | 75.0\% |
| x0968S1 | 68 | 50 | 20 | 16 | 80.0\% |
| x0968S1D1 | 68 | 50 | 20 | 16 | 80.0\% |
| x0987D2 | 246 | 193 | 96 | 77 | 80.2\% |
| X0987D2 | 20 | 12 | 6 | 6 | 100.0\% |
| X0999D4 | 5 | 4 | 2 | 2 | 100.0\% |
| X0968S1 | 9 | 8 | 1 | 1 | 100.0\% |
| X0968S1D1 | 9 | 8 | 1 | 1 | 100.0\% |
| x0968S2 | 76 | 69 | 5 | 5 | 100.0\% |
| x0968S2D1 | 76 | 69 | 5 | 5 | 100.0\% |
| X0957S1 | 7 | 7 | 2 | 2 | 100.0\% |
| X0957S1D1 | 2 | 2 | 2 | 2 | 100.0\% |

Single best 3D model vs single best assisted model for each target within group of assisted predictors only (Groups do not need to match!)

Among Assisted Groups:
relative improvements, all targets

Among ALL TS Groups:

best models vs best assisted models, all targets

Targets with valid and useful Xlinks

GDT_TS of TS model

Head-to-head comparison of GDT_TS changes for each group and each model (when available)

Red: all targets (44 data points)
Green: subset of targets with valid and informative Xlinks (27 data points)

Averages: 1.75 and 2.12 GDT_TS

Best Xlink assisted targets using Xlink from smallx or bigX source

Group performance

All targets

Targets with valid and informative Xlinks

Blue: Vertical performed better than horizontal Red: Vertical not significantly better than horizontal White: Not enough shared targets between groups Gray: Vertical and horizontal are the same group

Accuracy on complexes, a blowup

Accuracy (LDDT) of best TS model from assisted groups/all groups
Information about Xlinks added: \% valid or NO suitable crosslinks

Conclusions

- The largest exercise to date about assisted modeling
- Algorithmic challenge how to select and incorporate xlinks in modeling
- Confidence scores can help in enrichment but at the expense of losing a large number of correct xlinks
- Single chain Xlink assisted modeling shows anecdotal promise over all models
- Single chain Xlink assisted models have a trend to improve over unassisted models of the same group
- Modeling heterocomplexes is promising but very few data

Acknowledgement

CASP and Predictioncenter at UC Davies, Davies, USA:
Andriy Kryshtafovych
Bohdan Monastyrskyy
Krzysztof Fidelis
CASP organizers
Albert Einstein College of Medicine, New York, USA:
Rojan Shrestha
Eduardo Fajardo
Nelson Gil

Questions to presenters

- the generation of initial decoys
- the actual formalism to incorporate crosslinks
- the function to weigh in confidence values (if any)
- if you discriminated between short and long range crosslinks (in terms of sequence separation)
- if you were combining information from various types of assisted modeling data, e.g. SAXS and Xlinks, together.

