Integrative dynamic structural biology with fluorescence spectroscopy

Claus A. M. Seidel

Chair for molecular physical chemistry, Heinrich-Heine-Universität Düsseldorf; cseidel@hhu.de

Spatiotemporal models of living systmes

Experiment types:

- single-molecule (variety of methods) to probe:
 - heterogeneity
 - structural information: proximities and distances
 - dynamics (from picoseconds to minutes): state connectivities

Experiment types (single photon counting (Poisson statistics!!):

- single-molecule (variety of methods)
- sub-ensemble (like particle averaging in EM)
- ensemble (ultimate precision): 60 million photons

Probes:

- Intrinsic, extrinsic, genetic:
 - aromatic amino acids (TRP, TYR)
 - selective labeling by small organic dyes,
 - fluorescent proteins

Consider linkage: Influence on spatial dye distribution

• Local structure

Spectral changes	Localization of the segment		
(polarity probes, ratiometric probes)			
Quenching	Proximity of other segments, accessibility of sites		
Polarization, anisotropy	Order parameters (local flexibility) [1]		

• Global structure

Förster energy transfer (FRET)	Inter-dye distances [2]
Diffusion (translation and rotation)	Shape

• Dynamic exchange

Time-resolved detection (ps-ms/ min)	Kinetic exchange networks
--------------------------------------	---------------------------

A N-dimensional vector with all observables characterizes each protein state

[1] Möckel et. al.J. Phys. Chem. B 122, in press (2018)

[2] Peulen et. al.
J. Phys. Chem. B 121,
8211 (2017) 6

Quantitative high-precision FRET (hpFRET) analysis

- Multiparameter Fluorescence Detection (MFD)
- Detect dynamic averaging
- Rigorous error analysis
- Dye properties: Accessible volume (AV) simulations
- Hybrid approach: Combination with computer simulations

Structural models in data bases (wwPDB)

- Precision
- Accuracy
- Confidence levels
- Dynamic / heterogeneous systems: Use Single-molecule advantage:
 - multiple structures in parallel
 - kinetics: no need for sychronization
- Kinetics: reaction pathways
- Solution conditions, room temperature
- Large systems possible
- Combination with microscopy: *in vivo* option

High-precision FRET (hpFRET): 6 steps to FRET-restrained structural biology

Nat. Methods 9. p1218 (2012)

Multi-laboratory challenge demonstrates the accuracy and precision of FRET

Blind study: 10 distinct DNA rulers were measured in 20 laboratories in the world

Current Opinion in Structural Biology 2014, 28:96-104

Standard deviation between the exp. FRET efficiencies: $\Delta E = \pm 0.02$ and ± 0.05

Rel. deviations between mean exp. and model distances $\langle R \rangle$: $\Delta R/R_{mod} = 0$ and ± 0.05

\rightarrow well within the expected error

Nature Meth. 15, 669 (2018) (coord. T. Hugel, T. Craggs, C. Seidel, J. Michaelis)

Proteins with more than one conformation

New challenge for CASP community:

- Predict and describe proteins in distinct conformations
- Data-assisted modelling using fluorescence information

FRET measurements

- Sparse data- combination with computer simulations
- Euclidean distance information between two points with upper and lower bound

Proteins with more than one conformation

New challenge for CASP community:

- Predict and describe proteins in distinct conformations
- Data-assisted modelling using fluorescence information

FRET measurements

- Sparse data- combination with computer simulations
- Euclidean distance information between two points with upper and lower bound
- Dynamics

Multiple structures and complexes: characterized on the fly

Systems

States Relaxation times

Proteins with 2 domains

SNARE Protein Syntaxin 12 (700 μs)PGK>2 (fast)T4 Lysozyme>3 (3, 200 μs)IF3 (ribosomal initiation factor)>3 (7) (2 μs, 300 μs)

NA binding proteins

HIV-1 RT Primer/Template complexes: 3 (slow)KlenTaq Polymerase>3(slow)Klenow Fragment DNA Pol1>5(< 100 μs)</td>BsoBl (restriction enzyme)2-3 (10 μs)MutS (mismatch repair)2(slow)Mononucleosomes>3(slow)

Large GTPases

hGBP1>2(2, 20, 300 μs)Holliday junction (DNA 4W-Junction)2(4)(100 μs)Hairpin ribozyme (RNA 4W-Junction)4(100 μs)

Intrinsically disordered proteins

Next generation of FRET toolkit: FPS 2.0 (tbd @ Poster)

- **1. Finding most informative FRET-pairs**: FRET networks for least experimental work
- 2. FRET-restrained optimization of structural models: Beyond rigid body docking and simple model selection

-> Targeted structural sampling by FRET guiding

3. Estimation of accuracy:

Can we trust the FRET-restrained structural model? -> a crossvalidation approach analog to X-ray: R_{free} and

4. Archiving of the I/H models to share information: Generation of documentation: Fluorescence dictionary

-> deposition in PDB-Dev

PDB-Dev: New archive of structural models obtained through integrative/hybrid (I/H) methods

Selection of the most informative FRET pairs

CASP11 target T0806: YaaA (PDB ID 5CAJ)

Probing the accuracy of FRET-restrained structural models

CASP11 target T0806: YaaA (PDB ID 5CAJ)

Quality parameter by cross validation: χ_n^2

$$\chi_n^2 = \chi^2 / \chi_{\rm p=68\%}^2$$

$$\chi_{p}^{2} = Inv. \chi^{2} (p, N_{dof})$$
$$= \frac{2^{-N_{dof}/2}}{\Gamma(N_{dof}/2)} p^{-N_{dof}/2 - 1} e^{-1/(2p)}$$

Accuracy of FRET-guided structural models

Accuracy of FRET-guided structural models

Accuracy of FRET-guided structural models

Acknowledgements

hybrid-FRET team:

Mykola Dimura, Thomas-Otavio Peulen, Christian Hanke.

Soft- and Hardware:

www.mpc.hhu.de/software https://github.com/Fluorescence-Tools

Examples:

Curr. Opin. Struct. Biol. 40, 163–185 (2016) Model Archive: DOI: 10.5452/ma-a2hbq CASP13 webpage: <u>ProteinDynamics-FRET webinar</u>

European Research Council

Established by the European Commission

hybridFRET :ERC Advanced Grant 2014

Exploring the capabilities of hybrid-FRET modeling: An *in silico* experiment:

Curr. Opinion in Structural Biology 40, 163–185 (2016) and Model Archive: DOI: 10.5452/ma-a2hbq with a comprehensive description, all tools and data

Benchmark systems: Proteins

T4 Lysozmye first structure of a new hidden state (200 μs)

hGBP1 (new conformational state)

Benchmark systems: Nucleic acids

Precision $2 - 4^{3}$

CASP target T0964 (CBM56) listed as F0964

- Protein name: CBM56
- Carbohydrate binding module from a β -1,3-glucanase (Bacillus circulans)
- Number of amino acids: 184 (694 877)
- Molecular weight:

18.936 kDa

PVTGV TVNPTTAQVE VGQSVQLNAS VAPSNATNKQ VTWSVSGSSI ASVSPNGLVT GLAQGTTTVT ATTADGNKAA SATITVAPAP STVIVIGDEV KGLKKIGDDL LFYVNGATFA DLHYKVNNGG QLNVAMAPTG NGNYTYPVHN LKHGDTVEYF FTYNPGQGAL DTPWQTYVHG VTQGTPE

CASP target T0964 (CBM56) listed as <u>F0964</u> Data-assisted modeling

- Protein name: CBM56
- Carbohydrate binding module from a β -1,3-glucanase (Bacillus circulans)
- Number of amino acids: 184 (694 877)
- Molecular weight: 18.936 kDa

Efficiency <e></e>	<rda> / Å</rda>	± Δ <rda> (Meta- analysis) / Å</rda>	± Δ <rda> / Å</rda>	σDA (total) / Å	±∆σDA (total) / Å	σDA (protein) / Å

Dictionary for structural biologists

NMR	EPR	Fluorescence		
2D NMR etc τ (NOESY mixing time)	double resonator	multi-parameter detection		
T1 time, $1/\rho$	T1 time	fluorescence lifetime, τ		
order parameter S2	line shape analysis (High field EPR)	fluorescence anisotropy, \mathbf{r} rotational correlation time $\boldsymbol{\rho}$ and corresponding amplitudes		
distance information: NOE: short range PRE: Paramagnetic Relaxation Enhancement (PRE) long-range	PELDOR/ DEER (distance r)	FRET (distance R)		
 Froblems + advantages with + Selectivity - Labelling strategies - Label position: (AV, rotamer - Orientation factor (κ²) 	r libraries, MD simulations)			
Line width analysis	line width analysis: ns-dynamics	PDA (Photon distribution analysis)		
Relaxation dispersion analysis (transverse spin-relaxation, CPMG relaxation dispersion NMR experiments)	(DEER: frozen sample)	dynamic PDA		
Correlation methods (DEER: frozen sample)		FCS (Fluorescence correlation spectroscopy) no gaps in the time axis over 10 orders of magnitude SCCF (Species cross correlation function) in the MFD space		