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Dec	2012:			Proposal	for	CASP11	
Contact	Assisted	Prediction

Contacts	could	be	sparse,	experimentally	accessible	distances:
- chemical	cross	links	(Mass	Spec)
- backbone	NH	– NH	and	or	ILV		

Me-Me	contacts	(<	6.5	Å,	2H	proteins)
- Paramagnetic	Relaxation	Enhancement	(PRE)	(15	– 30	Å)

Methods	will	be	developed	that	use	realistic	types	of	contacts	
that	can	potentially	be	obtained	on	larger	
(20	– 80	kDa)	proteins

CASP	project	will	drive	the	experimental	community	to	
generate	such	contact	data	and	to	collaborate	with	CASP	
methods	developers	on	specific	projects
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EC-NMR
EC-NMR
GDT:		0.61
RMSD	2.6	Å

ASDP
GDT:		0.49
RMSD:	3.6	Å

Some	CASP	11	‘Predictors’	did	better	
than	standard	ASDP	NMR	Methods

256	residues



The	idea	of	“more	
realistic	contacts	
based	on	what	can	be	
obtained	by	
experiments”	has	
been	superseded	by	
the	advances	since	
2012	in	contact	
prediction.

No	need	to	have	a	
CASP	category	for	how	
well	modelers	can	do	
with	“simulated	
contacts”.

5Bonvin et	al,	PROTEINS	2017



Vision:  Combine simple, rapidly obtained 
experimental data with advance modeling methods 

to provide accurate 3D structures of proteins
Nuclear	Magnetic	

Resonance	(NMR)	Data
Small	Angle	X-ray	Scattering	

(SAXS)	or	SANS

Cross-link	or	FRET	Data Low	Resolution	cryoEM



48	constraints	for	84	residues
HN-HN,	HN-Me,	Me-Me

The	Sparse	Data	Problem

Contact	Map



Sparse	Experimental	Data	Assisted	
Prediction	in	CASP13

How	can	we	combine	sparse	experimental	data	with	
advanced	modeling	methods	for	determining	accurate	
structures	of	proteins	and	their	complexes?

Does	the	experimental	data	improve	the	accuracy	of	the	
predicted	model?

Do	predictors	using	sparse	data	provide	higher	accuracy	
models	than	the	best non-data-assisted	predictors?

How	is	the	ranking	of	data-assisted	predictors	affected	if	we	
assess	against	data	rather	than	reference	structure?

How	can	we	model	distributions	of	conformations?
8
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Protein	Dynamics

Protein	Structures	Sample	a	
Conformational	Landscape
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NMR	Reveals	Two	Non-Overlapping	Inhibitor	Binding	
Sites	in	DENV2-NS2B-NS3pro	Protease	Complex	
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Sparse	Experimental	Data	Assisted	
Prediction	in	CASP13

NMR:		J.	Duarte,	J.	Y.	Huang,	A.	Rosato,	D.	Snyder,	
G.T.	Montelione,	H.	Valafar

Simulated	Sparse	NMR	data	for	11	CASP	FM	Targets
and	two	real	NMR	data	sets

SAXS	and	SANS:	J.	Duarte,	G.	Hura,	J.	Tainer,	S.	Tsutakawa
Real	SAXS	data	for	11		CASP	FM	Targets

Chemical	Cross–Link	(X-link):	J.	Duarte,	A.	Fiser,	A.	Leitner,	J.	Rappsilber
Real	X-LInk Data	for	29	domains/subunits/full	complexes	

Fluorescence	Resonance	Energy	Transfer	(FRET):	C.	Seidel
Real	FRET	data	for	a	multidomain protein
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Guided	Prediction	with	Sparse	NMR	Data

Gaetano	T.	Montelione,	Natalia	Denissova,	Janet	Y.	Huang,	
Yojiro Ishida,	Gaohua Liu,	Roberto	Tejero,	G.V.T.	Swapna ,	

Rutgers	University,	New	Jersey,	USA

Antonio	Rosato,	Davide Sala
CERM,	University	of	Florence,	ITALY

Homay Valafar
University	of	South	Carolina

David	Snyder
William	Patterson	University,	New	Jersey,	USA



NMR-Guided	Prediction

13	CASP	Targets
17	Assessment	Units
12	Simulated	NMR	Data	Sets	(FM	Targets)
2	Real	NMR	Data	Sets	(Designed	Protein)
6	Predictors
3	“Baseline”	Groups
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2D NOESY Spectrum of a Protein





In	NOESY

For	a	given	cross	peak,	
the	Y-axis	will,	in	general,	
match,	within	a	“match	
tolerance”,	to	Y	possible	
resonances	assignments.

The	X-axis	will,	in	general,	
match,	within	a	“match	
tolerance”,	to	X	possible	
resonance	assignments.

Hence	– the	NOESY	cross	
peak	may	arise	from	any	
one	(or	more)	of	X	*	Y	
short	(<	5	Å)	distance	
interactions

The	Ambiguity	Problem	in	Analysis	in	Cross	Peak	Assignment



R1 R2 P# UPL Confid A1 A2
79 77 17 5.0 0.95 H H

79 177 20 6.0 0.67 H HD2
79 135 20 6.0 0.97 H HD1
79 249 20 6.0 0.96 H HD1
79 50 20 6.0 0.81 H HD2

79 217 23 5.0 0.68 H H
79 230 23 5.0 0.75 H H
79 232 23 5.0 0.72 H H
79 106 23 5.0 0.76 H H
79 166 23 5.0 0.83 H H
79 100 23 5.0 0.83 H H
79 82 23 5.0 0.74 H H
79 246 23 5.0 0.71 H H
79 216 23 5.0 0.67 H H

45					 37					 28				 7.5					 0.84				 HD2					 HG1

Ambiguous	NOE-based	Contact	List	
(HN-HN,	HN-Me,	Me-Me	1H-1H	Contacts)	

Residue	1			Residue	2			Peak	No.			Upper-bound													Atom	1			Atom	2

Peak	17

Peak	20

Peak	23

Peak	28



simulated	
chemical	Shifts		

simulated	
NOESY	peaks	

ASDP Cycle 0

Ambiguous	Restraint	Table

Reduce

SHIFTX2

X-ray	structure	coordinates

coordinates	with	protons



Residual	Dipolar	Couplings	–
Measured	in	Orienting	Media

Alignment	of	a	protein	in	an	orienting	
solution	(the	molecules	of	the	orienting	
medium	are	depicted	as	green	rods).

The	rods	align	with	the	magnetic	field	
due	to	their	large	magnetic	anisotropy;	
the	protein	interacts	weakly	with	the	
rods,	yielding	a	partial	alignment	of	the	
protein	molecules.	

This	allows	the	measurement	of	residual	
dipolar	couplings	for	bond	vectors,	e.g.	
the	1H-15N	moieties.

N.	Tjandra and	A.	Bax,	Science 278,	1111		(1997).



Residual	Dipolar	Couplings
Provide	Information	about	Bond	Vector	Orientations

25

Prestegard,	A-Hashimi &	Tolman,	Quart.	
Reviews	Biophys.	33,	371-424	(2000)

Bax,	Kontaxis &	Tjandra,	 Methods	in	
Enzymology 339 ,	127-174	(2001)

Prestegard,	Bougault &	Kishore,	
Chemical	 Reviews,	 104 ,	3519-3540	
(2004)



Residual	Dipolar	Couplings	–
Measured	in	Orienting	Media
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If one is measuring couplings for	different atom pairs
(P,Q),	it is useful to	apply a	normalization:

RDC’s are	global	restraints



Backbone	Dihedral	Restraints
Can	be	Estimated	from	

Backbone	Chemical	Shift	Values

13Ca /	13Cb chemical	shifts						à backbone	
dihedral	
ranges		
(	+/- 30	deg)

27

https://spin.niddk.nih.gov/bax/software/TALOS-N/

Y.	Shen,	A.	Bax.			Protein	backbone	and	sidechain	torsion	angles	predicted	from	
NMR	chemical	shifts	using	artificial	neural	networks.	 J.	Biomol.	NMR,	56,	227-
241(2013)
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Assume	13C,15N-enriched	perdeuterated samples,	with	ILV	
13CH3 methyl	resonances.

NOESY	peak	frequencies	were	“wiggled”	to	simulate	inaccuracies	in	
peak	picking	due	to	broad	line	widths.

NOESY	Peaks	or	Resonance	Assignments	were	deleted	to	account	for	
line	broadening	due	to	internal	motions	and/or	incomplete	
assignments.	

Random	“noise”	peaks	were	added	to	the	NOESY	Peak	Lists.

Backbone	dihedral	angle	phi	and	psi	restraints	(chosen	randomly	
within	+/- 30	deg,	with	uncertainty	+/- 30	deg)	were	provided.		These	
would	normally	be	available	from	the	backbone	chemical	shift	data.

15N-1H	RDC	data	was	provided	for	2	alignments,	assuming	typical	
precisions.

Features	of	Simulated	Sparse	NMR	Data
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Candidates Removed
Did	not	generate	peaks

Removed	from
Assignment list

Blue	residues	are	a	source	of	
error:	their	peaks	cannot	be	

satisfied

T0968s1



Candidates Removed
Did	not	generate	peaks

Removed	from
Assignment list

Blue	residues	are	a	source	of	
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T0968s1

T0968s2

T1005

T0980



0.0
5.0

10.0
15.0
20.0
25.0

N
10

08
n1

00
8-
D1

N
10

05
N
09

80
s1

N
09

89

N
09

81
-D
1 

N
09

81
-D
2 

N
09

81
-D
3 

N
09

81
-D
4 

N
09

81
-D
5 

N
09

68
s2

N
09

68
s1

N
09

57
s1

N
09

80
s1
s2Pe
rc
en

ta
ge
	o
f	a

ll	
pe

ak
s

Statistics	on	NOESY	Datasets

Removed	peaks

Unassignable	peaks

We	are	providing	on	average	6	peaks/residue.		High	ambiguity.

About 40	peaks/residue	would be	typical for	NMR	structures.

In	the	complete	real n1008	dataset	there	are	43	peaks/residue.
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Real	NOESY	Data

De	novo	protein	design	by	citizen	scientists
Koepnick,	Liu	et	al.	submitted

N1008
CASP	COMMONS	Target		UW-Eng
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Real	NMR	Data:		Targets	N1008	and	n1008
CASP	Commons	Target:		UW-eng (aka	CASP5)

80	Residues,		No	deuteration,		No	RDCs,	No	ECs

15N,13C-enriched	sample	was	produced	at	Rutgers.		Data	collection	included	TR-NMR	for	
assignments,	and	sim(CN)-NOESY.			Data	collected	at	~	200	micromolar concentration,	at	
600	MHz	and	800	MHz. Talos_N used	to	generate	dihedral	restraints	in	secondary	
structure	elements.

Reference	NMR	structure	was	determined	with	automated	methods	using	Cyana,	and	
refined	by	manual	interactive	analysis	of	NOESY	spectra.		The	resulting	structures	were	
then	energy	refined	with	CNS	in	explicit	water.				Final	DP	score	– 0.78		(OK	structure)

N1008:			Using	only	backbone	assignments,	NOESY	peak	list	was	assigned,	and	used	to	
generate	ambiguous	contact	contact	list	for	CASP	predictors.
- This	is	the	strategy	we	would	use	for	larger	(>	15	kDa)		2H-enriched	proteins
- However,	since	the	sidechain	NOESY	peaks	are	still	present	in	the	NOESY	spectrum,	this	

data	set	has	a	very	high	number	of	unassignable	/	incorrectly	assigned	NOESY	peaks,	and	
is	very	challenging	for	automated	structure	determination.

n1008:		Using	complete	backbone	and	sidechain	assignments,	NOESY	peak	list	was	
assigned,	and	used	to	generate	ambiguous	contact	list	for	CASP	predictors.
- This	is	a	standard	strategy	for	small	(<	15	kDa)	proteins.
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Contact	Predictions
Provided	from	the	CASP13	Submissions	for	

Jones	– Meta	PSI	COV

Target Meff /	L
N0957s1: 3.3
N0989:	 1-130:	107;	120-185:	16.0;	185-246:	612
N0968s1: 15.9
N0968s2 : 3.3
N0980s1	(74	/	111	residues): 2.9
N1005	(residues	72-340): 56.4

The	remaining	targets	had	Meff/L	<	~	1



Target Data #	residues Assessment	units

N0957
simNMR,	dihedrals,	2x	rdc’s 163 N0967-D1.D2

N0957-D1
N0957-D2

N0968s1 simNMR,	dihedrals,	2x	rdc’s 123 N0968s1

N0968s2 simNMR,	dihedrals,	2x	rdc’s 116 N0968s2

N0980s1 simNMR,	dihedrals,	2x	rdc’s 105 N0980s1

N0981-D1 simNMR,	dihedrals,	2x	rdc’s 86 N0981-D1

N0981-D2 simNMR,	dihedrals,	2x	rdc’s 80 N0981-D2

N0981-D3 simNMR,	dihedrals,	2x	rdc’s 203 N0981-D3

N0981-D4 simNMR,	dihedrals,	2x	rdc’s 111 N0981-D4

N0981-D5 simNMR,	dihedrals,	2x	rdc’s 127 N0981-D5

N0989
simNMR,	dihedrals,	2x	rdc’s 134 N0989-D1.D2

N0989-D1
N0989-D2

N1005 simNMR,	dihedrals,	2x	rdc’s 326 N1005

N1008 Limited	exp.	NMR, dihedrals 80 N1008

n1008 Full	exp.	NMR,	dihedrals 80 n1008

Assessment	Units



Correlation	Coefficients	for	Z-Scores

Correlation	between	LDDT	and	RPF

(upper	right:	Pearson;	lower	left:	Spearman)

Pearson 0.974
Spearman 0.977

Correlations	Between	Assessment	Scores

Friedman’s Test indicates different 
scoring techniques do not give 
significantly different rankings

GDT_HA GDT_SC RPF SphGrdr CAD_AA MolPrbty
GDT_HA 0.959 0.923 0.907 0.929 0.518
GDT_SC 0.952 0.902 0.891 0.937 0.521
RPF 0.918 0.902 0.952 0.969 0.557
SphGrdr 0.901 0.895 0.947 0.927 0.555
CAD_AA 0.915 0.932 0.966 0.920 0.588
MolPrbty 0.546 0.554 0.573 0.562 0.610

D.	A.	Snyder



Baseline	Models
Structures	Generated	by	Janet	Huang	(blind)	with
ASDP	/	CYANA	->	Restrained	Rosetta	Refinement

Group	321
Sparse	NMR	Data,	RDCs,	no	ECs

Group	459
Sparse	NMR	Data,	RDCs,	Meta	PSI	COV	(Jones)	ECs	

Group	313		
Sparse	NMR	Data,	RDCs,	“Best”	ECs	

Best	ECs	(Jones,	Sanders,	or	none):	Picked	best	5	from	15	calculated	
based	on	DP	score.

Generally	expect	313_J	>	459_J	>	321_J

40

Janet	Huang



Baseline	Models
Structures	Generated	by	Janet	Huang	(blind)	with
ASDP	/	CYANA	->	Restrained	Rosetta	Refinement

Generally  expect:      313_J  >  459_J  >  321_J

GDT_TS   313_J  > 459_J  >  321_J       all very similar raw and Z scores

GDT-HA    313_J  >  321_J >  459_J

GDT_ALL  459_J  > 313_J  >  321_J

GDT_SC   459_J  >  313_J  > 321_J

SphereGrinder 459_J  > 321_J  > 313_J

RPF         459_J  > 321_J  > 313_J

MolProbity 321_J  >  313_J > > >  459_J      

41



Initial	Z-Score	Based	Ranking
(Z	=	-2	Cutoff)

431	>	250	>	(313_	>	459_J	>	321_J)		>	492	>	208	>	288	>	122

42

Z	Score	Based	Ranking	- GDT-TS	Score	alone



Initial	Z-Score	Based	Ranking
(Z	=	-2	Cutoff)

43

GDT_TS	Z_Scores
431	>	250	>	(313_J	>	459_J	>	321_J)	>	492	>	208	>	288	>	122

GDT_HA	Z_Scores
431	>	250	>	(313_J	>	321_J	>	459_J)	>	492	>	208	>	288	>	122

GDT_All Z	Scores		
431	>	250	>	(459_J	>	313_J	>	321_J)	>	492	>	208	>	288	>	122

GDT_SC	Z	Scores	
431	>	250	>	(459_J	>	313_J	>	321_J)	>	208	>	492	>	288	>	122

Sphere	Grinder	Z	Scores	
431	>	250	>	(459_J	>	321_J	>	313_J)	>	492	>	288	>	208	>	122

RPF	Z	Scores	
431	>	250	>	(459_J	>	321_J	>	313_J)	>	492	>	288	>	208	>	122

Molprobity Z	Scores	
250	>	431	>	(321_J	>	313_J)	>	492	>	288	> 459_J >	208	>	122

- note	that	459_J	drops	in	ranking	– why	is	this?
- 250	and	431	switch	order;	250	does	a	better	job	in	regularizing	the	structures?
- the	assessment	of	method	250	is	greatly	enhanced	by	including	MolProbity score

- Conclusion:			Get	pretty	much	the	same	ranking	regardless	of	the	
score	used.



PCA Results: Thresholding at Z = -1
Component GDT_HA GDT_SC RPF SphGrdr CAD_AA MolPrbty %	Variance	

Explained
1 0.442 0.449 0.425 0.428 0.433 0.227 86.702
2 -0.146 -0.188 -0.067 -0.056 -0.040 0.966 8.351
3 -0.388 -0.562 0.389 0.608 0.050 -0.104 2.511
4 -0.371 -0.034 0.373 -0.567 0.632 -0.044 1.331
5 0.655 -0.548 0.380 -0.319 -0.156 -0.007 0.800
6 0.256 -0.383 -0.616 0.145 0.621 -0.044 0.306

D.	A.	Snyder
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GDT-like:		Z-Score	Based	Ranking
(Z	=	0 Threshold,	Model	1)

431	>	250	>	Baseline
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Z-Score	Based	Ranking
(Z	=	0 Threshold,	Best	Model)

431	>	250	>	Baseline
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Real Sparse NMR Data

Target N1008 – real NMR data 
(bb assignments only)

Note that no EC contact predictions or RDCs were available, as this is a 
FoldIt designed protein from the David Baker group (Crowd source).

Interestingly -- for real data (bb only) the GDT-TS performance order is:
Group 250 > Group 208 > Group 431 > Janet 313 

Group 208 did relatively better with this real NMR data set than with most simulated data, and 
Group 431 did relatively less well that they did for other targets.

GDT gain over 313_J:   431: 15 pts 208: 20 pts      250:  22 pts

G.V.T.		Swapna



Target	N1008	- real	data;	bb	only

ASDP	no	EC
52.92

208-KIAS
73.05

250-Meilerlab
75.00

288-UNRES
40.26

431-Laufer
68.18

492-wfBakerUNRES
40.58

Best	Regular	
Prediction	– SHORTLE

91.23
PDB 122-Forbidden

42.86
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Real NMR Data

Target N1008 – real NMR data (bb only)
The "top 1" target of Groups 250 and 208 are significantly better than baseline 
(Group 313_J), but the variability across their submissions is high - they do a good 
job of selecting their best model of the 5 submitted.
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Real NMR Data

Target n1008 – real NMR data (bb + sc assignments)
Note that no EC contact predictions or RDCs were available, as this is a 
FoldIt designed protein from the David Baker group (Crowd source).

For real data (bb + sc assignments) the GDT-TS performance order is:
Janet 313_J > Group 431 > Group 288 > Group 122 etc

Groups 208 and 250 did not submit .

GDT gain by Janet:   431: 22 pts 288: 41 pts      122:  43 pts    492:   55 pts



Target	n1008	– Real	Data;		bb	+	sc

ASDP	no	EC
82.79

288-UNRES
41.56

431-Laufer
57.47

492-wfBakerUNRES
27.27

Best	Regular	
Prediction	– SHORTLE

91.23

PDB 122-Forbidden
40.26

208-KIAS
??

250-Meilerlab
62.11
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Overall	Performance
Per	Target	Per	Group

GDT	Scores,	First	Model



Could	predictors	use	sparse	NMR	data	
to	improve	the	accuracy	of	their	

models.
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Regular	vs	NMR	Assisted
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Do	predictors	using	sparse	NMR	data	
have	higher	accuracy	than	the	best

non-data-assisted	predictors
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Regular	vs	NMR	Assisted
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In	many	cases	the	best	“regular”	prediction	for	a	target	was	
more	accurate	than	the	best	“data	assisted”	prediction.

GDT-TS	scores



How	is	the	ranking	of	NMR-Assisted	
predictors	affected	if	we	assess	against	
data	rather	than	reference	structure?

NOESY	data
RDC	data
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Huang,	Y	J ;	Powers,	R	;	Montelione,	G	T J.	Amer.	Chem.	Soc. 2005,	127:	1665.	
Huang,	Y	J ;	Rosato,	A	;	Singh,	G	;	Montelione,	G	T Nucleic Acids Research 2012,	40:542
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DP	Score	:		Z-Score	Based	Ranking
(Z	=	0 Threshold,	Model	1)

321_J	>	431	>	459_J	>	313_J

Same	ranking	using	Best	Model

Group	431	also	does	very	
well	with	DP	score!
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Janet	>	250	>	431

Same	ranking	using	
Best	Model

Groups	250	and	431	do	well	on	RDC	
scoring	- probably	used	RDC	data.

RDC1:	Z-Score	Based	Ranking
(Z	=	0	Threshold,	Model	1)
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RDC1:	Z-Score	Based	Ranking
(Z	=	0 Threshold,	Model	1)

Janet	>	250	>	431

Same	ranking	
using	Best	Model

Group 250	does	well		-
probably	used	RDC	data.
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Sidechain Rotamer comparisons between 
predicted and reference structures. 

Rotamer states for residues with both buried and converged side 
chains were compared between the predicted models and the 
corresponding reference structure.  

The c1 and c2 rotamers for all residues in each reference structure 
were assigned to the nearest g+, t, or g− conformational state. 

Side chains with solvent accessible surface area less than 40 Å2 in 
the reference structure (calculated using the program Molmol) were 
considered as buried side chains. 

For NMR-derived reference structures, the medoid conformer of the 
ensemble was selected as the representative structure.  
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Chi-1	and	Chi-2	Rotamer Agreement

PDBStat
Roberto	Tejero
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Why	did	data-guided	groups	431	and	
250	provide	more	accurate	structures	

than	Janet	baseline.		

Was	this	difference	largely	due	to	
regions	with	missing?	



70

Target	N0968s1

There	is	some	tendency	to	have	higher	local	rmsd
for	ASDP	method	in	regions	where	data	is	missing,	
which	can	be	overcome	to	some	extent	by	
prediction	methods.

Local	Backbone	RMSD	vs	Sequence

Group	313	– ASDP	Baseline



Future	CASP	Challenges

Ongoing	process	of	generating	CASP	Commons	
Targets,	Data	(NMR,	SAXS,	X-Link,	FRET),	and	
Structure

Modeling	Multiple	Conformational	States

Modeling	Using	Unassigned	NOESY	spectra

Modeling	Using	Unassigned	RDC	data

Combining	SAXS,	NMR,	X-Link,	FRET,	CryoEM with	
advance	modeling	/	prediction	methods.
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