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Dec 2012: Proposal for CASP11

Contact Assisted Prediction
Contacts could be sparse, experimentally accessible distances:
- chemical cross links (Mass Spec)
- backbone NH — NH and or ILV
Me-Me contacts (< 6.5 A, 2H proteins)
- Paramagnetic Relaxation Enhancement (PRE) (15 — 30 A)

Methods will be developed that use realistic types of contacts
that can potentially be obtained on larger

(20 — 80 kDa) proteins

CASP project will drive the experimental community to
generate such contact data and to collaborate with CASP
methods developers on specific projects
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Some CASP 11 ‘Predictors’ did better
than standard ASDP NMR Methods

General LGA Seq:
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FIGURE 2 Average precision of long range contacts on L/5 lists
for free modeling targets in CASP10 (red), CASP11 (green), and
CASP12 (blue) sorted by rank. Grey dashed lines indicate the levels
of the best performing group in CASP10 and CASP11, respectively.
While only one group showed a significantly better average
precision than all the others in CASP 11 compared to CASP10, 26
groups showed an improved average precision in CASP12
compared to the best performing group of CASP11

Average Precision

Bonvin et al, PROTEINS 2017

The idea of “more
realistic contacts
based on what can be
obtained by
experiments” has
been superseded by
the advances since
2012 in contact
prediction.

No need to have a
CASP category for how
well modelers can do
with “simulated
contacts”.



Vision: Combine simple, rapidly obtained
experimental data with advance modeling methods
to provide accurate 3D structures of proteins

Nuclear Magnetic Small Angle X-ray Scattering
Resonance (NMR) Data

(SAXS) or SANS

Low Resolution cryoEM




The Sparse Data Problem

48 constraints for 84 residues
HN-HN, HN-Me, Me-Me

Contact Map



Sparse Experimental Data Assisted
Prediction in CASP13

How can we combine sparse experimental data with
advanced modeling methods for determining accurate
structures of proteins and their complexes?

Does the experimental data improve the accuracy of the
predicted model?

Do predictors using sparse data provide higher accuracy
models than the best non-data-assisted predictors?

How is the ranking of data-assisted predictors affected if we
assess against data rather than reference structure?

How can we model distributions of conformations?
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NMR Reveals Two Non-Overlapping Inhibitor Binding
Sites in DENV2-NS2B-NS3pro Protease Complex
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Sparse Experimental Data Assisted
Prediction in CASP13

NMR: J. Duarte, J. Y. Huang, A. Rosato, D. Snyder,
G.T. Montelione, H. Valafar
Simulated Sparse NMR data for 11 CASP FM Targets
and two real NMR data sets

SAXS and SANS: J. Duarte, G. Hura, J. Tainer, S. Tsutakawa
Real SAXS data for 11 CASP FM Targets

Chemical Cross—Link (X-link): J. Duarte, A. Fiser, A. Leitner, J. Rappsilber
Real X-LInk Data for 29 domains/subunits/full complexes

Fluorescence Resonance Energy Transfer (FRET): C. Seidel
Real FRET data for a multidomain protein

16



Guided Prediction with Sparse NMR Data

Gaetano T. Montelione, Natalia Denissova, Janet Y. Huang,
Yojiro Ishida, Gaohua Liu, Roberto Tejero, G.V.T. Swapna,
Rutgers University, New Jersey, USA

Antonio Rosato, Davide Sala
CERM, University of Florence, ITALY

Homay Valafar
University of South Carolina

David Snyder
William Patterson University, New Jersey, USA



NMR-Guided Prediction

13 CASP Targets

17 Assessment Units

12 Simulated NMR Data Sets (FM Targets)
2 Real NMR Data Sets (Designed Protein)
6 Predictors

3 “Baseline” Groups

18



2D NOESY Spectrum of a Protein
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CASP: Data Guided Prediction Tutorial
April 23,2018

Acc. Chem. Res., Vol. 22, No. 1, 1989 Wiithrich

. ._J
Ll

NOESY. .

Figure 4. Mustration of the i i

pilot of & 500-MHz 'H NOESY spectruns of the protain basie pancreatic trypein iniditor (BPT1) is shown, with the two (requency
uelu,mdo,'mm cross peaks are marked i~k and linked by horizontal and vertical lines with the diagonal positions of the protess
connected by the eomspondm(NO&. &mhmmemwm%“hmunmmdhm
in this chain are identified by circles and the letters a-d. The broken arrows connect these protons with their resonance positiens
on the diagonal of the NOESY spectrum. Ou the right, there is a schematic representation of three circular structures formad by the
polypeptide chain, which are manifested by the croes peaks i~k.
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The Ambiguity Problem in Analysis in Cross Peak Assignment
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In NOESY

For a given cross peak,
the Y-axis will, in general,
match, within a “match
tolerance”, to Y possible
resonances assignments.

The X-axis will, in general,
match, within a “match
tolerance”, to X possible
resonance assignments.

Hence — the NOESY cross
peak may arise from any
one (or more) of X * Y
short (< 5 A) distance
interactions



Ambiguous NOE-based Contact List
(HN-HN, HN-Me, Me-Me 'H-'H Contacts)

Residue 1 Residue 2 Peak No. Upper-bound Atom 1 Atom 2
R1 R2 P# UPL Confid A1l A2
79 77 17 5.0 0.95 H H Peak 17
79 177 20 6.0 0.67 H HD2
79 135 20 6.0 0.97 H HD1
79 249 20 6.0 096 H HD1 Peak 20
79 50 20 6.0 0.81 H HD2
79 217 23 5.0 0.68 H H
79 230 23 5.0 0.75 H H
79 232 23 5.0 0.72 H H
79 106 23 5.0 0.76 H H Peak 23
79 166 23 5.0 0.83 H H
79 100 23 5.0 0.83 H H
79 82 23 5.0 0.74 H H
79 246 23 5.0 0.71 H H
79 216 23 5.0 0.67 H H

45 37 28 7.5 0.84 HD2 HG1 Peak 28



X-ray structure coordinates
Reduce l

coordinates with protons

SHIFTX?2

simulated simulated
<<

NOESY peaks chemical Shifts

l ASDP Cycle 0

Ambiguous Restraint Table



Residual Dipolar Couplings —
Measured in Orienting Media

Alignment of a protein in an orienting
solution (the molecules of the orienting
medium are depicted as green rods).

The rods align with the magnetic field
due to their large magnetic anisotropy;
the protein interacts weakly with the
rods, yielding a partial alignment of the
protein molecules.

This allows the measurement of residual
dipolar couplings for bond vectors, e.g.
the 1H-1°N moieties.

N. Tjandra and A. Bax, Science 278, 1111 (1997).



Residual Dipolar Couplings
Provide Information about Bond Vector Orientations

B0 1
H
0
C /3cos?0-1
—/r g,
15N r

Brackets denote averaging —
goes to zero without partial orientation

Prestegard, A-Hashimi & Tolman, Quart.
Reviews Biophys. 33, 371-424 (2000)

Bax, Kontaxis & Tjandra, Methods in
Enzymology 339, 127-174 (2001)

Prestegard, Bougault & Kishore,
Chemical Reviews, 104, 3519-3540
(2004)
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Residual Dipolar Couplings —
Measured in Orienting Media

h
D,,(6.¢) = fo i/PZ% {Aax(3cos2«9—1)+%A,h(sin2Qcos2¢)}
Vs

D™*(0,p)=D"*Bcos' 0 —-1)+ %DFZQ (sin” @ cos2¢)

If one is measuring couplings for different atom pairs
(P,Q), it is useful to apply a normalization:

DPQ(NH) _ DPQ[j/N?/H<rNI?-)I>]

-3

7/P7/Q<rPQ>

RDC’s are global restraints




Backbone Dihedral Restraints
Can be Estimated from
Backbone Chemical Shift Values

13Ca / 13CPB chemical shifts >  backbone
dihedral

ranges
(+/- 30 deg)

Y. Shen, A. Bax. Protein backbone and sidechain torsion angles predicted from
NMR chemical shifts using artificial neural networks. J. Biomol. NMR, 56, 227-
241(2013)

https://spin.niddk.nih.gov/bax/software/TALOS-N/
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Features of Simulated Sparse NMR Data

Assume 3C,1°>N-enriched perdeuterated samples, with ILV
13CH, methyl resonances.

NOESY peak frequencies were “wiggled” to simulate inaccuracies in
peak picking due to broad line widths.

NOESY Peaks or Resonance Assignments were deleted to account for
line broadening due to internal motions and/or incomplete
assignments.

Random “noise” peaks were added to the NOESY Peak Lists.

Backbone dihedral angle phi and psi restraints (chosen randomly
within +/- 30 deg, with uncertainty +/- 30 deg) were provided. These
would normally be available from the backbone chemical shift data.

15N-1H RDC data was provided for 2 alignments, assuming typical
precisions.
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Statistics on NOESY Datasets
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We are providing on average 6 peaks/residue. High ambiguity.
About 40 peaks/residue would be typical for NMR structures.

In the complete real n1008 dataset there are 43 peaks/residue.



Real NOESY Data

De novo protein design by citizen scientists
Koepnick, Liu et al. submitted

foldit3

N1008
CASP COMMONS Target UW-Eng
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Real NMR Data: Targets N1008 and n1008

CASP Commons Target: UW-eng (aka CASP5)
80 Residues, No deuteration, No RDCs, No ECs

15N, 13C-enriched sample was produced at Rutgers. Data collection included TR-NMR for
assignments, and sim(CN)-NOESY. Data collected at ~ 200 micromolar concentration, at
600 MHz and 800 MHz. Talos_N used to generate dihedral restraints in secondary
structure elements.

Reference NMR structure was determined with automated methods using Cyana, and
refined by manual interactive analysis of NOESY spectra. The resulting structures were
then energy refined with CNS in explicit water. Final DP score —0.78 (OK structure)

N1008: Using only backbone assignments, NOESY peak list was assigned, and used to
generate ambiguous contact contact list for CASP predictors.
- This is the strategy we would use for larger (> 15 kDa) 2H-enriched proteins

- However, since the sidechain NOESY peaks are still present in the NOESY spectrum, this
data set has a very high number of unassignable / incorrectly assigned NOESY peaks, and

is very challenging for automated structure determination.

n1008: Using complete backbone and sidechain assignments, NOESY peak list was
assigned, and used to generate ambiguous contact list for CASP predictors.
- This is a standard strategy for small (< 15 kDa) proteins.

36



Contact Predictions

Provided from the CASP13 Submissions for
Jones — Meta PSI COV

Target M /L

N0957s1: 3.3

NO989: 1-130: 107; 120-185: 16.0; 185-246: 612
NO968s1.: 15.9

NO968s2 : 3.3

N0980s1 (74 / 111 residues): 2.9

N1005 (residues 72-340): 56.4

The remaining targets had M /L<~ 1

37



Assessment Units

I I T

simNMR, dihedrals, 2x rdc’s N0967-D1.D2
NO957 N0957-D1
N0957-D2
N0968s1 simNMR, dihedrals, 2x rdc’s 123 N0968s1
N0968s2 simNMR, dihedrals, 2x rdc’s 116 N0968s2
N0980s1 simNMR, dihedrals, 2x rdc’s 105 N0980s1
N0981-D1  simNMR, dihedrals, 2x rdc’s 86 N0981-D1
N0981-D2 SimNMR, dihedrals, 2x rdc’s 80 N0981-D2
N0981-D3  simNMR, dihedrals, 2x rdc’s 203 N0981-D3
N0981-D4 simNMR, dihedrals, 2x rdc’s 111 N0981-D4
N0981-D5 SimNMR, dihedrals, 2x rdc’s 127 N0981-D5
simNMR, dihedrals, 2x rdc’s 134 N0989-D1.D2
N0939 N0989-D1
N0989-D2
N1005 simNMR, dihedrals, 2x rdc’s 326 N1005
N1008 Limited exp. NMR, dihedrals 80 N1008

n1008 Full exp. NMR, dihedrals 80 n1008



Correlation Coefficients for Z-Scores

Correlations Between Assessment Scores

GDT_HA
GDT_SC
RPF

SphGrdr
CAD_AA

MolPrbty

GDT_HA GDT_SC

0.952
0.918
0.901
0.915
0.546

0.959

0.902
0.895
0.932
0.554

0.923
0.902

0.947
0.966
0.573

SphGrdr CAD_AA MolPrbty
0.907 0.929 0.518
0.891 0.937 0.521
0.952 0.969 0.557

0.927 0.555
0.920 0.588
0.562 0.610

Friedman’s Test indicates different
scoring techniques do not give
significantly different rankings

(upper right: Pearson; lower left: Spearman)

Correlation between LDDT and RPF

Pearson 0.974
Spearman 0.977

D. A. Snyder



Baseline Models

Structures Generated by Janet Huang (blind) with
ASDP / CYANA -> Restrained Rosetta Refinement

Group 321

Sparse NMR Data, RDCs, no ECs

Group 459 '

Sparse NMR Data, RDCs, Meta PSI COV (Jones) ECs Janet Huang
Group 313

Sparse NMR Data, RDCs, “Best” ECs

Best ECs (Jones, Sanders, or none): Picked best 5 from 15 calculated
based on DP score.

Generally expect 313 J>459 J>321 )

40



Baseline Models
Structures Generated by Janet Huang (blind) with
ASDP / CYANA -> Restrained Rosetta Refinement

Generally expect: 313 .J > 459 J > 321 J

GDT_ TS 313 J > 459 J > 321 J all very similar raw and Z scores
GDT-HA 313_J > 321_J > 459 J
GDT_ALL 459 J > 313_J > 321_J
GDT_SC 459 J > 313_J > 321_J
SphereGrinder 459 J > 321 J > 313 J
RPF 459 J > 321_J > 313_J

MolProbity 321 J > 313 J >>> 459 |

41



Initial Z-Score Based Ranking
(Z = -2 Cutoff)

Z Score Based Ranking - GDT-TS Score alone

431>250 > (313_>459 J>321 J) >492 >208 > 288 > 122

Sum(Zscore>0.0)

16 ]

14

124

-
o
1

o2}
L

W Groups | 4.17

Baseline Mode

1 ITTI .

S & o) ~ o ® )

S & & & =) S 5

& & I3 & 3 & &
oups

S
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Initial Z-Score Based Ranking
(Z = -2 Cutoff)

431>250>(313 J>459 J>321 J)>492>208 >288>122

GDT HA Z Scores
431>250>(313 J>321 J>459 J)>492>208 >288 > 122

GDT All Z Scores
431>250> (459 J>313 J>321 J)>492>208>288 > 122

GDT_SC Z Scores
431>250> (459 J>313 J>321 J)>208>492>288 > 122

Sphere Grinder Z Scores
431>250> (459 J>321 J>313 J)>492>288> 208 >122

RPF Z Scores
431 >250> (459 J>321 J>313 J)>492>288>208>122

Molprobity Z Scores
250>431>(321_J>313 J)>492>288>459 J>208>122
- note that 459 _J drops in ranking — why is this?
- 250 and 431 switch order; 250 does a better job in regularizing the structures?
- the assessment of method 250 is greatly enhanced by including MolProbity score

- Conclusion: Get pretty much the same ranking regardless of the
score used.
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PCA Results: Thresholding at Z = -1

D. A. Snyder



GDT-like: Z-Score Based Ranking
(Z = 0 Threshold, Model 1)

GDT_TS: 0.0 GDT_HA: 0.44 GDT_ALL: 0.00 GDT_SC: 0.45 RMSD*: 0.00
LGA_S:0.00 ALO: 0.00 Dali(raw): 0.00 Mammoth: 0.00 Molprb*: 0.23
IDDT: 0.00 CAD(aa): 0.43 CAD(ss): 0.00 RPF: 0.42 CODM: 0.00
DFM*: 0.00 Hand.: 0.00 SOV: 0.00 QCs: 0.00 ContS: 0.00
S(”TI"! 0.00 SG: 0.43 RDC1*: 0.00 RDC2*: 0.00 DP: 0.00

* z-scores calculated on inverted raw scores

Reset Weights Equal Weights
* @ as awebpage (default)

Show| « . intxtformat

431 > 250 > Baseline

s
3
8
g
E
3
6d
o
2]
. 2 e & v
&S & & & & & & & &
W Groups
GR GR SUM Zscore Rank SUM Zscore AVG Zscore Rank AVG Zscore AVG Zscore Rank A
# | code | * name gauomalnolCount * (>2.0) * (>2.0) * (>2.0) * -2.0) _ * 0.0) * (00)
1 431 - 14 14.3277 1 1.0328 1 15.7915 1 1.1280 1
2 250 - 14 5.4434 3 0.1443 5 8.6442 2 0.6174 2
3 459 - 13 3.5906 4 0.1591 4 4.7489 3 0.3653 3
4 313 - 12 2.0121 5 0.2515 2 4.3726 4 0.3644 4
5 321 - 14 5.9091 2 0.1909 3 4.3101 5 0.3079 5
6 492 - 13 -2.6627 7 -0.5181 7 1.7315 6 0.1332 6
7 288 - 14 -1.9207 6 -0.5921 8 1.0108 7 0.0722 8
8 |208 - 7 -12.9425 9 -0.4904 6 0.8941 8 0.1277 7
9 122 - 8 -12.1411 8 -1.0353 9 0.0468 9 0.0058 9

45



Z-Score Based Ranking
(Z = 0 Threshold, Best Model)

GDT_TS: 0.0 GDT_HA: 0.44 GDT_ALL: 0.00 GDT_SC: 0.45 RMSD*: 0.00
LGA_S:0.00 ALO: 0.00 Dali(raw): 0.00 Mammoth: 0.00 Molprb*: 0.23
IDDT: 0.00 CAD(aa): 0.43 CAD(ss): 0.00 RPF:0.42 CODM: 0.00
DFM*: 0.00 Hand.: 0.00 SOV: 0.00 QCS: 0.00 ContS: 0.00
T™- . . - .
score: 0:00 SG: 0.43 RDC1*: 0.00 RDC2*: 0.00 DP: 0.00
* z-scores calculated on inverted raw scores
Reset Weights Equal Weights
. s a webpage (default)
Show | - txt format
164
14
124
3 104 1
3 431 > 250 > Baseline
g o
£
3
6
+
2
o7 S 2
& & & & & f & 65? G(D’
W Groups
GR GR SUM Zscore Rank SUM Zscore AVG Zscore Rank AVG Zscore AVG Zscore Rank
*|" code|* name _|* Pomeins Count " 20 =) * -20) 20 PR s =)
1 431 - 14 15.2599 1 1.1260 1 17.1015 1 1.2215 1
2 250 14 4.7298 3 0.0730 5 7.4357 2 0.5311 2
3 321 - 14 5.6718 2 0.1672 4 4.7371 3 0.3384 4
4 459 13 3.8357 4 0.1836 3 4.3806 4 0.3370 5
5 313 - 12 2.4560 5 0.3070 2 4.3171 5 0.3598 3
6 |492 13 -2.2360 6 -0.4707 6 1.8384 6 0.1414 7
7 208 = 7 -13.2321 9 -0.5387 7 1.0315 7 0.1474 6
8 288 14 -2.4610 7 -0.6461 8 0.6623 8 0.0473 8
9 122 - 8 -12.6000 8 -1.1500 9 0.0000 9 0.0000 9
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Real Sparse NMR Data

Target N1008 — real NMR data

(bb assignments only)

Note that no EC contact predictions or RDCs were available, as this is a
Foldlt designed protein from the David Baker group (Crowd source).

G.V.T. Swapna

LGA Sequence

LGA Sequence Dependent Molprobity

General (4A) Full Indepeggﬁnt (4A) | MAMMOTH | Dali Full Full IDDT SphGr
# | & Model o GR# | o GR Name | Charts | +GDT TS | o NP_P | o1 | oALO P | +ALe P | ozscore |oZ | o ME: o Slobal | 4 o
= — GDT Score Score score —
1. | N1008T5250_1-D1_| 250 ADIG | 7500 10000 | 142 |8182 | 9610 | 675 112 050 0.69 93.51
2. | N1008TS208_1-D1_| 208 ADIG [73.05 10000 [128 [ 83.12___[97.40 | 661 10.1 134 0.60 82.47
3. | N1008TS431_1-D1_| 431 ADIG |68.18 100.00 [ 0.92 | 5844 | 9351 | 6.18 9.2 0.50 0.59 81.82
4| N1008TS313_1-D1 | 313 ADIG [52.92 9870 |-0.21 [4675 | 7532|341 5.1 0.89 0.49 59.95
5. | N1008TS321_1-D1_| 321 ADIG | 5292 9870 | -021 |4675 | 7532 | 341 5.1 0.89 0.49 59.95
6. | N1008TS122_1-D1 | 122 ADIG |42.86 100.00 | -095 [33.77 [ 4805 _ [1.09 23 2.78 0.43 57.79
7. | N1008T5492_1-D1_| 492 ADIG |40.58 100.00 | -1.11_|27.27 | 4286 __ | 095 15 1.18 0.41 47.40
8. | N1008T5288_1-D1 | 288 ADIG [40.26 100.00 | 1.14_[ 2208 | 4545 | 053 14 178 0.41 44.80

Interestingly -- for real data (bb only) the GDT-TS performance order is:
Group 250 > Group 208 > Group 431 > Janet 313

Group 208 did relatively better with this real NMR data set than with most simulated data, and
Group 431 did relatively less well that they did for other targets.
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Target N100S8 - real data; bb only

W

Best Regular .
PDB Prediction — SHORTLE ASDP no EC 122-Forbidden
91.23 52.92 42.86

492-wfBakerUNRES 431-Laufer 288-UNRES 250-Meilerlab 208-KIAS
40.58 68.18 40.26 75.00 73.05



Real NMR Data

Target N1008 — real NMR data (bb only)

The "top 1" target of Groups 250 and 208 are significantly better than baseline
(Group 313_J), but the variability across their submissions is high - they do a good
job of selecting their best model of the 5 submitted.

N1008-D1
N1008-D1

o
-

10

Distance Cutoff, A
5
I
Distance Cutoff, A
5
I

!
0 20 40 60 80 100 0 20 40 60 80 100
Percent of Residues (CA) Percent of Residues (CA)
Show groups
Show groups \#‘
e | 250
L4 250 ° 208
. 208 . .313
- B3
4

431 492
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Real NMR Data

Target n1008 — real NMR data (bb + sc assignments)

Note that no EC contact predictions or RDCs were available, as this is a

Foldlt designed protein from the David Baker group (Crowd source).

LGA Sequence .
General LGA Sequence Dependent | | o 00ndent (4A) | MAMMOTH |Dali Full| MOIPrObitY | \nnt [ SphGr
(4A)M Full - Full

Z-

- z- MP- Global
# | » Model + GR# | * GR Name |Charts |+ GDT_TS |*NP_P .%T +ALO P [+ AL4 P |* Z-score .Score ’Score ’score *SG
1_[n1008TS321_1-D1 [321 ADIG |82.79 10000 [1.73 |8831 |97.40 _|7.03 125 [1.10 073 |95.45
2. [n1008TS431_1.D1 |431 ADIG |57.47 100.00 [0.40 |41.56 |83.12  |5.34 6.1 2.40 054 |76.62
3. [n1008TS288 _1-D1 288 ADIG |41.56 100.00 |-0.44 |23.38 _ |64.94 |1.38 31 1.07 0.41 44.80
4 [n1008TS122_1.D1 [122 ADIG |40.26 100.00 |-0.50 |0.00 __ |41.56 _|0.39 12 371 0.41 44.16
5. [n1008TS492 1.D1 |492 ADIG |27.27 100.00 |-1.19 |19.48  |27.27 _|-0.60 0 227 034 |24.68

For real data (bb + sc assignments) the GDT-TS performance order is:
Janet 313 _J > Group 431 > Group 288 > Group 122 etc
Groups 208 and 250 did not submit

GDT gain by Janet: 431: 22 pts

288: 41 pts

122: 43 pts 492: 55 pts
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Target n1008 — Real Data; bb + sc

Best Regular .
PDB Prediction — SHORTLE ASDP no EC 122-Forbidden
91.23 82.79 40.26

492-wfBakerUNRES 431-Laufer 288-UNRES 250-Meilerlab 208-KIAS
27.27 57.47 41.56 62.11 ??



Overall Performance
Per Target Per Group
GDT Scores, First Model

Best Regular Prediction 492 431 288 250 208 122 GDT-NO EC GDT-JoneskC
45.22

54.81
66.28 49.42 58.43 53.78 55.52 61.05

42.19
55.17

49.38
65.99 50.68

65.77 47.75 61.71

59.84

4026/ 1757305  42.86

41.56 40.26

57.47
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Could predictors use sparse NMR data
to improve the accuracy of their
models.
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Regular vs NMR Assisted

Change in GDT_TS
Average for All Targets

The top  14(6)
. o 7 (7) First vs First
performing
50 13 (13) 14 (14)
group (431) 40 8 (8)
30
was greatly o
enhanced (25 10
0
pts) by NMR 10 431 492 122 288 B
data 20
M Avg GDT_TS w/out M DeltaGDT
100 Best vs Best
80
60
40
20
0
Group 250 and Janet 431 492 122 »88

groups provided no -20

o ” H H
regular” predictions B Avg GDT TS w/out M DeltaGDT A. Rosato
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First VS First
Assisted - Regular

. 122 208 288 * 431 . 492
Best VS Best
Assisted - Regular
.00
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First VS First Assisted - Regular

© N0957s1-D1 © N095751-D2 © N0957s1 ® N0968s1-D1 ® N0968s2-D1 ® N0980s1-D1 ® N0981-D1 ® N0981-D2 ® N0981-D3 ® N0981-D4 @ N0981-D5 ® N0989-D1 ® N0989-D2 ® N0989 @ N1005-D1 N1008-D1 ® n1008-D1

Best VS Best Assisted - Regular

© N0957s1-D1 © N0957s1-D2 @ N0957s1 ® N0968s1-D1 ® N0968s2-D1 ® N0980s1-D1 ® N0981-D1 ® N0981-D2 ® N0981-D3 ® N0981-D4 ® N0981-D5 ® N0989-D1 © N0989-D2 © N0989 « N1005-D1 = N1008-D1 ® n1008-D1
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Assisted
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Do predictors using sparse NMR data
have higher accuracy than the best
non-data-assisted predictors



Regular vs NMR Assisted
REMARKABLE RESULT!!

100
90
80
70
GDT-TS  +0
50
40
30
20
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o
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B Best regular M Best assisted

Best among all regular predictions vs
best NMR-assisted prediction for each target A. Rosato



In many cases the best “regular” prediction for a target was
more accurate than the best “data assisted” prediction.

GDT-TS scores Best VS The Best regular
10 20 30 40 50 60 70 80 90 100
100 ~.--- 100
90 ] e o o o o [ ] e 0 e e » 90
80 oo © ) ° e o ’.,-—"5——— "mo-Y=X | g0
5 ™ : o e AL
3 60 ° o oo e®0000 g 00 _g,-—"'—;_. e ©® ° ® 250 60
Q0 so o ° > ° 288 | 59
& w ‘ ST i . D |0
30 ee o o —__9 _____ e 431 30
20 - == e 459 20
10 == ° 492 | 49
10 20 30 40 50 60 70 80 90
Assisted
GROUP RANK 1 RANK1 or 2 RANK1lor2or3
043 - A7D 10/16 18 /32 27/ 48
322- Zhang 2/16 4/32 4 /48
366-Venclovas 1/16 2/32 2 /48
266s —slbio_serve 1/16 1/32 1/48
281 — SHORTLE 1/16 1/32 1/48

089 - MULTICOM 1/16 1/32 1/48 ol



How is the ranking of NMR-Assisted
predictors affected if we assess against
data rather than reference structure?
NOESY data
RDC data



RPF-DP Scores

d < dra

R P F ,3};40 An NMR Protein Structure
9: Quality Assessment Tool

3D model RPF Server and
Stand-alone Software

— TP
— FP
_ — FN
By comparing the differences between the two - " _ .+ /%
.. ... graphs G (derived from the structure) and Gayoe ;0 & i
(derived from the peaklists), a global measure of - " i
the goodness-of-fit of the query structures with iy £
AT S the original peaklists can be formulated. W it
63

Huang, Y J ; Powers, R ; Montelione, G T J. Amer. Chem. Soc. 2005, 127: 1665.
Huang, Y J ; Rosato, A ; Singh, G ; Montelione, G T Nucleic Acids Research 2012, 40:542



DP Score : Z-Score Based Ranking
(Z = 0 Threshold, Model 1)

v 321 J>431>459 J>313 |

Same ranking using Best Model

Group 431 also does very
well with DP score!
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Sum(Zscore=>0.0)

RDC1: Z-Score Based Ranking
(Z = 0 Threshold, Model 1)

: Janet > 250 > 431
5 \ 4 Same ranking using
“ v Best Model

v k2s]
o
& &

M Groups

Groups 250 and 431 do well on RDC
scoring - probably used RDC data.
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Sum(Zscore>0.0)
o (=] ~

RDC1: Z-Score Based Ranking
(Z = 0 Threshold, Model 1)

Janet > 250 > 431

Same ranking
using Best Model

Group 250 does well -
probably used RDC data.
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Sidechain Rotamer comparisons between
predicted and reference structures.

Rotamer states for residues with both buried and converged side
chains were compared between the predicted models and the
corresponding reference structure.

The y, and y, rotamers for all residues in each reference structure
were assigned to the nearest g*, t, or g~ conformational state.

Side chains with solvent accessible surface area less than 40 A2 in
the reference structure (calculated using the program Molmol) were
considered as buried side chains.

For NMR-derived reference structures, the medoid conformer of the
ensemble was selected as the representative structure.
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Chi-1 and Chi-2 Rotamer Agreement
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Why did data-guided groups 431 and
250 provide more accurate structures
than Janet baseline.

Was this difference largely due to
regions with missing?



Local Backbone RMSD vs Sequence

Group 313 — ASDP Baseline

Target NO968s1

21
19
17
15
13
11

]
- = W U NV

I Res_Removed
——122
250
288
——313
——431
—e—459
——492

6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102105108111114117120123

There is some tendency to have higher local rmsd

for ASDP method in regions where data is missing,
which can be overcome to some extent by

prediction methods. .



Future CASP Challenges

Ongoing process of generating CASP Commons
Targets, Data (NMR, SAXS, X-Link, FRET), and
Structure

Modeling Multiple Conformational States
Modeling Using Unassigned NOESY spectra
Modeling Using Unassighned RDC data

Combining SAXS, NMR, X-Link, FRET, CryoEM with
advance modeling / prediction methods.
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