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Assign a penalty based on predicted ranking and true ranking

OUTPUT FOR EACH PREDICTOR GROUP: penalty matrix
s x t (scores, targets)

3 categories: monomers, homo -oligomers, hetero-oligomers

Assessing Group 
Predictions

No further penalty for skipping a target

, score for i-th model in the true rankings

, score for i-th model in the predicted rankings



Correlation Matrix for Scores in MassiveFold 
Set

H* target example

T*s* target example
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Predictor Group 
Rankings

weighted_penalty weights the penalties for each score type

Group

Score

Target

p

p

p

For each group:
Mean of weighted_penalty over all targets

is the covariance matrix of scores 
for MF models in that category

(also tested the covariance matrix of 
scores for MF dataset of that target)

w_p

w_p

w_p

weighted_penalty (w_p)



Predictor Group 
Rankings

weighted_penalty, outlier rejection

Remove outlier “yarn ball” predictions



Mahalanobis Distance
measure of distance that accounts for correlations between variables and their 
variances

Useful:
identifying outliers

working with multivariate distributions



Mahalanobis Distance
measure of distance that accounts for correlations between variables and their 
variances

Useful:
identifying outliers

working with multivariate distributions

Plot by Sergen Cansiz, published in Towards Data Science



Predictor Group 
Rankings

weighted_penalty, outlier rejection

Calculated Mahalanobis distance for each model from distribution of all models

Remove outlier “yarn ball” predictions
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Weighted Penalty-Based 
Rankings

Groups  Robus tly in the Top 5?



Robust to ranking by Z -score and per-target covariance:

050 David Shortle – Human

110 Wei Zheng – MIEnsembles-Server

164 Liam McGuffin – Human 



050 David Shortle – Human

110 Wei Zheng – MIEnsembles-
Server

Strong for Generality



050 David Shortle – Human
110 Wei Zheng – MIEnsembles-Server

050 David Shortle – Human

Method
• Scored models with a collection of statistical 

parameters and potentials.
• Compared model scores with the scores of 6000 high 

resolution PDBs. 

Characteristics
• High resolution structure set was collection of single 

chain PDBs
• 3 sets of parameters combined and added with weights 

for a combination score

110 Wei Zheng – MIEnsembles-Server

Method
• Use DMFold to construct high-quality MSAs for improved 

structure predictions.
• QA method integrates DMFold models to assess the 

quality of MassiveFold models

Characteristics
• Quality of the reference model influences the performance 

of the QA method
• For complexes: DMFold confidence (0.8ipTM+0.2pTM) is 

less sensitive in picking correct models than mean plddt for 
monomers
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319 Jianlin Cheng – MULTICOM_LLM

345 Jianlin Cheng – MULTICOM_HUMAN



319 Jianlin Cheng – MULTICOM_LLM
345 Jianlin Cheng – MULTICOM_HUMAN

319 Jianlin Cheng – MULTICOM_LLM

Method
• 200 MassiveFold models selected based on 
confidence scores 

• MULTICOM QAs to select the top 5 models

Characteristics
• Average pairwise similarity score to estimate the 
quality scores

345 Jianlin Cheng – MULTICOM_HUMAN

Method
• Also includes  MULTICOM_GATE score
• Deep learning method that combines the pairwise 
similarity score and the single-model QAs to 
estimate the quality of the structures

• Model similarity graph
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050 David Shortle – Human

110 Wei Zheng – MIEnsembles-Server

164 Liam McGuffin – Human 

319 Jianlin Cheng – MULTICOM_LLM
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312 Guijun Zhang – GuijunLab-Assembly



264 Guijun Zhang – GuijunLab-Human
312 Guijun Zhang – GuijunLab-Assembly

264 Guijun Zhang – GuijunLab-Human

Characteristics
• Did not use the ptm, iptm and plddt of 
MassiveFold

312 Guijun Zhang – GuijunLab-Assembly

Characteristics
• Used the confidence ranking score from 
MassiveFold for preliminary screening on 8040 
structures.
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value

Make this an explicit goal in CASP17?

• For practical uses  of predicted models , confidence in relative domain orientations  is  
essential 

Should CASP17 evaluate PAE matrices? Or define something more general?

Confidence Es timates  and Experiment
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CASP16 EMA
Final Thoughts

• Finer-grained (atomic) estimates for confidence add 
value

Make this an explicit goal in CASP17?

• For practical uses  of predicted models , confidence in relative domain orientations  is  
essential 

Should CASP17 evaluate PAE matrices? Or define something more general?

• Methods  s truggle to outperform AlphaFold2 iptm metric for evaluating hetero-oligomers  

Informative future variant of QMODE3 could request ranking of all available 
models, instead of top 5

Confidence Es timates  and Experiment

QMODE1 and QMODE2

QMODE3

• Improvement in score dis tributions  compared to CASP15



THANK YOU!

Ques tions?







Extra 
Slides







Including MF baseline + min(Z)=0 + Z filter at -3

Targets missing: 
H1272: 9 components, too big and complicated to be done in 

MassiveFold
T1247: structure was released early and target was cancelled
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