Assessment of EMA (Evaluation of Model Accuracy) in CASP13

Minkyung Baek, Jonghun Won, and Chaok Seok Department of Chemistry, Seoul National University

Bohdan Monastyrskyy and Andriy Kryshtafovych Genome Center, University of California, Davis

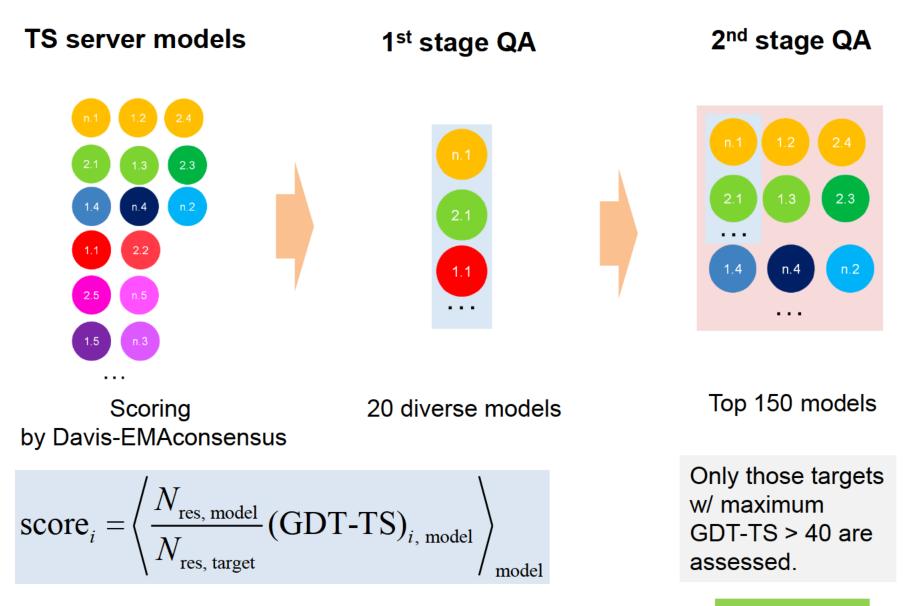
John Moult, Krzysztof Fidelis, Torsten Schwede

QA (Quality Assessment) of 3D models generated by TS servers

For a given TS target



175~185 server models per target

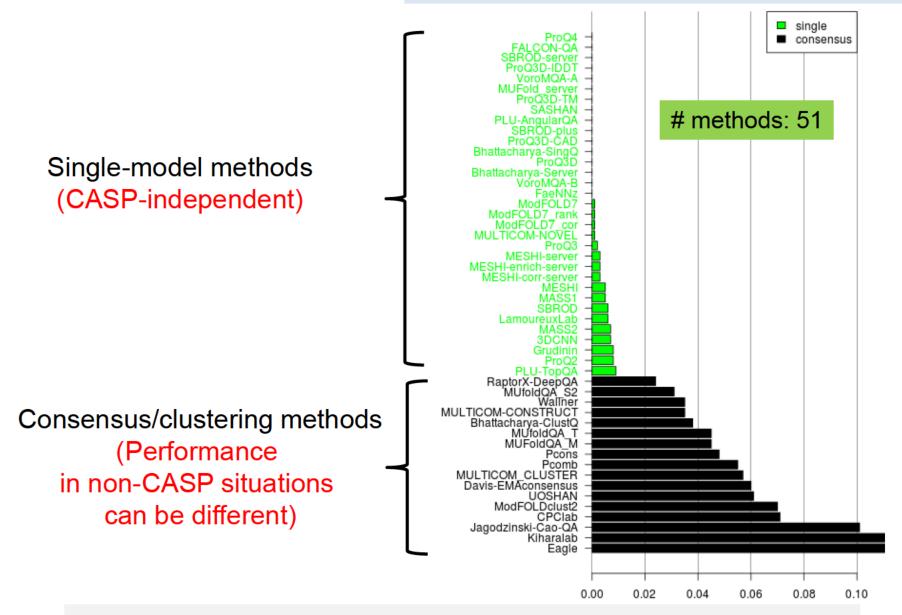


targets: 65

1 st stage QA	20 models						
	1	2	3				
QA group.1	s1.1.1	s1.1.2	s1.1.3				
QA group.2	s1.2.1	s1.2.2	s1.2.3				
QA group.m	s1.m.1	s1.m.2	s1.m.3				

2 nd stage QA							
-	150 models						
	1	2	3	4	5		
QA group.1	s2.1.1	s2.1.2	s2.1.3	s2.1.4	s2.1.5		
QA group.2	s2.2.1	s2.2.2	s2.2.3	s2.2.4	s2.2.5		
QA group.m	s2.m.1	s2.m.2	s2.m.3	s2.m.4	s2.m.5		

Difference between stage 1 and stage 2



We did not classify quasi-single-model methods as a separate category.

Global QA and Local QA

Scores for global structure accuracy

Single score (0~1) for each of the given server models (e.g. estimated GDT-TS/LDDT)

Scores for local structure accuracy

Single score (Å) for each residue of each model (estimated Å deviation upon superposition)

Only 27 out of 51 groups submitted local QA scores.

How can QA contribute to the community?

Scoring models after structure prediction

Global QA to select final models Local QA to identify inaccurately/accurately modeled regions (with biomedical applications in mind)

Scoring models for better structure prediction

Global QA to guide conformational sampling during iterative search Local QA to detect inaccurately modeled regions to improve (e.g. by refinement)

Ranking global QA results (1/2)

Structure quality of top 1 model by QA

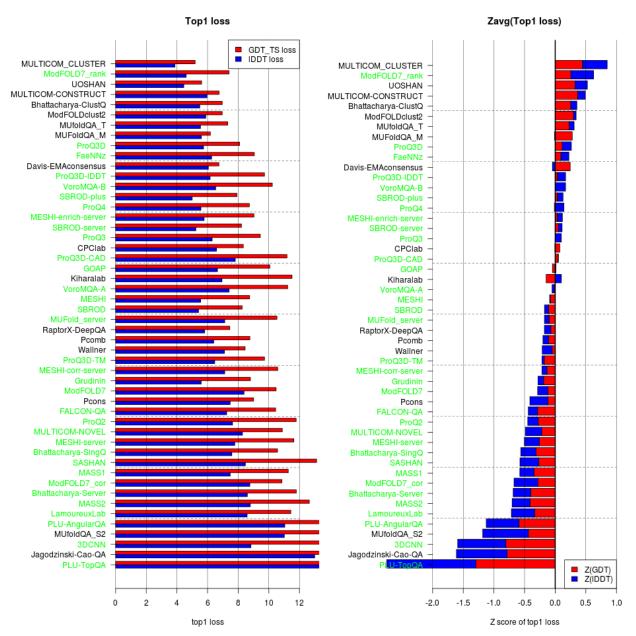
(Assessment for top 5 models resulted in very similar ranking.)

GDT-TS loss = |(GDT-TS of top 1 model) – (best GDT-TS)| LDDT loss = |(LDDT of top 1 model) – (best LDDT)|

Global QA ranking by sum of Z-scores for GDT-TS and LDDT

Z-score calculated by the standard CASP procedure with minimum z-score of -2. Penalty of -2 for un-submitted targets.

Global QA results (1/2): Ranking in Top1 loss



Best consensus methods: - MULTICOM_CLUSTER

Best single-model methods:

- ModFOLD7_rank
- ProQ3D, FaeNNz

- GDT-TS & LDDT scores are correlated.
- Single-model methods tend to do better in LDDT than GDT-TS

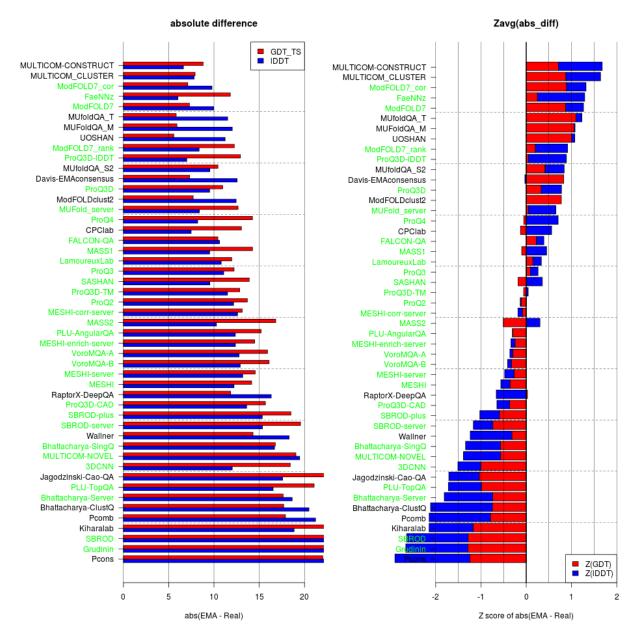
Ranking global QA results (2/2)

Absolute score

GDT-TS difference = |(QA score) – (GDT-TS of model)| LDDT difference = |(QA score) – (LDDT of model)|

(per-model analysis)

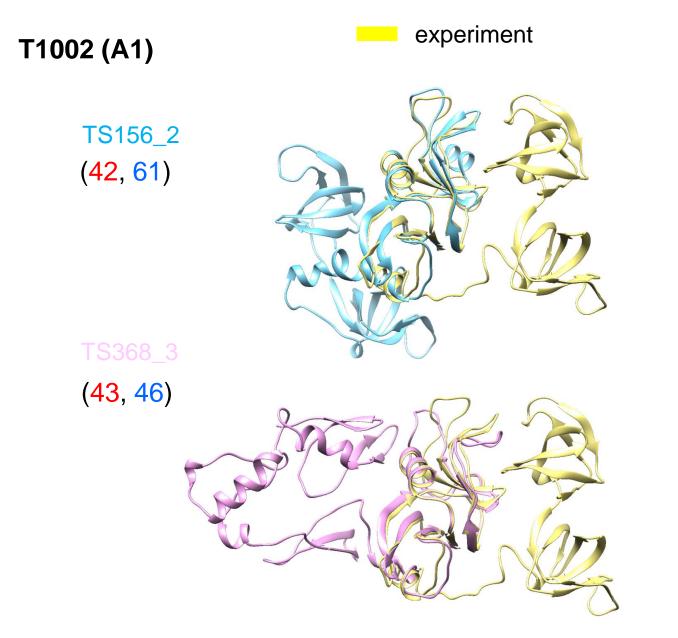
Global QA results (2/2): Absolute difference



Best absolute LDDT estimation by Δ~6 - FaeNNz

(single-model method)

Similar GDT-TS, different LDDT (1/3)



Similar GDT-TS, different LDDT (2/3)

T1004 (A3)

90

ASP: ages redacted	٦
ages redacted	

Similar GDT-TS, different LDDT (3/3)

T0974s2 (A1B1)

CASP: Images redacted

Similar LDDT, different GDT-TS (1/3)

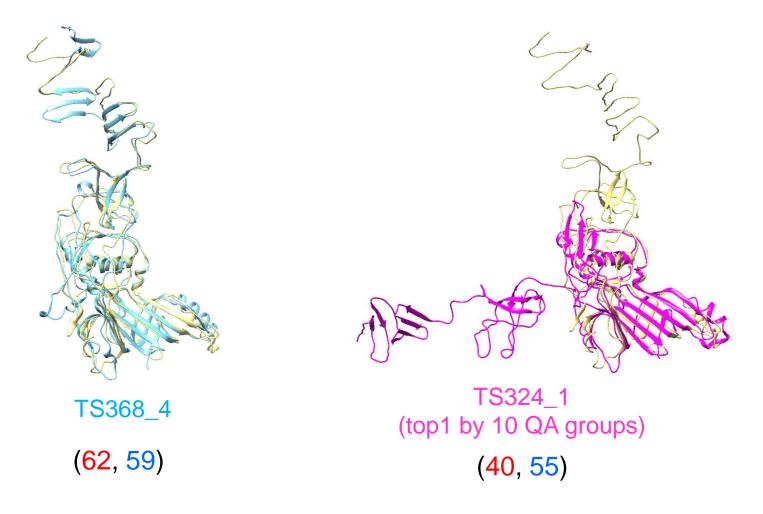
T0973 (A2)

CASP: Images redacted

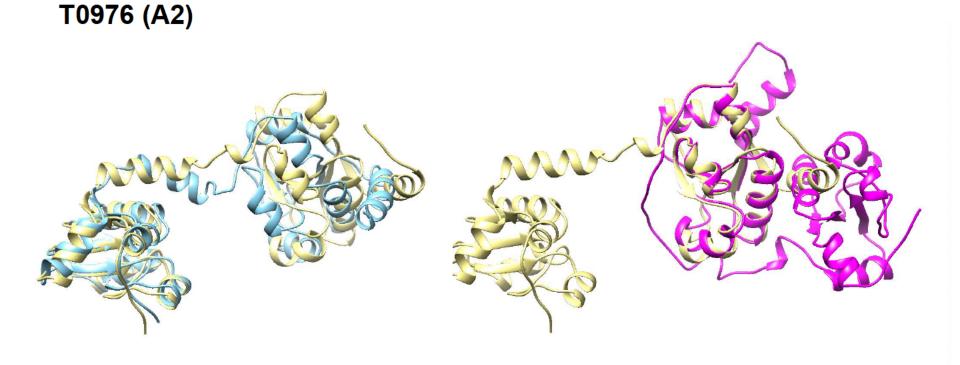
LDDT: Contacts not present in ref structure are not penalized

Similar LDDT, different GDT-TS (2/3)

T1022s2 (A6B3)



Similar LDDT, different GDT-TS (3/3)



TS145_5 (59, 69) TS368_3 (top1 by 4 QA groups) (38, 68)

Issues regarding EMA assessment

- Multi-EU (Evaluation Unit) targets (11/65)
 - In cases where EU orientations in models are not well predicted by TS servers, models of higher LDDT are better.

Not much change in ranking when only single-EU targets are considered.

- Oligomer targets (43/65)
 - Monomer models for oligomer targets were evaluated without the full quaternary structure.
 - Global structures determined by oligomer interactions are not captured by LDDT for monomer.

Ranking local QA results

Z-score sum of three measures (ASE, AUC, & ULR F1)

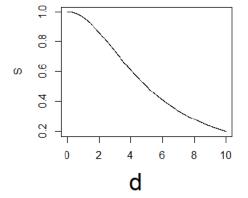
Model structures GDT-TS > 40 & Distance deviation calculated after EU-wise LGA superposition.

• ASE

Average residue-wise S-score difference

ASE =
$$\left(1 - \frac{1}{N} \sum_{i=1}^{N} |S(e_i) - S(d_i)|\right) \times 100$$

 $S(d) = \frac{1}{1 + (d/d_0)^2} \quad d_0 = 5 \text{ Å}$



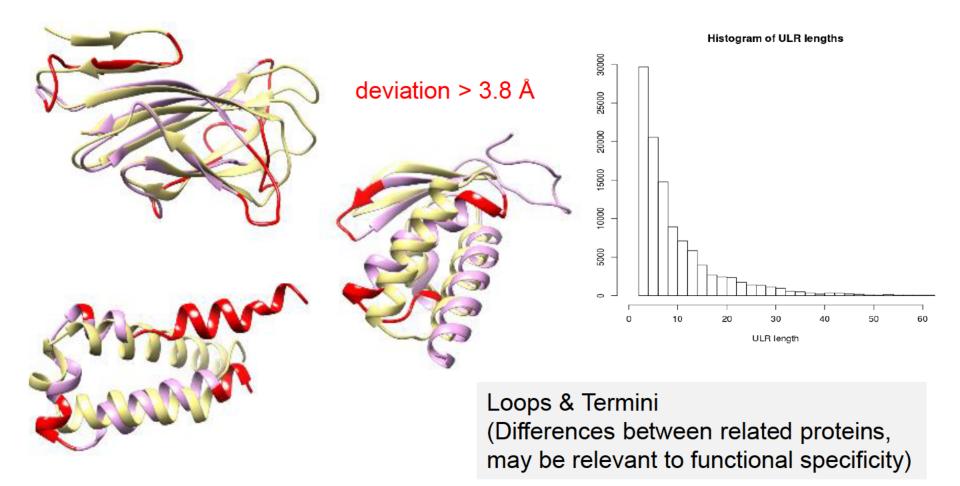
• AUC-ROC

Predictions for Inaccurately/accurately modeled residues (> 3.8 Å) by varying cutoff for each methods

• ULR F1

Ability to detect inaccurately modeled regions

 ULR (unreliable local region): A region of sequential residues with distance deviation > 3.8 Å. (Single residues sandwiched between ULRs are united to neighboring ULRs, Minimum ULR length = 3)



 Assessing performance of ULR prediction F1 score with tolerance of +2 or -2 residues at each end of ULRs

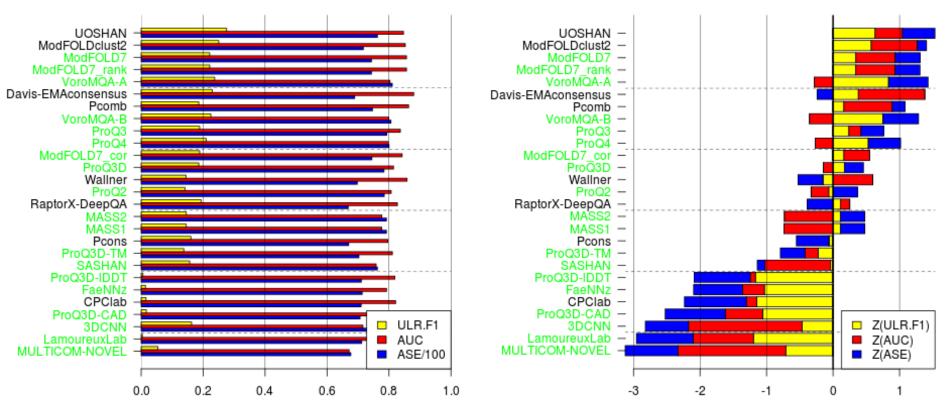
 $F1 = 2 \frac{\text{accuracy} \times \text{coverage}}{\text{accuracy} + \text{coverage}}$ $\text{accuracy} = \frac{\# \text{ correctly predicted ULR}}{\# \text{ predicted ULR}}$ $\text{coverage} = \frac{\# \text{ correctly predicted ULR}}{\# \text{ actual ULR}}$

• The best score cutoff to maximize the F1 score was used for each group. (Several groups submitted scores in 0~1 scale)

Local QA ranking

Z-score (local QA)

local QA, GDT TS > 40



Z-scores

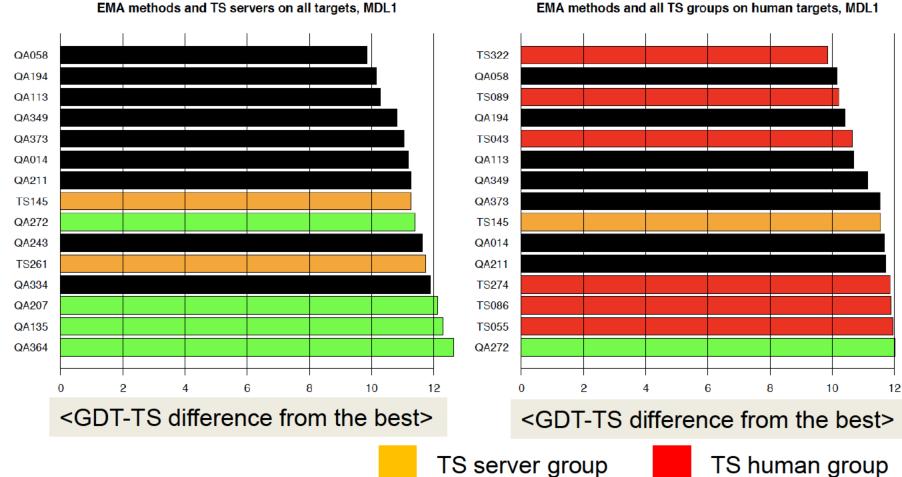
Best consensus method: **UOSHAN** Best single-model method groups:

- ModFOLD7
- VoroMQA (best ULR prediction)

What if EMA methods participated in CASP13 as meta predictors? (CASP-specific performance)

EMA methods perform better than the best TS servers, but not better than the best TS human groups.

Top TS human groups added some, not great, values beyond consensus.

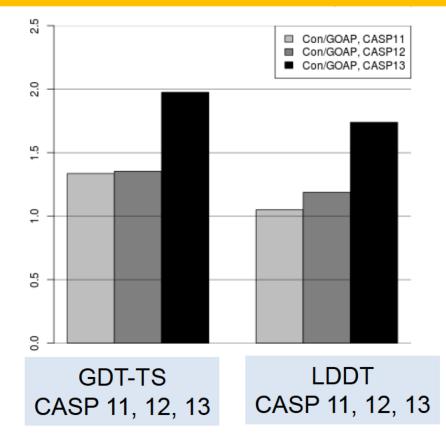


EMA methods and all TS groups on human targets, MDL1

PROGRESS OVER PREVIOUS CASP?

Performance of the best **consensus method** improved in CASP13.

Top1 GDT-TS/LDDT loss for the best consensus method relative to **GOAP**



Performance of **consensus methods** improved because TS servers generated models of more consensus towards higher accuracy.

More consensus in CASP13 TS server models.

Average of pairwise GDT-TS for top10 GDT-TS models when GDT-TS of best model > 40: 40 (CASP12) \rightarrow 59 (CASP13)

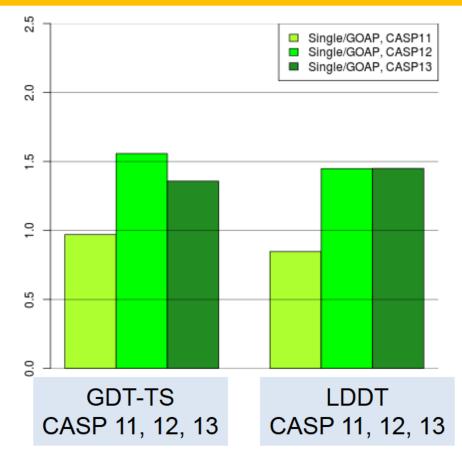
More higher-accuracy models for single-EU FM targets in CASP13. Fraction of FM targets for which GDT-TS of best model > 40: 5/13 (CASP12) \rightarrow 11/15 (CASP13)

More consensus for FM targets.

Davis-EMAconsensus (pure consensus) won over ProQ3 (a single model method, also tested both in CASP12&13) for higher fraction of FM targets: 1/5 (CASP12) \rightarrow 8/11 (CASP13)

Performance of single-model methods did not improve

Top1 GDT-TS/LDDT loss for the best single-model method relative to GOAP



Single-model methods did particularly worse in CASP13 compared to CASP12 for single-EU FM targets, although consensus methods did significantly better.

Single-model methods tend to score stereochemically correct models highly. In CASP13, more high-accuracy models with poor stereochemistry were generated by TS servers for FM targets

FM target	Davis-EMAconsensus		GOAP			ProQ3			
	model	d(gdt)	molp	model	d(gdt)	molp	model	d(gdt)	molp
T0953s1	149_4	6.0	4.1	085_1	16.8	1.8	261_1	4.1	2.8
T0957s2	324_3	7.7	3.3	402_5	31.0	0.7	261_1	13.1	2.2
T0968s1	498_2	5.9	3.5	368_1	0.0	0.7	368_2	7.8	0.7
T0968s2	498_4	7.8	3.7	407_3	32.8	1.5	368_1	11.7	1.0
T0969	324_4	12.1	3.6	368_5	27.3	1.2	498_5	1.4	3.8
T0975	261_2	19.4	3.1	368_1	19.6	1.0	368_1	19.6	1.0
T0980s1	145_1	0.0	3.3	368_1	14.4	1.4	368_1	14.4	1.4
T0986s2	324_5	0.0	3.5	368_1	24.0	1.0	407_1	15.8	1.0
T1001	156_5	17.6	1.0	368_2	0.0	1.1	368_4	1.6	1.2
T1015s1	261_2	2.3	2.4	407_4	27.6	0.5	368_1	5.1	0.7
T1017s2	261_1	3.8	2.9	368_4	12.4	0.9	407_1	29.4	1.2

High-accuracy model could be selected by improving stereochemistry during QA

Was there an advance?

Not really. Single-model methods performed worse than in previous CASPs.

A new challenge for QA

Protein models of higher global structure accuracy appear even for FM targets, and some of the models are not well locally optimized.

Round Table

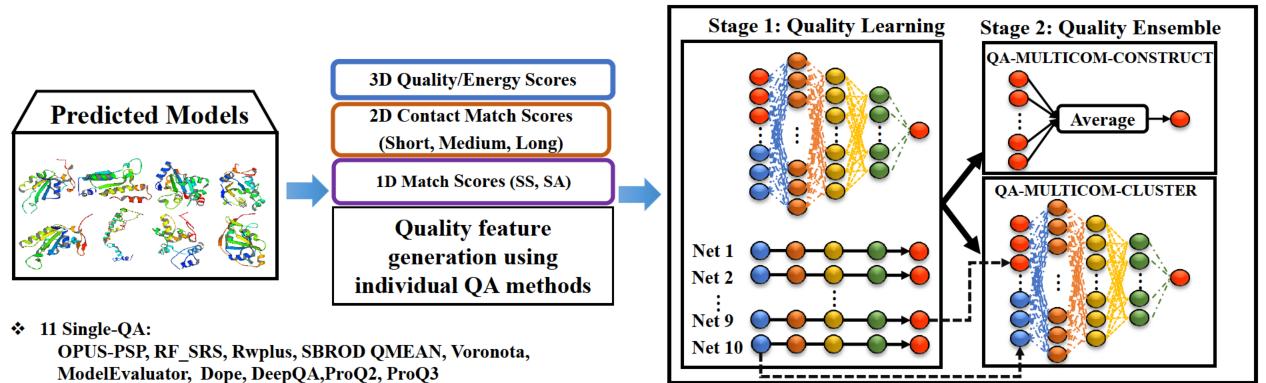
Consensus method groups:

- MULTICOM_CLUSTER Jie Hou (a member of Jianlin Cheng group)
- UOSHAN Kun-Sop Han

Single-model method groups:

- ModFOLD7_rank Liam McGuffin
- ProQ3D Arne Elofsson
- FaeNNz Gabriel Studer
- VoroMQA Kliment Olechnovič (a member of Ceslovas Venclovas group)

Large-scale integration of protein model quality assessment using deep learning and contact predictions (MULTICOM-CLUSTER, MULCOM-CONSTRUCT)



Quality Prediction via Deep Learning models

Use deep learning to integrating the power of multiple complementary model features
 Train deep neural networks on CASP 8-11 datasets
 Benchmarked on the CASP12 and CASP13 dataset

***** 3 Consensus-OA:

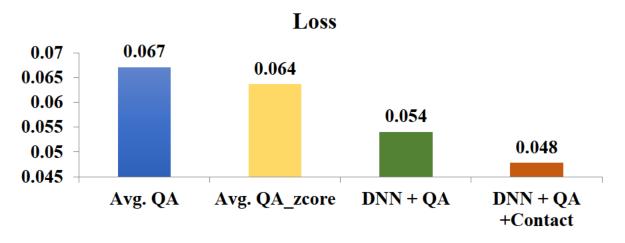
DNCON2

Contact Match Score

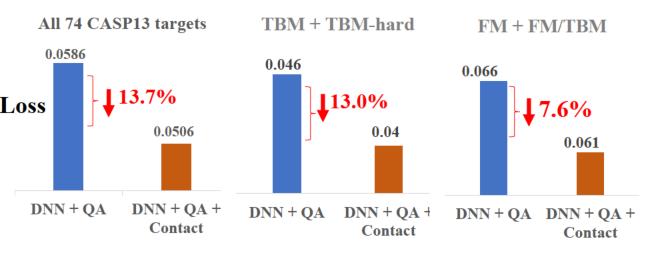
Pcons, Apollo, ModFoldclust2

Evaluation of Deep Learning Model Ranking on CASP12 and CASP 13

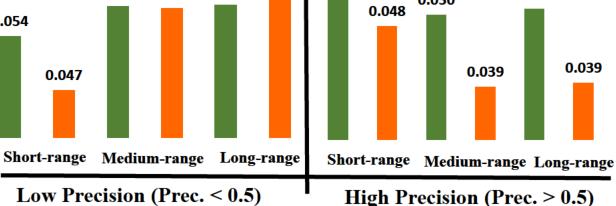
Result 1: Deep learning and contact prediction improve protein model quality assessment in CASP12 dataset.



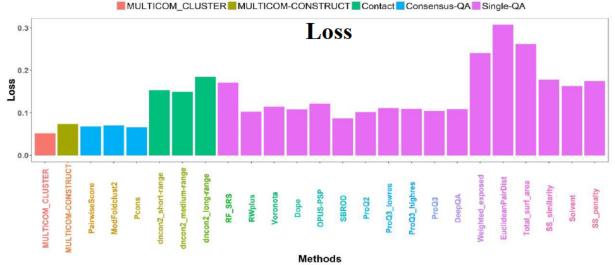
Result 3. Impact of contact features on protein model quality assessment in CASP13 dataset.



Result 2. Impact of contact prediction accuracy on protein model quality assessment in CASP12 dataset. DNN + QA DNN + QA + Contact Loss 0.058



Result 4. Comparison of DeepRank with individual features in CASP13 dataset.



ModFOLD7

Liam McGuffin University of Reading

ModFOLD7 - Method Summary

- A single model approach combining inputs from 10 scoring methods
- 6 pure-single model input methods:
 - CDA = Contact Distance Agreement (MetaPSICOV versus contacts in model)
 - SSA = Secondary Structure Agreement (PSIPRED versus DSSP from model)
 - ProQ2, ProQ2D & ProQ3D
 - VoroMQA

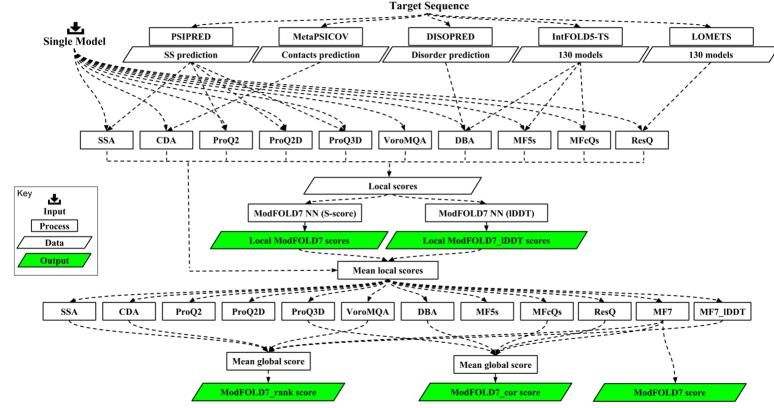
• 4 quasi-single model input methods:

- MFcs = ModFOLDclust_single (input model versus <=130 IntFOLD5 models)
- DBA = Disorder "B-factor" Agreement (DISOPRED versus MFcs score)
- MFcQs = ModFOLDclustQ_single (input model versus <=130 IntFOLD5 models)
- ResQ (input model versus LOMETS models)
- Local score outputs 2 variants 10 per-residue scores combined using a NN

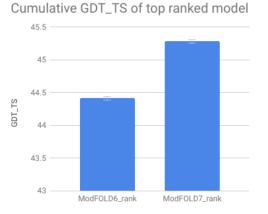
(MLP function in RSNNS) and trained using two target functions:

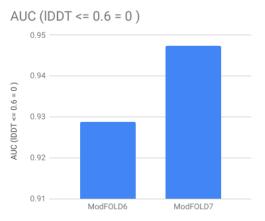
- The S-score (included in ModFOLD7 & ModFOLD7_rank)
- The IDDT-score (included in **ModFOLD7_cor**)
- **Global score outputs 3 variants** mean global scores that optimise for:
 - "Ranking" selecting the best models (ModFOLD7_rank)
 - "Correlations" estimating the absolute score (**ModFOLD7_cor**)
 - "Balanced" performance (ModFOLD7)

ModFOLD7 - flow chart



ModFOLD7 versus ModFOLD6





Method

Method

Method

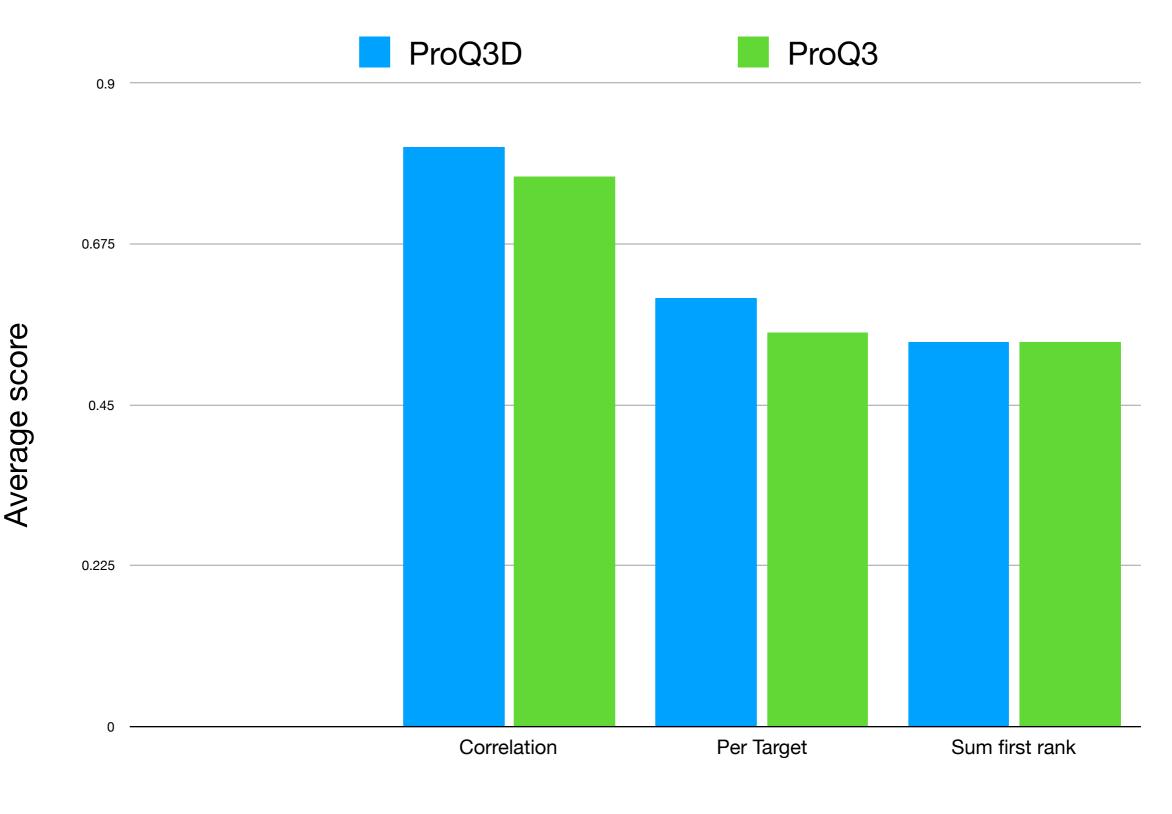
ProQ in CASP13

David Menendez-Hurtado, Karolis Uziela, Björn Wallner and Arne Elofsson

Overview

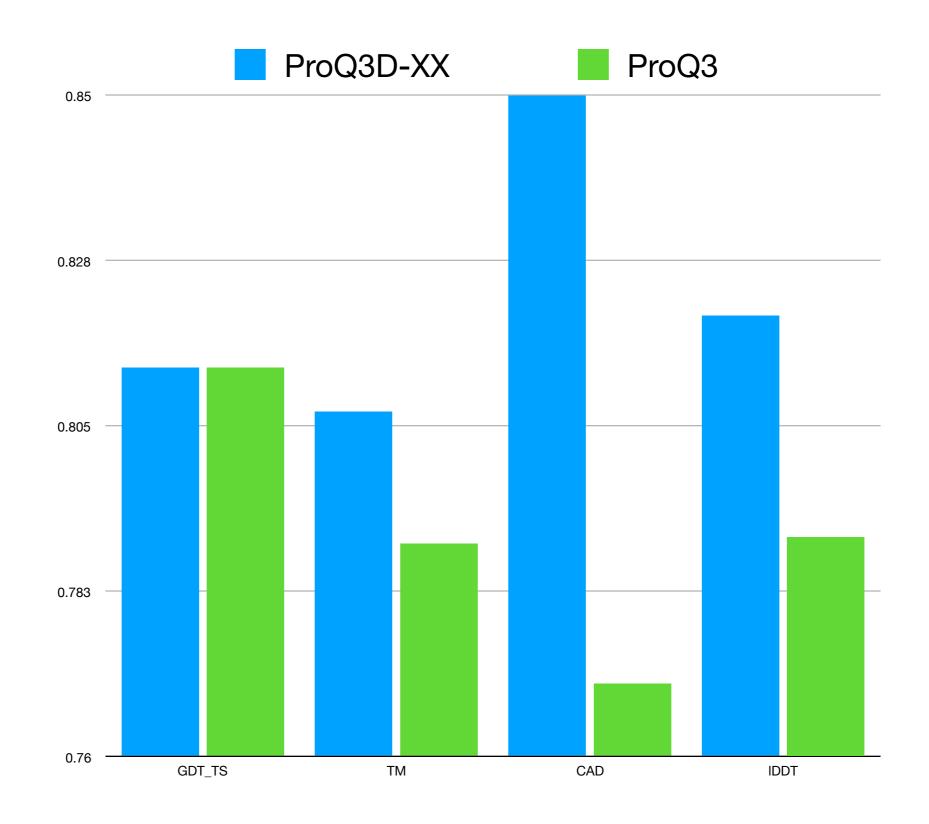
- ProQ3 = ProQ2 + Rosetta terms
- ProQ3D = ProQ3 using two-layer feed forward network.
 - ProQ3D: Trained on S-score (GDT_TS)
 - ProQ3D-TM: Trained on TMscore
 - ProQ3D-CAD: Trained on CAD-score
 - ProQ3-IDDT: Trained on IDDT.
- ProQ4 = Using deep learning, few input features (only DSSP).
 Trained on pairs of models. Trained on IDDT.

ProQ3D is better than ProQ3



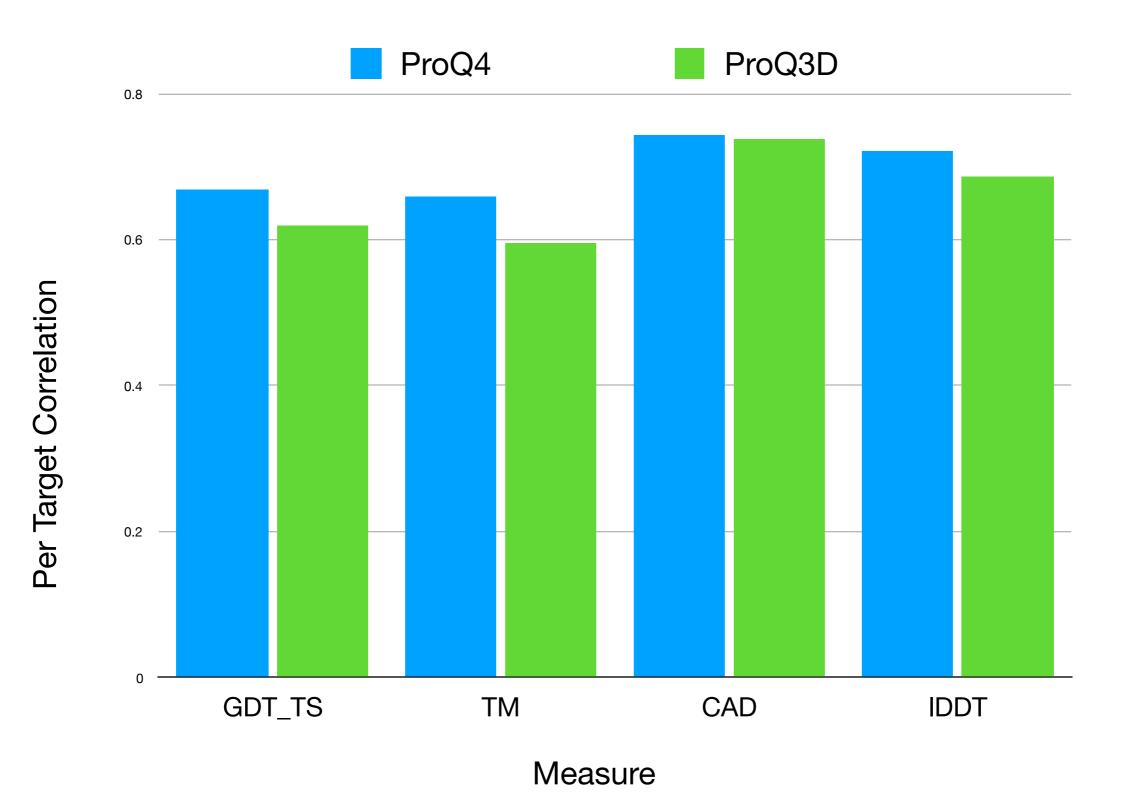
Measure

ProQ3D-XX i better than ProQ3 when evaluated on XX

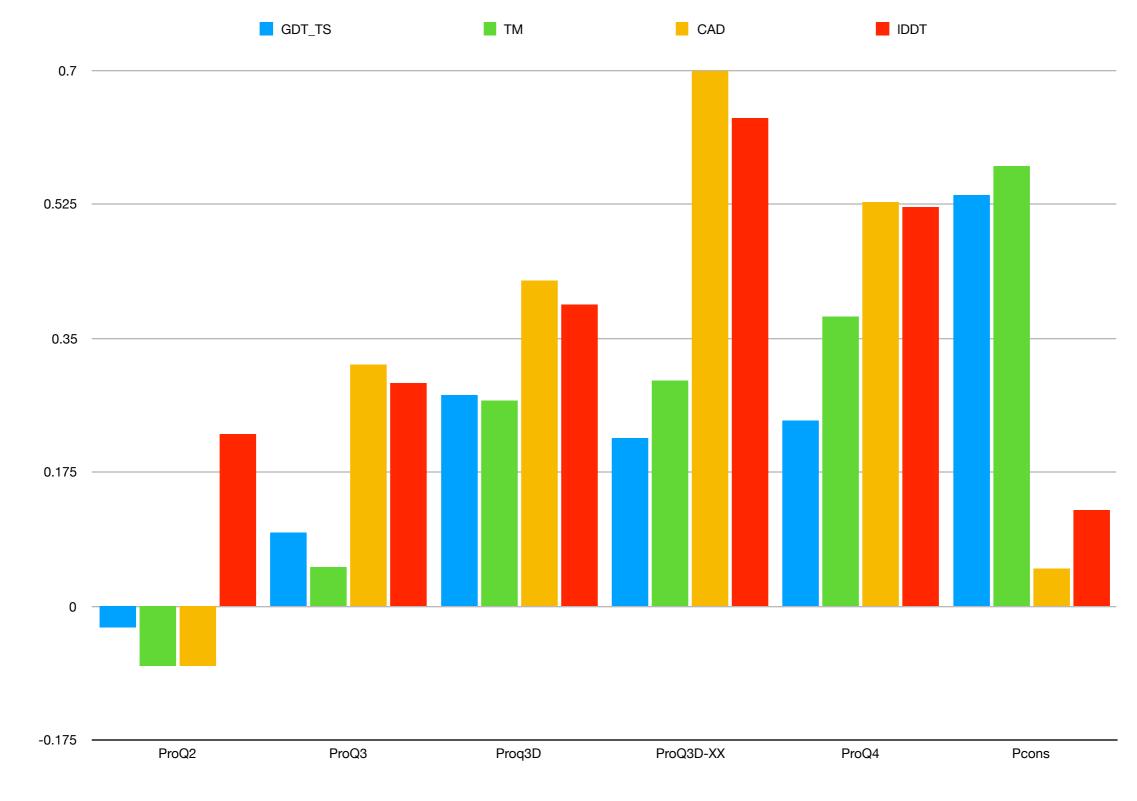


Measure

ProQ4 is better at ranking than ProQ3D.



ProQ performs relatively better on CAD and IDDT



Z-score

Method

Assistant Professor in Computational biology

at the Department of Mathematics. Closing date: 15 January 2019.

Stockholm University is a leading European university and one of the world's top 100 institutes of higher education and research. Stockholm University has more than 60,000 students and 5,000 staff.

<u>The Science for Life Laboratory</u> (SciLifeLab) is a national center for large-scale biosciences with a focus on health and environmental research and is a collaboration between Stockholm University, Karolinska Institutet, the Royal Institute of Technology, and Uppsala University. SciLifeLab-Stockholm is located in a new building on the Karolinska Institutet campus.

The last century of research has led the Department of Mathematics at Stockholm University to acquire a prominent place in Scandinavian mathematics. The department consists of three divisions: Mathematics, Mathematical statistics, and the recently formed Computational mathematics. The research in the division of mathematics include algebra, geometry and combinatorics, analysis and logic. The research in mathematical statistics include probability theory and statistical inference theory, with applications in biostatistics, climatology, econometrics, finance and insurance. Computational mathematics is a new direction for the department, with activities in computational biology, stochastic modelling, scientific computing for climatology, and logic of programs. During the first six years, the main workplace for this position will be at the Science for Life Laboratory. The formal employment will be at the Department of Mathematics.

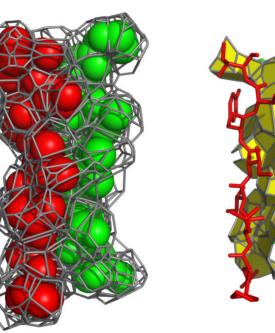
Subject

Computational biology

VoroMQA - Voronoi tessellation-based Model Quality Assessment

Kliment Olechnovič and Česlovas Venclovas, Vilnius University Institute of Biotechnology

Method definition:



Pseudo-energy for contact type:

$$E(a_i, a_j, c_k) = \log \frac{P_{\exp}(a_i, a_j, c_k)}{P_{obs}(a_i, a_j, c_k)} = \log \frac{F_{\exp}(\operatorname{area}(a_i), \operatorname{area}(a_j), \operatorname{area}(c_k))}{F_{obs}(\operatorname{area}(a_i, a_j, c_k))}$$

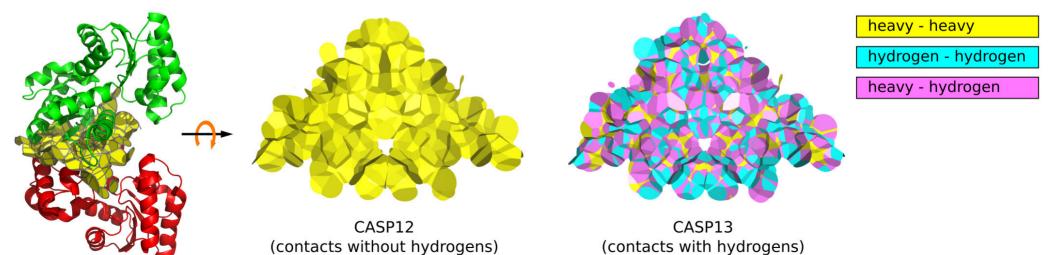
Normalized energy for atom:

$$\mathbf{E}_{\mathbf{n}}(\Omega_{\phi}) = \frac{\sum_{\omega \in \Omega_{\phi}} \mathbf{E}(\mathrm{type}_{\omega}) \cdot \operatorname{area}_{\omega}}{\sum_{\omega \in \Omega_{\phi}} \operatorname{area}_{\omega}}$$

Quality score for atom:

$$Q_{a}(\Omega_{\phi}) = \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{E_{n}(\Omega_{\phi}) - \mu_{type_{\phi}}}{\sigma_{type_{\phi}}\sqrt{2}}\right) \right)$$

Enhancement for CASP13:

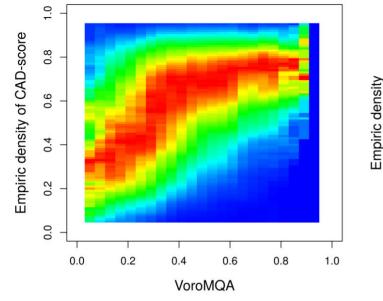


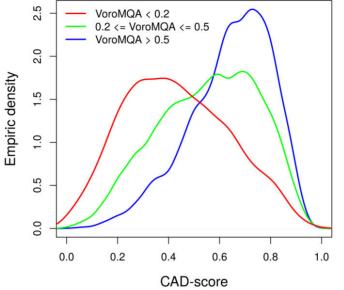
Local scoring:

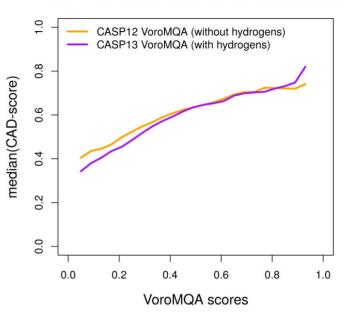
CAD-score empiric densities by VoroMQA windows

CAD-score empiric densities by VoroMQA ranges

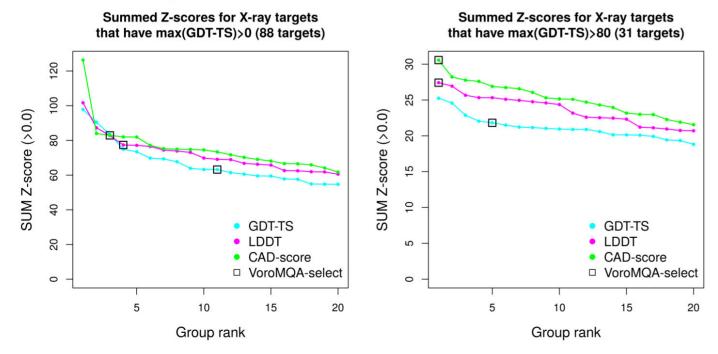
CAD-score median values by VoroMQA windows







Global scoring:



Conclusions:

- VoroMQA local scores can be used to classify the structure into the accurate regions and those with the uncertain accuracy.
- VoroMQA global scores are more useful when selecting from models of higher quality.
- VoroMQA performs relatively well because it uses tessellation-derived contact areas.

FaeNNz

Combining Statistical Potentials with Consensus-Based Prediction of Local Quality

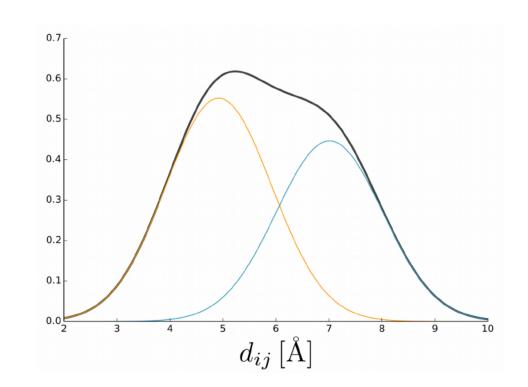
FaeNNz

Fast single model prediction of local model quality Main target: scoring models for SWISS-MODEL

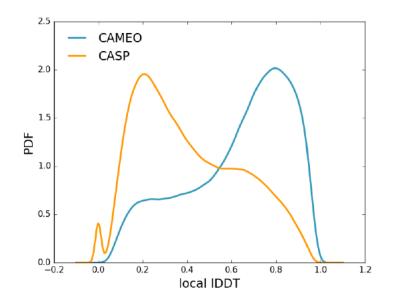
QMEAN Statistical potentials

DisCo Distance constraints

FaeNNz Low resolution features Mix all in NN



FaeNNz



- Constraints from found templates improve local quality estimates
- NN help to identify complex interdependencies in training data
- Low resolution features help to identify local regions with poor packing
- CASP and CAMEO targets are not the same thing

	CAMEO CrossVal		CASP CrossVal	
Predictor	Pearson R	ROC AUC	Pearson R	ROC AUC
QMEANDisCo	0.855	0.931	0.681	0.886
FaeNNz (CASP)	0.841	0.916	0.836	0.937
FaeNNz (CAMEO)	0.887	0.940	0.812	0.934
FaeNNz (Mixed)	0.889	0.940	0.856	0.946

Discussion Topics

(1) **Deep learning** has a clear impact in QA. How can this be pushed further?

(2) Is the current **number of models**, 150 per target in stage 2, enough? Would a larger number of models facilitate advance?

(3) Model qualities for **oligomer targets** have been evaluated using only monomer models. How should this be treated?

(4) What is the value of applying **consensus methods** to CASP server models that are available only in CASP season? How should it be treated in the future?

(5) In CASP13 we seem to have **little progress** over CASP12. Why? How should we proceed?

(6) Other topics

1. Consensus & Deep Learning

Consensus methods exploiting **pure consensus of CASP-specific** server models are not desirable for advance of the field.

One suggestion is to provide models that are more uniformly spaced in the conformational space. This needs **more models** from TS servers.

More structural decoy data may promote method developments in both QA and TS by providing more training data for **deep learning**.

Is the current **number of models**, 150 per target in stage 2, enough? Would more models facilitate advance?

2. Oligomer Targets

Qualities of only monomer models, not of full quaternary models, were evaluated for **oligomer targets**.

It makes sense to evaluate monomer models only for some oligomer targets for which monomer units are stable by themselves. In more general cases, oligomer models have to be evaluated as a whole.

CAPRI runs a **scoring round** in which ~1000 oligomer models are available for evaluation for each target. Would there be any problems if CASP QA predictors participate in the CAPRI scoring rounds?

3. Progress

Single-model methods performed relatively poorly in particular on FM targets.

This seems to be because globally more accurate, but locally less optimized models were generated by TS servers for FM targets.

How can this problem be treated?