Assessment of FM and FM/TBM modeling in CASP13

Luciano A. Abriata and Matteo Dal Peraro

Laboratory for Biomolecular Modeling – LBM Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne - EPFL

Acknowledgements

- CASP13 (and CASP12) organizers
 - Andriy, John, Torsten, Krzysztof, Maya and Anna!
 - Prediction Center
 - Previous assessors and all predictors

- Great and constructive experience
- Exciting to witness 2 consecutive huge transformations in protein structure prediction

CASP13 tertiary structure track: 32 FM & 13 FM/TBM (+ 4 FM-special)

Details on classification by Lisa Kinch & Andriy Kryshtafovych

Chin-Hsien Tai, Hongjun Bai, Todd J. Taylor, and Byungkook Lee* Proteins 2013

CASP12-like web app: facilitates assessment, and is easily opened to the public

http://lucianoabriata.altervista.org/papersdata/casp12fmassessment/casp12-fm-fmtbm-assessment-3Aclusters.html

▼#// Select a target: T0960-D2 (FM) H/S (32.92) Range: 43-126

In these plots correlating different metrics to GDTTS, each dot represents a set of models clustered at 3A RMSD. Click on dots to see a representative model in 3D and compare it to the target.

Table summarizing top models

Rank by GDTTS Metric Representative Model GDTTS (hover to see all) 58.63 GDTTS T0960TS322 1-D2 (1) ... 1 56.84 GDTTS T0960TS457 4-D2 ... T0960TS055 5-D2 ... 56.55 GDTTS GDTTS T0960TS366 5-D2 (1) ... 52.68 52.08 GDTTS T0960TS086 3-D2 ... 51.49 QCS T0960TS322 3-D2 ... QCS T0960TS324 1-D2 (1) ... 51.19 43.75 QCS T0960TS145 3-D2 ... 19 48.81 DFM T0960TS261 2-D2 ... CoDM T0960TS322 3-D2 ... 51.49 85 28.27 CoDM T0960TS068 5-D2 (1) ... 13 46.13 CoDM T0960TS192 2-D2 (1) ... 14 46.13 Handed T0960TS322 5-D2 ...

⁽¹⁾ Contains at least one model submitted as #1

Pymol script to compare filtered models to target [Download script]

Run from PyMOL's File menu or by lanching PyMOL with: pymol nameofscript.pml

load T0960-D2.pdb select T0960-D2 spectrum selection=sele

load T0960T5322 1-D2 select T0960TS322_1-D2 spectrum selection=sele align T0960TS322 1-D2,T0960-D2

load T0960TS457 4-D2 select T0960TS457 4-D2 spectrum selection=sele align T0960TS457 4-D2, T0960-D2

load T0960T5055 5-D2 select T0960TS055_5-D2 spectrum selection=sele align T0960TS055 5-D2,T0960-D2

load T0960TS366_5-D2

JSmol

Interactive 3D visualization of Target synchronized to model Interactive 3D visualization of Model synchronized to target

NEW: more scores, show servers in distinct color, and built auxiliary web apps also for models clustered at 1 Å and for analysis with no splitting

Part 1: EU-specific evaluations

Extended Information

Examples of correlation plots

 \rightarrow GDTTS & QCS turn out to be the two most informative scores, in our experience

* For QCS see Cong et al Bioinformatics 2011

Examples of correlation plots

GDTTS & QCS indeed grouped separately in analysis by Olechnovic et al. *Bioinformatics* 2018

Importance of guiding visual assessment by multiple scores

GDTTS

GDTTS

GDTTS

Several very hard targets with folds captured

T0990-D3 (FM)

HHscore 2.76 LGA 23.8 Neff/L HHblits 0.2

T1010-D1 (FM)

HHscore 0.69

LGA 39.5

Neff/L HHblits 0.07

Only two very difficult EUs with no best model

All scores low; here model of highest GDTTS looks reasonable but is missing the last strand which is separated in sequence. And models that are complete are too bad...

HHscore 14 LGA 63.8 Neff/L HHblits 0.07

Long extended N-terminus and C-terminal beta hairpin, none is well positioned; but the central beta sheet is quite good in some models.

HHscore 4.9 LGA 55.1 Neff/L HHblits 0.01

Impact of progress in CASP13:

Examples of "FM-special" targets for which full models were very good

Example: T0953s2 (D1: FM/TBM, D2 & D3: FM)

Example: T1000 (D1: TBM not eval., D2:FM)

Notable progress in CASP13:

12 hard EUs that reached near atomistic resolution by many groups

T0968s2-D1 (FM)

TS043_1-D1 (12 models)

2.33 Å over full sequence (115 residues)

HHscore 19 LGA 50 Neff/L HHblits 1.23

GDTTS 80 & QCS 90

T0970-D1 (FM/TBM)

TS043_2-D1 (5 models plus 4 from TS347)

2.78 Å over 89% of sequence (total 96 residues)

HHscore 17 LGA 67 Neff/L HHblits 1.61

T1008-D1
(FM/TBM)NMR/MDTS281_1-D1
(126 models)Image: Comparison of the sequence (77
residues)1.14 Å over full
sequence (77
residues)Image: Comparison of the sequence (77
residues)HHscore 61
LGA 74
Neff/L HHblits 0.01
GDTTS 91
QCS 95Image: Comparison of the sequence (77
residues)HHscore 61
LGA 74
Neff/L HHblits 0.01
GDTTS 91
QCS 95Image: Comparison of the sequence (77
residues)HHscore 61
LGA 74
Neff/L HHblits 0.01
GDTTS 91
QCS 95Image: Comparison of the sequence (77
residues)HHscore 61
LGA 74
Neff/L HHblits 0.01
GDTTS 91
QCS 95Image: Comparison of the sequence (77
residues)HHscore 61
LGA 74
Neff/L HHblits 0.01
GDTTS 91
QCS 95Image: Comparison of the sequence (77
residues)HHscore 61
LGA 74
Neff/L HHblits 0.01
GDTTS 91
QCS 95Image: Comparison of the sequence (77
residues)HHscore 61
LGA 74
Neff/L HHblits 0.01
GDTTS 91
QCS 95Image: Comparison of the sequence (77
residues)

Part 2: Rankings

Ranking based on Z-scores of GDTTS & QCS

Ranking = sum Z-scores combined from GDTTS & QCS (as these are by far the two most informative scores to guide visual assessment) on all models submitted as #1, for TBM/FM, FM and FM_sp target EUs, and considering sum of Z-score > -2.

Ranking is very robust: scores with GDTTS only or QCS only return the same top groups.

Part 2: Ranking

Notable highlights: groups not in top 5 who provided the only best models for some targets (upon visual evaluation)

- **ZHOU-SPOT for T0998-D1:** alone & quite better than runners-up
- Jones-UCL for T1010-D1: alone & quite better than runners-up
- RaptorX-DeepModeller for T0949
- KIAS-Gdansk for T0957s1-D1
- BAKER for T0975-D1
- Venclovas for T0991-D1

Part 3: Progress

Progress in Free Modeling (FM/TBM not considered)

Notes:

- Exact definition of FM EUs might vary from year to year
- CASP12 and CASP13 EUs of roughly of similar difficulty

Global analyses 2 - Progress

CASP13

Possible sources of improvement:

alignment depth, existing templates, domain size?

Possible sources of improvement: alignment depth, existing templates, domain size?

- From CASP12 to CASP13 significant improvement in performance
- Do some predictors have access to special, close metagenomics databases ?

Key conclusions from CASP13 on the tertiary structure prediction track

- Yet another significant improvement in prediction quality, mainly due to the rise of machine learning methods combined with coevolution-based contact prediction
- Reaching nearly atomistic resolution of the backbone for some very difficult EUs (< 150 residues) by many groups!
- Predictions are so good that **splitting EUs** is in some cases not necessary
- Alignment depth allows for better top models than in CASP12, but now seem to need lower numbers of sequences
- Templates of poor sequence similarity might be better identified than in CASP12
- Remaining limitations: domain size and alignment depth