CASP 13 Assembly assessment

Riviera Maya, Dec 2018

Jose Duarte, Dmytro Guzenko RCSB Protein Data Bank, UC San Diego

Biological assembly of targets

- The *Ground Truth* is not always 100% clear when talking about biological assemblies of crystal structures (still most structures, 7 EM out of 42 targets)
- Assessors did not always have the structures at time of assignment
- Most of the times authors did not provide experimental evidence for the quaternary structure

Biological assembly of targets: assignment

- EPPIC¹ used as main method to find most likely bioassemblies (when structure available)
 - Evaluation of all possible assemblies in crystal. Predictions include confidence values
 - Scoring based on evolutionary conservation of interfaces

• Other methods used: PISA, structural homologs

Biological assembly of targets: assignment

Some difficult cases

- T0995 (assignment A8)
 - Helical assembly: stoichiometry assignment subjective.
 - We decided A8. But A2 or A4 would have been reasonable choices too
- T0966 (assignment A2)
 - Large dimeric interface 1700 Å² not very well packed.
 - Bad EPPIC scores (indicating monomer). PISA says monomer
 - A subdomain covering only a small region from the full length protein
 - No experimental evidence provided. Kept A2 from authors assignment.
- T1018 (assignment A2)
 - EPPIC: dimer medium confidence. PISA: dimer.
 - Structural homologs both monomers and dimers (a feature of that family, following literature)
- T0985
 - Released as A1, structure wasn't available
 - Clear A2 (once structure became available)
 - Excluded from our assessment, even though some groups submitted good predictions

Target difficulty: easy

• Templates with the same quaternary structure can be detected by sequence similarity (HHPred)

H0974 (A1B1)

CASP: Image redacted T0977o (A3)

5EFV

1Y7Y (C2 homodimer)

Target difficulty: medium

• No assembly template is easily found, (partial) templates for subunits, (partial) interface templates are available

T0999 (A2): all domains and most of the interfaces available, but fragmented. The structure needs to be puzzled together

> CASP: Image redacted

T0976 (A2): the best assembly template is a monomer. Possible domain swap.

1YT8

T0981 (A3): assembly template for $\frac{1}{3}$ of the structure, individual domains for the rest.

Target difficulty: hard

• No or negligible amount of information available on the subunits and assembly

T0989 (A3)

CASP: Image redacted

H1021 (A6B6C6): partial templates available, but the total assembly is huge

Scores

Interface/local: Interface Contact Score (F1)

Interface Patch Score (Jaccard)

Assembly/global: Oligomeric IDDT

Oligomeric GDT

Global scores

Local scores

Scores: per target overview

* Naive predictor: Seok-naive_assembly (thanks Seok group!)

Group ranking - methodology

- Interface Patch Score (Jaccard), Interface Contact Score (F1), IDDT (oligo) and GDT (oligo)
 - normalised to Z-scores
 - equal weights
 - Sum(Zi) > 0 only
- Leave-one-out cross-validation performed on the scoring, groups ordered by mean score
 - Scoring by difficulty and stacking the results does not change the overall ranking
 - Excluding targets with poor predictions and small score variance (e.g. H0980, H0968, H0986) does not change the ranking

Group ranking - CASP groups, all targets

Group ranking - CAPRI targets only, all groups

Comparison with CASP12

- Organisation
 - Oligomeric predictions have their own format
 - No accidental participation by predictors
 - No need to determine if a prediction is meant to be oligomeric
- Participation
 - Almost 5000 models submitted (CASP+CAPRI) vs. 1600 in CASP12
 - 45 groups in CASP13 vs 108 in CASP12
 - Some groups may have participated in this category by accident in CASP12
 - Targets
 - CASP13: 42 regular (12 heteromers), 16 data-assisted.
 - CASP12: 30 regular (8 heteromers), no data-assisted

Comparison with CASP12

Improvements across the board!

CASP12 score values

Prediction highlights: what went well

- Target: dimeric
- Each chain: 2 copies of same domain (CATH 3.40.250.10, oxidized rhodanese)
- Plenty of templates for the domain
- Best template: 1YT8 monomeric, with central domain-domain interface very similar to dimeric interface of target
- Best model: 155_4 (CAPRI group). F1 (ICS) 39.8

T09760 (A2)

Prediction highlights: what went well

- Huge complex A6B6C6 (798x6 residues)
- Partial templates: 6bdc (A6), 3j9q (6-fold ring with matching B chain and another molecule)
- 068_5: decent global assembly prediction

H1021 (A6B6C6)

6bdc (A6)

What did not go so well

- Very good template for monomer
- No templates for assembly or interface
- I.e. pure docking
- But! no good predictions

Weak dimer? Crystal contact?

We don't know!

T10180 (A2)

Quaternary is important for regular modelling

- Bad modelling in C-terminal for almost all regular groups
- Best model (043_1) folds C-terminal in
- Some assembly groups have decent models in the C-terminal (e.g. 086_1)

T0953s1-D1

N-terminal

C-terminal

#	Model	10	20	30	40	50	60	70	\$gdt_ts	¢gdt_ha	\$gdc_sc	≑ rmsd
1.	T0953s1TS043_1-D1								54.48	42.16	19.74	13.60
2.	T0953s1TS086_1-D1								48.88	27.61	3.64	5.33
3.	T0953s1TS208_1-D1								47.76	34.70	13.39	9.34
4.	T0953s1TS460_1-D1								46.27	31.71	12.39	10.88
5.	T0953s1TS335_1-D1								46.27	32.09	12.69	13.23
6.	T0953s1TS196_1-D1								45.90	30.60	13.54	10.86
7.	T0953s1TS135_1-D1								45.90	30.60	13.54	10.86
8.	T0953s1TS145_1-D1								45.90	30.60	13.54	10.86
9.	T0953s1TS055_1-D1								45.90	30.60	13.54	10.86
10.	T0953s1TS426_1-D1								45.90	30.60	13.54	10.86
11.	T0953s1TS418_1-D1								45.90	30.60	13.54	10.86
12.	T0953s1TS089_1-D1								45.15	30.60	12.06	10.88
13.	T0953s1TS197_1-D1								45.15	30.59	12.95	11.08
14.	T0953s1TS149_1-D1								44.78	31.71	9.69	13.27
15.	T0953s1TS261_1-D1								44.78	29.85	10.95	11.03
16.	T0953s1TS406_1-D1								44.78	29.85	10.95	11.03
17.	T0953s1TS457_1-D1								44.78	29.85	10.95	11.03
18.	T0953s1TS044_1-D1								44.78	29.85	10.95	11.03
19.	T0953s1TS224_1-D1								44.78	30.23	8.50	13.35
20.	T0953s1TS274_1-D1								44.78	30.23	9.69	10.97

Quaternary is important for regular modelling

- Overall bad predictions (best GDT_TS 37.16)
- Homodimer with very large interface (3300 Å²)
- 366 (best assembly group) is best prediction (GDT_TS 37.16, QCS 69.00).
 Pretty good from manual inspection.
- Next best prediction (214_1) is good in Nterminal but the helix in C-terminal is folded in

T0991-D1

Quaternary is important for regular modelling

There are a few more examples:

- T0998 (mentioned in Multicom's presentation)
- T0973 (mentioned in Zhang's group and Seok's talk). TBM-easy target!
- H0957
- T0981
- T0989 (mentioned in Read's talk as a problem in refinement)

Question: can quaternary modelling become mainstream? What are the obstacles?

About half of the targets were oligomeric (representative of the PDB)

Acknowledgements

Dmytro Guzenko (see poster also!)

Andriy Kryshtafovych Bohdan Monastyrskyy

Marc Lensink Shoshana Wodak

Aleix Lafita EMBL-EBI

Software: OpenStructure and BioJava developers